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A nonlocal model of phytoplankton aggregation
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Abstract

The mechanisms of grouping and the models revolving around these problems truly impassioned
many mathematicians. Our main goal in this paper is the development and analysis of an aggregation
model of phytoplankton. The model is the continuum limit of an interacting particle model describ-
ing a “long-ranged” aggregation mechanism among particles. It consists of an integro-differential
advection–diffusion equation, with a convolution term responsible for the agreggation process. The
nonlinearity in the equation is homogeneous of degree one, which introduces several complications.
We prove that the Cauchy problem associated to this model is well posed, i.e., there exists a unique
global positive solution and it satisfies the principle of conservation of mass. Further, we estab-
lish the existence of nonuniform stationary solutions using the topological degree theory, namely
Leray–Schauder’s fixed point theorem. This asymptotic result agrees with our beliefs that nonlinear
interactions at small scales can produce some aggregating patterns at large scales.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Elucidating the underlying mechanisms responsible for the process of aggregate for-
mation in phytoplankton at various spatial and time scales has been the goal of much
experimental and theoretical research, and is to date the subject of a large body of biolog-
ical and mathematical literature. Similar phenomena were observed in very varied fields:
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physics of the atmosphere, astrophysics, chemistry of colloids, hematology, epidemiology,
phytoplanktonology, etc. This recently stimulated themathematical study of equations from
model groupings.
Phytoplankton cells have the ability of forming dispersed aggregates in thewater column,

which constitute the main food available to the early larval stages of many fish species,
including the anchovy. At such stages, larvae are passive and can only eat the prey passing
in very close vicinity. The best situation is when the larva is near a phytoplankton aggregate,
while on the other hand larvaewhich stay far fromaggregates are not likely to survive. Thus,
being able to describe the distribution in numbers of phytoplankton aggregates of different
sizes as well as locating them in the space turn out to be of utmost importance in connection
with the study of fish recruitment.
Coagulation theory has more recently been applied to describe aggregation of marine

particles[20] and specifically phytoplankton aggregation[10,13,24]. Many laboratory ex-
periments[6,16,15], mesocosm experiments[4], and field observations[15–17] have all
demonstrated that coagulation theory at times provides an accurate description of phyto-
plankton aggregate formation (see[14]). Aggregation by physical coagulation requires that
primary particles collide by some physical process and stick together upon collision. Brow-
nian motion, differences in sinking velocity between particles and fluid shear may all cause
primary particles to collide.
However, studies of marine aggregates at small scales have emphasized biological mech-

anisms for their formation. That is, although planktonic organisms can be thought of as
particles, the richness of biological responses makes the nature of their interactions more
complex than the simple physical onesdescribedby coagulation theory. Indeed, someplank-
tonic species (algae, bacteria, dinoflagellates that are motile species of phytoplankton) have
chemosensory abilities[7,26,25]: they can sense the chemical field generated by the pres-
ence of other particles. The dinoflagellates and more generally algae are known to leak
organic matter into solution[19]. This leakage creates a zone around individual cells, the
“phycosphere”, where extracellular products exist in enhanced concentrations compared to
the surrounding concentration[2]. The released products such as amino acids and sugar
attract algae or bacteria present in a suitable neighborhood.
Our purpose in this paper is twofold: on the one hand, we propose a one-dimensional

model that describes the aggregation behavior of phytoplankton on the vertical component
of water column; on the other, we investigate the mathematical analysis of this model and
explore its asymptotic behavior.
Our model consists of an integro-differential advection–diffusion equation with a con-

volution term, which is derived rigorously as the continuum limit from a large system of
phytoplankton cells subject to random dispersal modeled as Brownian motions and mutual
interactions allowing the particles’ motions some dependence. It can be considered as an
example of the class of models reviewed in[22]. The main feature of this model is that it
captures the idea of the attraction interaction between organisms at small scales, due to the
chemosensory behavior.
The paper is organized as follows. In Section 2, we describe thoroughly the model and

in Section 3, we discuss its derivation from the corresponding interacting particle system.
In Section 4, we show that the Cauchy problem associated to the aggregation model is
well posed in a suitable function space. Indeed, we investigate the existence, uniqueness
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and positivity of solutions. We also prove that the value of the integral of the solution is a
constant, so the solution remains a proportion density for all positive time. Global existence
fails in many nonlinear situations. Here, it holds for nonnegative solutions. In Section 5,
we study the existence of steady-state solutions. The complicated form of the model makes
it difficult to determine stationary solutions straightforwardly. Nonetheless, by using the
topological degree theory, we establish the existence of nonuniform steady-state solutions.
Finally, we conclude with a brief discussion in Section 6.

2. Model description

The model we propose is given by the following partial differential equation:

�
�t
u(x, t)= d �2

�x2
u(x, t)− �

�x
(u(x, t)�(x)[G ∗ u0(·, t)](x)),

in � × (0,∞), (1)

where�=]0, L[ is aboundeddomainwithsmoothboundary�� inR, x is aone-dimensional
coordinate, andt is the time. This equation deals with temporal and spatial changes in the
phytoplankton population density.u(x, t) represents the spatio-temporal distribution den-
sity of phytoplankton on the vertical coordinate of water column, that is,u(x, t)dA is the
expected number of organisms in the sample areadA surrounding the pointx at time t .
Here,R represents the vertical axis oriented downward from the surface to the seabed and
the interval�=]0, L[ corresponds to the euphotic zone on the vertical component of water
column. Generally, phytoplankton cells can survive only in the “euphotic zone”, that is why
we restrict our model to this domain. The depth of the euphotic zone varies widely depend-
ing onwater clarity, latitude and season. It is often in the range of 50–100m from the surface
[9]. The diffusion term in (1) takes into account the spatial spread of the population with the
coefficient of diffusiond; while the advection term describes the interaction mechanisms
among particles via the velocityG ∗ u0. The latter has the form of convolution[21], i.e.,

[G ∗ u0(., t)](x)=
∫

R
G(x − x′)u0(x′, t)dx′,

where

u0(x)=
{
u(x), 0<x <L,
0, x�0 or x�L

and the kernelG is given by

G(x)= −[−|x|2+ (r0 + r1)|x| − r0r1] sign(x)1[r0,r1](|x|). (2)

(G ∗ u0)(x) describes the velocity induced at the sitex by the net effects of all individuals
at various sitesx′. It is clear from (2) thatG(x − x′) leads to the attraction of the parti-
cle at positionx to the one atx′, as a function of the distance between the two particles.
To give a biological explanation of the interaction mechanism among particles, we make
two assumptions: (a) the nonuniform concentration fields around organisms, (b) organisms
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considered as having chemosensory abilities and hence some “knowledge” of their neigh-
bors whereabouts and modifying their motion accordingly. More precisely, if we consider
a phytoplankton particle located inx, the extracellular products released by this particle
form a high concentration zone aroundx, on a radius of lengthr0(r0>0), which attracts all
particles located at positionsx′ such that the distance betweenx andx′ lies in the interval
[r0, r1](r1>r0). Beyondr1, particles cannot perceive the difference in concentration be-
cause they are sensory limited[3,11,12]. Hence, they are not attracted. The sign ofG(x−x′)
changes according to whetherx′ is above or belowx: G behaves as a gradient, that is, a
particle is attracted to the region of high density. Boundary conditions are imposed at the
surface and atL:

�
�x
u(x, t)= 0, on�� × R+ (3)

and the initial condition is

u(x,0)= u0(x)�0, in �. (4)

We also assume thatu0 is a density distribution, that is,∫ L

0
u0(x)dx = 1. (5)

The function� in the advection term is an extra term to the dynamics of the phytoplankton
population. It has been set in the model only for mathematical convenience, that is, to
eliminate the advection term at the bounds 0 andL since condition (3) is not sufficient.�
is chosen such that

� ∈ H 10 (�), sup� ⊂ [�, L− �], � sufficiently small, (6)

where sup� denotes the support of function�.
Thenormalizationcondition (5) is connected to the fact that thesystem is conservative.We

will not consider growth terms, and focus exclusively on nonlinear and nonlocal transport
properties of the population.

3. Model derivation

As already mentioned, the continuum density given by Eq. (1) is derived by a limiting
process from the empirical distribution associated with a large number of particles.
The interacting particles model inR corresponding to (1) is

dXkN(t)=
1

N

N∑
j=1

G(XkN −XjN)dt +
√
2d dBk(t), k = 1, . . . , N , (7)

whereXkN(t) ∈ R is the position of particlek at timet andBk(t), k = 1, . . . , N are inde-
pendentR-valued Brownian motions. The dispersion term expresses the vertical diffusion



M. Adioui et al. / Nonlinear Analysis:Real World Applications 6 (2005) 593–607 597

of phytoplankton cells in water which is similar to molecular diffusion[3] andd is the co-
efficient of diffusion. The drift term indicates the attractive force exerted on thekth particle
due to the interaction of this particle with all others in the population.
Following[22], wemay give the collective behavior of the system in terms of the stochas-

tic measure-valued process{XN(t)}t∈R+ , where

XN(t)= 1

N

N∑
k=1

�XkN (t)
(8)

with �XkN (t)
being the Dirac measure at the locationXkN(t).

The system of SDE (7) can be expressed in terms of the empirical distribution (8):

dXkN(t)= (G ∗XN(t))(XkN(t))dt +
√
2d dBk(t), k = 1, . . . , N .

It is clear that we deal with a McKean–Vlasov interaction or “long-ranged” interaction
(the range of interaction is independent ofN). SinceG is a bounded Lipschitz continuous
function, the propagation of chaos theory shows that the empirical process{XN(t)}t∈R+
converges in law, asN goes to infinity, to adeterministicmeasure-valuedprocess{X(t)}t∈R+
and this limitingprocessadmits for anyt ∈ R+ adensityu(x, t)with respect to theLebesgue
measure onR (see[28] for a review;[8]). Consequently, by using the same techniques as
in [22], we obtain thatu(x, t) satisfies:

�
�t
u(x, t)= d �2

�x2
u(x, t)− �

�x
(u(x, t)[G ∗ u(., t)](x)), in R × (0,∞). (9)

We recognize that (9) is similar to Eq. (1) but without the term�.
As mentioned in[22, p. 10], in order to complete rigorously the proof of the convergence

from the Lagrangian model to the evolution equation (1) for the spatial density of the
deterministic process{X(t)}t∈R+ , one has to provide existence and uniqueness for the
densityu(x, t) satisfying (1). These problems will be investigated in the next section.

4. Existence, uniqueness and positivity

4.1. Abstract formulation

The approach we shall adopt in our analysis of (1)–(4) is to reformulate the associated
initial-value problem as an abstract Cauchy problem, which can be treated using the theory
of semigroups of operators. We obtain a quasi-linear problem with nonlinearities in the
first-order term:{ d

dt
u(t)= Au(t)− B[u(t)g(�,G)(u(t))],

u(0)= u0,
(10)
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in whichu(t) is used foru(., t). The operatorA: D(A) ⊂ X := L2(�)→ X is defined by

Aw = d d
2w

dx2
,

D(A)= {w ∈ H 2(�) : w′
|�� = 0} (11)

and the operatorB : D(B) ⊂ X → X by

Bw = d

dx
w,

D(B)=H 1(�). (12)

H 1(�) andH 2(�) denote usual Sobolev functions spaces. We will denote by〈, 〉 and‖.‖,
respectively, the scalar product and the norm inX. The operatorA commutes withB and
they are related by the following formula:

〈Bu, dBu〉 = − 〈u,Au〉 , ∀u ∈ D(A). (13)

We endowD(B) with the graph norm

|x|D(B) = ‖x‖B + ‖Bx‖, ∀x ∈ D(B).
The main existence result will be derived using successive approximations in a space of
continuous functions from some suitable interval[0, t0] (wheret0>0 will be chosen later
on) intoD(B). On occasion, we will use the notationY = C([0, t0],D(B)). The operator
g(�,G) is defined as follows:

g(�,G)(�)(x)= �(x)[G ∗ �](x)= �(x)
∫

R
G(x − y)�(y)dy.

By straightforward consequence of standard calculations, we can establish thatg(�,G):
D(B)→ D(B) continuously, so there exists a constant�, so that

|g(�,G)(�)|D(B)��|�|D(B), ∀� ∈ D(B).

Note also thatG ∗ u0 is uniformly bounded. Hence,g(�,G)u is uniformly bounded. As a
result of Hölder’s inequality, we obtain

|g(�,G)u|∞ �
√
L|G|∞|�|∞‖u‖, ∀u ∈ D(B). (14)

On the other hand, we have

|Bg(�,G)u|∞ �
√
L|G|∞max(|�|∞, |B�|∞)|u|D(B), ∀u ∈ D(B). (15)

The differential equation (10) may not have a strong solution. Thus we solve it in integrated
form by using the variation of constants formula

u(t)= T (t)u0 −
∫ t

0
T (t − s)B[u(s)g(�,G)(u(s))]ds. (16)

We recall that a solution of (16) is called a mild solution of the differential equation (10).
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Proposition 1. The operator A defined by(11) is the generator of an analytic semigroup
of contractions in X, (T (t))t�0, compact fort >0.The restrictionsT (t)/D(B) sendD(B)
into itself and are uniformly bounded inD(B) (that is, there existsC1�0, such that,
|T (t)/D(B)|D(B)�C1, for t�0).

Proof. The proof is similar to the one in[1]. �

4.2. Local existence of solutions

This subsection is concerned with the local existence of solutions for problem (10). The
main problem we faced here was the fact thatB is not a fractional power of(−A); this
complicates the treatment of the problem.
For this purpose, we start by establishing some useful estimates.

Lemma 2. (1)There exists a constant M, such that, for all u, v ∈ D(B), we have

‖B[ug(�,G)(u)] − B[vg(�,G)(v)]‖�Mmax(|u|D(B), |v|D(B))|u− v|D(B).
(2)There exists a positive constant Q, such that, for all u ∈ D(B), it holds that

‖B[ug(�,G)(u)]‖�Q|u|D(B)‖u‖.
(3)There exists a positive constant C, such that, for all u ∈ X, it holds that

‖BT (t)u‖� C√
t
‖u‖, ∀t >0. (17)

Proof. For the claim, the proof is the same as the one given in[1, Lemma 2.1]. �

We can now state the main theorem of this subsection.

Theorem 3. For everyR>0, there existst0>0, t0 = t0(R), such that, for eachu0 ∈
BD(B)(R), (i.e., the ball of radius R centered at0 of D(B)), the Cauchy problem(10)
has a unique mild solution u defined on the interval[0, t0].Moreover, the mapu0 → u is
Lipschitz continuous fromBD(B)(R) into Y.

Proof. The proof is presented in Appendix (A 1).

4.3. Global existence

The result proved in the previous theorem is valid on a local time interval, but it can be
extended to arbitrarily large times. In fact, we have the following result.

Theorem 4. For every u0 ∈ D(B), there exists a unique global positive solution of
Eq. (10)and it satisfies the principle of conservation of mass.

A proof of Theorem 4, which is very technical and independent of the rest of the paper,
is presented in Appendix (A 2).
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4.4. Regularity

The following result describes the regularity of a mild solution of (10).

Theorem 5. For everyu0 ∈ D(A), themild solution of Eq.(10)is a classical solution, i.e. u
is continuous on[0,∞), continuously differentiable on(0,∞),u(t) ∈ D(A) for t ∈ (0,∞)
and(10) is satisfied on[0,∞).

The proof is based on the arguments used in the proof of Theorem 2.4 in[1], so we just
sketch its main points. In fact, if we show that the function

f (t)= B[u(t)g(�,G)(u(t))]
is locally Hölder continuous from(0,∞) into D(B); then it follows from the theory of
nonhomogeneous linear equations (see,[23, Corollary 3.3]) that the mild solution of (10) is
a classical solution. Thatf is locally Hölder continuous on(0,∞) will follow if we prove
that the mapt → u(t) is locally Hölder continuous, from(0,∞) toD(B).

5. Steady-state solutions

5.1. Fixed point problem

We consider the problem made up of (1)–(3)–(4)–(6)–(5) and we look for stationary
solutions, i.e., for solutions of the formu(x, t)= u(x),∀t .
Such solutions must satisfy the system:

d
d

dx
u(x)− u(x)�(x)[G ∗ u0(.)](x)= �, (18)

where� is a constant to be determined,x ∈ �, with boundary conditions

�u
�x |x=0,L

= 0. (19)

Using the boundary condition (19) together with (6), we deduce that

� = 0,

u(x)�0 in� and
∫ L

0
u(x)dx = 1. (20)

Let us introduce the following operatorF defined by

F(u)(x)=
∫ x

0

1

d
�(y)[G ∗ u0(.)](y)dy. (21)



M. Adioui et al. / Nonlinear Analysis:Real World Applications 6 (2005) 593–607 601

In terms ofF(u), (18) can be written as

d

dx
u(x)− u(x) d

dx
F(u0)(x)= 0. (22)

By integration by parts and using the boundary condition, we arrive at

u(x)= u(0)exp(F(u0)(x)),
which, together with the normalization condition,∫ L

0
u(x)dx = 1

leads to

u(x)= exp(F(u0)(x))∫ L
0 exp(F(u

0)(s))ds
= defH(u)(x). (23)

Then, from (23), the search for steady-state solutions is equivalent to finding fixed points
ofH:

u= H(u). (24)

Remark 6. It is visible that the uniform distributionu= 1/L does not satisfy (24). There-
fore, if a steady-state solution exists it could not be the uniform distribution.

5.2. Steady-state solutions

In this part, we deal with the problem of determining steady-state proportion densities.
For this, we will use the topological degree theory, namely we use Leray–Schauder’s fixed
point Theorem. To know more about this approach, we can refer, for example, to[5]. Let
us start with an observation connected to the operatorH.
Using some standard algebra, one has:∫ z

0

1

d
�(x)[G ∗ u0(.)](x)dx =

∫ L

0
u(y)k(z, y)dy,

with

k(z, y)=
∫ z

0

1

d
�(x)G(x − y)dx. (25)

Using this observation, the operatorH, defined by formula (23) can be written as

H(u)(z)= exp[∫ L0 u(y)k(z, y)dy]∫ L
0 exp[

∫ L
0 u(x)k(z, x)dx]dz

.

We introduce the following operatorH� defined by

H�(u)(z)=
exp[∫ L0 u(y)k(�z, y)dy]∫ L

0 exp[
∫ L
0 u(x)k(�z, x)dx]dz

, (26)
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where� is a real parameter,� ∈ [0,1] and let us look for steady-state solutions of the
problem

u= H�(u). (27)

Evidently, if we defineu= 1/L, it holds thatH0(u)= u.
We are now in a position to draw themain result of the existence of steady-state solutions:

Theorem 7. The fixed point problem(24)has a solution.

A proof of Theorem 7 is presented in Appendix A.3.

6. Conclusion

The aim of this work was to develop amathematical model of aggregation in phytoplank-
ton that helps to understand the mechanisms underlying spatio-temporal pattern formation.
Here, the grouping phenomenon is a consequence of social behavior and is due to the non-
linear interactions between phytoplankton particles. The model has been rigorously (not
heuristically as for many continuum models) derived by a limiting process from the empir-
ical distribution associated to an interacting system of particles. It describes the evolution
of the mean-field spatial density of phytoplankton population on the vertical water column
by a deterministic nonlinear partial differential equation of the advection–diffusion type.
To provide the existence and uniqueness for the solutions of this equation, we have proved
that the Cauchy problem (10) associated to this model is well posed inD(B). Solutions
are fixed points of strict contractions and initial values inD(A) yield classical solutions.
We have also proved the conservation of mass of phytoplankton, that is, the solution of
our problem remains a proportion density for all positive time. Further, we explored the
asymptotic behavior of the model, namely the existence of steady-state solutions. The com-
plicated form of the model does not allow to obtain steady-state solutions (not even a trivial
solution) by the usual method as in[1]. Nevertheless, using the topological degree theory,
more precisely, Leray–Schauder’s fixed point theorem, we established the existence of a
steady-state solution. We do not know about the stability of this solution but we stress on
the fact that the latter could not be a uniform distribution, in any case. This is what we have
expected: the nonlinear interactions between organisms candidates for heterogeneity and
emergence of patterns on the vertical water column. Simulations are necessary to complete
the study.
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Appendix A.

A.1. Proof of Theorem 3

The proof is very similar to that of Theorem 2.1 in[1]. Therefore we only give an outline.
As mentioned earlier, the approach to be taken in the proof is based on the method of
successive approximations. Letu0 ∈ BD(B)(R) and define a sequence(un)n�1 by

un+1(t)= T (t)u0 −
∫ t

0
T (t − s)B[un(s)g(�,G)(un(s))]ds. (28)

Assume that the sequenceun is bounded inC([0, t0],X), namely, that there existt0>0 and
� to be determined later on, such that

|un(t)|D(B)��R, ∀n�1 and ∀t ∈ [0, t0].
Using Lemma 2, we show that

|un+1(t)− un(t)|D(B)
�[M�R(2C

√
t + t)] sup

0� s� t
|un(s)− un−1(s)|D(B), ∀t�0 andn�1.

Then, by choosingt0>0 small enough so that

[M�R(2C
√
t0 + t0)]< 1

2, (29)

the sequence(un+1(t)− un(t)) is the general term of an absolutely convergent series inY .
To complete the proof of the theorem, we have to show that the sequenceun(t) remains
bounded inD(B).
Following [1], we obtain

|un+1(t)|D(B)�C1R + �R[2C√
t0 + t0](

√
L|�|∞|G|∞�R + L), ∀t ∈ [0, t0].

Therefore, by choosingt0>0 so that (29) holds and

[2C√
t0 + t0](

√
L|G|∞|�|∞�R + L)< 1

2, (30)

we arrive at

|un+1(t)|D(B)�C1R + 1
2 �R, for t� t0.

This inequality will be extended ton+ 1 if we can choose both� large enough for
C1R + 1

2 �R��R (which holds as soon as��2C1)

andt0>0 such that (29) and (30) hold which can always be accomplished, once� has been
chosen. So, assuming� andt0 have been chosen as indicated, the first claim of the proof is
proved.
For the uniqueness of the solutionu and the Lipshitz continuity of themapu0 → u in the

ballBD(B)(R), the proof is a straightforward consequence of standard calculations used in
the proof of Theorem 2.1 in[1]. This completes the proof of Theorem 3.�
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A.2. Proof of Theorem 4

In order to prove global existence (i.e., the fact that the solutions are defined on the whole
of t >0), we begin by showing the following result which is very crucial in continuation of
solutions.

Theorem A.1. For every initial datau0 ∈ D(B), the abstract Cauchy problem(10)has a
unique mild solution on a maximal interval of existence[0, tmax[. If tmax<∞ then

lim
t→tmax

sup|u(t)|D(B) = ∞.

The proof of this result is similar to the proof of Theorem2.2 in[1]. Now,wewill show the
boundedness of the solutionu(t) in theD(B) norm. This property, together with Theorem
A.1, implies thattmax=∞. But, prior to this, we prove that(CP ) preserves positivity, which
will be needed in the a priori estimates of the solutions.

Theorem A.2. Eqs.(1)–(4)preserve positivity, that isu0�0 implies thatu(x, t)�0 for
all t�0.

Proof. Letu(., t) be a solution of system (1)–(4) andu−(x, t)=max(0,−u(x, t)) in x ∈ �
for eacht�0.
Now multiplying (take inner products) both sides of equality (1) byu−(x, t) and inte-

grating, we obtain

∫
�
u−(x, t) �

�t
u(x, t)dx = d

∫
�
u−(x, t) �2

�x2
u(x, t)dx

+
∫
�
(u(x, t)�(x)[G ∗ u0(., t)](x)) �

�x
u−(x, t)dx.

Using the obvious identity

−|u−(x, t)|2= u−(x, t)u(x, t),

we obtain

−1
2

d

dt

∫
�

|u−(x, t)|2 dx = d
∫
�

[
�
�x
u−(x, t)

]2
dx

−
∫
�
(u−(x, t)�(x)[G ∗ u0(., t)](x)) �

�x
u−(x, t)dx.

Via the identity

ab��a2+ b
2

�
,
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combined with (14), we have∫
�
(u−(., t)�(x)[G ∗ u0(., t)](x)) �

�x
u−(x, t)dx

� 1
�
L0(1+ 2√L‖u−(., t)‖)2‖u−(., t)‖2+ �

∥∥∥∥ �
�x
u−(., t)

∥∥∥∥
2

,

(for some constantL0, independent onu−(., t)). Therefore,
d

dt

∫
�

|u−(x, t)|2 dx� 2
�
L0(1+ 2√L‖u−(., t)‖)2‖u−(., t)‖2

+ 2(� − d)
∥∥∥∥ �
�x
u−(., t)

∥∥∥∥
2

. (31)

By choosing�>0 small enough, we can eliminate the second term of the right-hand side
of (31). So, we arrive at the differential inequality

d

dt
‖u−(., t)‖2�L′‖u−(., t)‖2(1+ ‖u−(., t)‖)2. (32)

(L′ is a constant independent onu−(., t)).
Following [1], we obtain

‖u−(., t)‖ = 0 for all t�0,

that is,u(., t)�0, for all t�0. �

Using the above result, we can give an estimate of the solutions as follows:

Proposition A.3. There exists a functionK : R+ →]0,+∞], nonincreasing, such that, if
u(., t) is a solution of(CP ) withu0 ∈ D(B) andu0�0; then, it holds that|u(t)|D(B)�K1
(‖u0‖)|u0|D(B), for all t ∈ [0,K(‖u0‖)], whereK1(x)= 2[C1+ exp(L1K(x))].

The proof is based on the arguments used in the proof of Proposition 2.2 in[1], so we
just sketch its main points. The claim is made in two steps. First, we show that the solution
is bounded inX norm on each bounded time interval. Then, we prove boundedness in the
D(B) norm, using the result for theX norm.
Finally, integrating both sides of Eq. (1) on 0 toL, and using (3) and (6), we establish

conservation of mass of phytoplankton, that is,∫
�
u(x, t)dx =

∫
�
u0(x)dx = 1 for all t�0.

This completes the proof of Theorem 4.�

A.3. Proof of Theorem 7

The operatorH� defined by (26) is continuous and compact, for each�. Hence the
condition�-condensing is satisfied. Such a measure� of noncompactness is a map from
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the family of bounded subsets intoR+ such that, in particular,�(B)= 0 iff B is relatively
compact (see[5, Definition 9.1]). Furthermore, one can see thatI −H� has no fixed point
on��, where

� = BL1+(�)(0,2)=
{
u ∈ L1+(�),

∫
u(x)dx <2

}
.

Using an observation made above, that is,u is the only fixed point of (27), we have

Deg(I − H0,�,0)=Deg(I,�,0)= 1,
in whichDeg(I − H0,�,0) denotes the topological degree for the mapI − H0. Then
according to Leray–Schauder’s fixed point Theorem (see[5, Theorem 18.1]), it follows that

Deg(I − H�,�,0)= 1, ∀� ∈ [0,1].
So, we conclude that the fixed point equation forH� has a solution for each� ∈ [0,1].
Thus, problem (27) has a solution for all� ∈ [0,1] and in particular, for� = 1, which
completes the proof of Theorem 7.�
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