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Abstract

A model proposed in the literature for fish schools of relatively large size is studied for
mathematical and qualitative properties. Existence, uniqueness and positivity of solutions are
established and bifurcation properties relative to diffusion and alignment parameters are
studied.
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1. Introduction

In this paper, we perform the analysis of a model of animal orientation. The model
is close to one discussed by Grunbaum [4]. It represents the arrangement of a large
group of individuals, a fish school for example, according to a structuring variable
which is the angle made by the oriented axis associated to any given individual (from
tail to head), supposedly lying in horizontal position, with a fixed horizontal oriented
axis. The fixed oriented axis may be, for example, the direction of the gradient of
temperature, or generally it is a direction which a single individual would tend to
follow, when looking for a more favorable environment. The problem is that the
individual is not alone, it is surrounded by many others, and may have a lower
perception of the environmental cues; this is the price to be paid for being in a group.
But, it counts on the group to help it find its way towards a better environment. A
standing hypothesis of the model is that the group is very big and, homogeneous at
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some scale so that the state variable will be the proportion of individuals, per volume
unit, having a certain angle orientation. The scale defined by the volume unit is a
piece of volume within which all individuals can see each other’s orientation. To be
more specific, some definitions and notations have to be introduced. Throughout the
paper, the variable 0 represents the angle made by the tail-to-head orientation with
the fixed environmental gradient, and the population is described and structured by
the proportion density function at time ¢, u(6, ¢): that is to say, for any 6, 6,, with

0<0, — 0, <2m,
0>
/ u(0, 1) d0
0y

is the proportion of the population (per volume unit) which, at time ¢, points in one
of the directions 0 of the interval [0, 0,]. Clearly, u(0, t) must be periodic in 0, with
period 2z. The problem to be investigated in Section 2 of the paper, designated as
(CP) (for Cauchy problem), is made up of the three Eqgs. (1)—(3) stated next

2
%u(@, 1) :%(D(H)u(& 1))

0+n 0
_ ,ga%@(o, ) [ / F(O)u(0, 1) 40’ — / F(0)u(0', 1) dG’} > (0
0 0—n
for (0,7)e R x (0, o0). The functions D(6) and F(0) are a.e. positive and periodic
with period 2z. Further, properties of these functions will be stated and discussed
next. The following equations specify the periodicity in 0:
u(0,t) = u(0 + 2m, 1),

0,1) 0+ 2n,t) on (0, ), (2)

36400 =554

and the initial condition
u(0,0) = up(0) in (0,2m). (3)

The above conditions together with the periodicity of the coefficients allow us to
restrict the study of the problem on the interval [0, 2x] and extend the solution to the
whole real axis by periodicity.

Let us now discuss the model. In order to understand the rationale underlying
such a model, it is necessary to keep in mind that the population is so crowded that
any individual movement, even turning around its center of gravity, may impact on
other individuals around. In such a world, it is best to stay ““parallel”. But being
parallel to a bunch of individuals around means following these individuals, and
there is a risk associated with this. An orientation analog of the avoidance
mechanism leads then to a Fickian dispersion or repulsion mechanism contributing
to the flux by a quantity proportional to the gradient of concentration of the
population. Opposed to this repulsive effect are two other mechanisms: the first one
is entailed by some perception of the environment, it adds up to the flux in
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proportion to some gradient of favorability; the second one is the analog of a
gregarious effect, individuals tend to adopt the dominant orientation. It is modeled
by the second member of the right-hand side of Eq. (1). We will come back to it after
we discuss in a little more detail the first two effects. These are accounted for in the
first member of the right-hand side of Eq. (1). To see this, let us drop for a moment
the time dependence in this member. We may write it as

o (DO)u(0) = 55 (D00) §500)) + (D OYu(o).

Therein, 4(D(0)%u(0)) is the (Fickian) dispersive term and —4%(D/(0)u(0)) is the
environmental-induced advection. While there is no fundamental reason for these
two distinct processes to be modeled by a single function D(0), it may be the case
that it is so: for example, if the Fickian coefficient is approximately constant, large
compared to the environment coefficient, D may be defined as the sum of both. This
is the view taken here, D(0) will be assumed in the form

D(0) = Dy + Dif (0)

with Dy and Dy, positive constants, D suitably smaller than Dy, f positive, bounded
and 2z-periodic, so that D be far from 0 and oo. For simplicity, we also assume that
fis in W%*(0,2n), or equivalently, the same property for D. On occasion, we will
use such a weighted scalar product with D as a weight

2n
wwm:A<MW@mmw 4)

The notations <.,.»p and ||.||, will be used accordingly. With the assumptions on
D, the underlying Hilbert space is the standard space L*(0,21) =q4.f X. The notations
{.,.> and ||.|| correspond to the usual scalar product and its associated norm in X.
We now turn to the second term on the right-hand side of Eq. (1). For notational
purposes, we define the operator gp as follows:

0+n 0
gmwm=l nwwmwul F(0)p(0) d0, (5)

-7

gr 1s well defined as soon as F is a measurable, bounded function. We also assume
that F is continuous. It is then straightforward to check that g sends 2zn-periodic
functions into themselves. One can also easily check that in terms of the weighted
scalar product {.,.)r, it holds that

Cgr(@), > p=—<@,9r(¥) > F (6)
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that is, gp is antisymmetric in the space of 2z-periodic functions endowed with this
weighted (not necessarily definite) scalar product. If, in particular, we take F =1,
{, > is just the usual scalar product ¢, > and we have

(91)* = —q1. (7)

Evidently, g1(1) = 0, so using (6) with = 1, we have, for each 2n-periodic function
@,

2n
A 61(¢)(0) 0 = 0. (8)

The interpretation of gp is the following: for each 0, the first integral on the
right-hand side of (5) is the weighted integral of the population (in the volume unit)
whose orientation is on the ‘left’ of 6, and the second one is, accordingly, the
weighted integral of the population whose orientation is on the ‘right’ of 0. So, gr
gives the sign of the rate of change of the orientation as a result of gregarious
behavior, combined with an environment-induced preference modeled by F(6). If
F =1, the integrals are just evaluating the proportions of individuals whose
orientation is on the ‘left’ of 6 and on the ‘right’ of 8, and the effect modeled by g, is
that individuals will tend to turn ‘right’ or ‘left’ dependent upon whether g; <0 or
> 0. The parameter f in front of the integral can be viewed as an intensity factor
which sets up the relative importance of the gregarious behavior compared to the
other factors.

Our goal in this paper is to perform an analytic study of (CP). Two aspects have to
be considered:

(1) Existence of solutions, that is, the Cauchy problem associated to the equation.
This is a quasilinear problem with nonlinearities in the first-order term, which can be
represented as an abstract Cauchy problem,

L () = Au) + BIDu(r) — pulgr(u(t)], o
u(0) =upe X,

with u(r) used for u(., 7). The operator 4: Z(A)= X — X is defined by

d d
Aw = 70 (D()%> w,

F(A) ={weH?*(0,2n): w(0) = w(2r) and w'(0) = w'(2n)}, (10)
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and the operator B: 2(B)c X —» X by

d
Bw =70 w,
Z(B) ={weH'(0,2n): w(0) = w(2n)}. (11)

H'(0,2n) and H?(0,2n) denote usual Sobolev functions spaces [5]. %(B) (resp.
Z(A)) can be identified to the subspace, in H} (R), of the 2z-periodic functions,
resp. the subspace, in HIZOC([R{), of the 2z-periodic functions. Throughout the paper,
we will use the Banach space structure endowed to &(B) by the graph norm

o
loim = 61+ | 59|

We will also use the well-known fact that 2(B) imbeds continuously in the space of
continuous functions, with

3/2
o <&nlo

|U 9(B) VUEQ(B) (12)

We point out that the operator 4 does not commute with B (unless D is constant);
this complicates the treatment of the problem (see also remark at the end of Section
2). However, the following easily derived formula relating 4 and B will be useful:

{Bu,DBu) = —<u,Auy, YueZ(A). (13)

The main existence result will be derived using successive approximations in a space
of continuous functions from some suitable interval [0, 7] (where #, > 0 will be
chosen later on) into Z(B). On occasion, we will use the notation Y =
C([0,20], 2(B)). A crucial, while obvious, fact, when handling the nonlinearity, is
that gr : 2(B) - 2(B), continuously, so there exists a constant J, so that

97 (D)| 3y <O|Plom), VPeZ(B). (14)
We will also prove a regularity result, namely if uge Z(A4), then the solution is
classical. Global existence fails in many nonlinear situations. It holds here for

nonnegative solutions. The fact, mentioned earlier in the introduction, that u(6, ) is
indeed a proportion, namely, that

0+2n
u(0,1)=0 and / u(0,1)do =1, V0, V=0 (15)
0
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will be shown to hold when the same assumptions are made on uy: u(6) >0 and

7 ug(0) d6 = 1, V0 (Theorems 2.1 and 2.3).

(2) Asymptotic behavior and existence of a stable steady state. We envision the
situation as follows: Below a certain threshold value of the gregarious behavior
intensity 5, the dispersion dominates and the population organizes itself
asymptotically as if there were no gregarism. The solution then should tend to a
limit, a steady state. For example, if we assume that D(0) = D (i.e., the mean value
of D(.), thatis D = 5- 02” D(0) d0) and F(0) = 1, U(0) = 5- is the only trivial steady
state, that is, an individual’s orientation is equally distributed in all directions. One
can see that this solution exists for all values of f, and is stable for f# small enough,
but one suspects that past some f3, stability is lost, and other steady states arise. This
is when the action of the repulsion moderated by the interplay of environment and
gregarism produces another structure. Although the program seems reasonable, it
involves a number of technical steps which make it difficult to complete in the most
general situation. As an illustration of the plausibility of the above-mentioned
scenario, a particular example has been considered. In order to describe what is
going on in more detail, we first restrict ourselves to the case when D(0) = D =
constant. We then perform the study in terms of the parameter 4 = %. We show that

the trivial equilibrium U = ﬁ is asymptotically stable if 1<% and unstable if 7 > 7.

So, the question arises: How is stability or instability affected at 4 =7 = 797 Using a
bifurcation theorem (see [1, Theorem 1.7]), we prove that (4o, U) is an odd type [1]
bifurcation point. Therefore, a branch of nontrivial steady-state (4, U) branches off
from this point. We prove that the branch is supercritical and the solutions on the

branch near A = /g are stable. Near A = A, the bifurcated solutions read
U = 1 + Ccos 0+ 0o(C)
T 2n ’

for some constant C = C(1) > 0. In terms of the model, this means that when the
ratio 4 exceeds some threshold value 4, then the group starts to acquire a distinctive
shape with one dominant direction. We then briefly justify the fact that the local
branch can be extended to a larger branch which is unbounded in 4, so that is, for
each A > /9, there exists a nontrivial steady state.

The organization of the paper is as follows: Section 2 deals with existence,
uniqueness and positivity; Section 3 is devoted to the study of the stability of the
trivial steady state as a function of the parameter  and the onset of a branch of
nontrivial steady states, as well as the computation of some quantities (the average
angular orientation and the dispersion about it). Section 4 is the conclusion which, in
particular, has some comments about the interpretation of the result in terms of
spatial location and pattern: it may be useful to anticipate these and warn the reader
that there is no connection between space and pattern; more precisely, space has not
been accounted for in the model, thus, unsurprisingly, is not playing any role in our
results.
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Finally, a number of notations and assumptions that have been stated in the
introduction will be used throughout the text without further notice.

2. Existence, uniqueness and positivity
2.1. Preliminaries

System (1)—(3), (15) will be studied via the theory of operator semigroups. For
that, let us recall standard definitions and some relevant results of the semigroup
theory. We refer to Pazy [7], Engel and Nagel [2], Henry [5] or Friedman [3] for
further information on this subject.

Let X be a Banach space and let .o/ be a closed linear operator, with a dense
domain Z(</). We consider the inhomogeneous initial value problem

{%u(;) = u(t)+f(1), >0, (16)

u(0) = uy,

with uge X and fe L'(0, T; X).

Definition 2.1 (Dazy [7]). Suppose . is the infinitesimal generator of a C'-
semigroup 7'(¢). Then

(1) u(r) = T(Z)uo+f0t T(t—s5)f(s)ds is called a mild solution of the Cauchy
problem (16).

(2) u is called a classical solution of (16) if u is continuous on [0, o0 ), continuously
differentiable on |0, co[, u(t)e 2(.<7), t > 0 and u satisfies Eq. (16).

We now turn back to (CP).

Proposition 2.1. The operator A defined by (10) is the generator of an analytic
semigroup of contractions in X, (T(t)),5,, compact for t>0. The restrictions
T(1) )g(5) send Z(B) into itself and are uniformly bounded in Z(B) (that is, there exists
C 20, such that, |T(t) g5 |ps < Ci, for 120).

Proof. The first part is standard. We include a proof for completeness. 4 has a dense
domain, since C ([0, 2n]) = Z(A) and is dense in X. It is clear that if # and v are in
9(A), (Au,v)y = {u, Av), via integration by parts. Hence 4 is symmetric. One can
also easily show, using a standard argument [2] that R(I+ A) =X. So, 4 is
symmetric, maximal and has a dense domain, which implies that A is self-adjoint.
Thus 4 is the generator of an analytic semigroup (7(¢)),-,. So T'(¢) is continuous in
the uniform operator topology for ¢ > 0. In order to show that T'(¢) is compact for
t > 0, it is thus enough, by virtue of Theorem 2.3.1 [7], to establish that 4 has a
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compact resolvent, which follows from both %(A4) < H?*(0,2n) and the compactness
of the canonical injection H?(0,2n1)< X.

Let us now prove the second part of the proposition. From {Au,u) <0,
Yue 2(A), we conclude that T'(¢) is a family of contractions on the space X. So,

IT(II<1, V=0 (17)

To show boundedness in Z(B), it is convenient to represent 7°(¢) in terms of the
eigenvalues of 4, which we denote —wf. To each eigenvalue —wjz, an eigenvector ¢,

is associated and it holds that

A6 =3 — 959, $eT(4) (18)

=1

and

8

T()p=3 ¢ <d, 9>, deX.

j=1

Using the weighted inner product, defined by formula (4), one can easily check

0

IBT(0)pllp = > e |< o, ;> ’11Byl[3

J=1
0

< D18 PIIBY I

j=1
=1Bo|[p, Voez(B),

which, leads to
IBT (1)¢]| < Colplos), VpeZ(B)

(for some constant Cy independent on ¢ and ¢). This together with inequality (17),
leads to

[Tl < ClPlyp), VdeZ(B) (19)

(for some constant C; independent on ¢ and f). This completes the proof of the
proposition. [

We now turn to (CP). The solving of this problem involves two steps: first, one
deals with local existence, which is shown to hold under very mild regularity
assumptions on the nonlinearity; next, a noncontinuation principle will be
established which will ensure solutions exist on as long a time interval as desired.



414 M. Adioui et al. | J. Differential Equations 188 (2003) 406—446

To prove local existence of solutions for problem (9), we write it in integral form
by using the variation of constants formula

u(t) = T(Huy + /Of T(t — s)B[D'u(s) — Bu(s)gr(u(s))] ds. (20)

2.2. Local existence of solutions

This subsection is concerned with local existence of solutions to the integral
equation (20). For this purpose, we start by establishing some useful estimates.

Lemma 2.1. (1) There exists a constant M, such that, for all u, ve 2(B), we have
1Blugr (u)] = Blogr (v)]|| < M max(|u| ), vl p))|u = vl p)-
(2) There exists a positive constant Q, such that, for all ue 2(B), it holds that
1Blugr (][] < Qlul ) ull-

(3) There exists a positive constant C, such that, for all ue X, it holds that

[|BT (t)u|| < vt > 0. (21)

<l
\/E ’

Proof. Let u, ve 2(B). We may write the expression Blugr(u)|] — Blvgr(v)] as
Blugr(u)] = Blvgr(v)] = Bl(u — v)gru] + Blvgr(u — v)]
=B(u —v)gru+ (u— v)Bgru
+ Bogp(u — v) + vBgp(u — v).
Then
||Blugr(u)] — Blogr (0)][| < {[|B(u = )| + [[u = vl[}max(|grul,.; |Bgrul )
+ {I1Bo] + [lolymax(|gr(u — v)|.; [Bgr(u —v)],,)- (22)
We now estimate each of the terms of max(|gru|;|Bgru|, ) and max(|gr(u —

)| ; |Bgr(u —v)|,,) of the right-hand side of (22) separately.
As a result of Holder’s inequality, we get

|grul,, <V2n|F| |[ul] and [gr(u—v)|,, <V2a|F|[|u— vl (23)
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On the other hand, we have, via the inequality

|Bgrul ., <4|F

o0 u|%7

combined with (12) that

|Bgrul,, <2 || Julyp and  |Bgp(u— o)l <EmRF|Ju—vlyp.  (24)
Then, inequality (22) becomes
|1Blugr(u)] = Blogr (v)]|| < M max(|u|g ), [vlgp)) |1 — vl 5

(for some positive constant M independent on u and on v), which is the desired
inequality.

(2) To achieve the desired inequality (which is a slight improvement, compared to
the one just obtained), we write the expression Blugr(u)] as

Blugr(u)] = (Bu)gr (u) + uBgr(u),
which immediately yields
|1Blugr (o)l <|Bulllgrul,,. + Ilull|Bgrul ..

From inequalities (23) and (24), we conclude that there exists a positive constant Q,
such that

1Blugr ()|l < Qlul gl lull, VueZ(B).
(3) In view of (13), we have
[|Bul|* < C1||Aul[||ul|,  VueZ(A) (25)

(for some constant C; independent on u). Analyticity of the semigroup 7'(¢) implies
existence of a constant C, such that, for 7 > 0

G
MT(l|I<2, (26)
Then, it follows via (25), combined with (26) that

C
BT (t)ul* < Cr || T(0ull[lull,  VueX, ¥i>o.

This together with inequality (17), leads to

C
||BT(t)u|\<\%||u||, YueX, V>0 (27)
(for some constant C independent on u and ¢). This completes the proof of the
lemma. [
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Theorem 2.1. For every R > 0, there exists ty > 0, ty = ty(R), such that, for each
uo € B p)(R) (i.e., the ball of radius R centered at 0 ofg( ), the Cauchy problem (9)

has a unique mild solutlon u defined on the interval [0, to] Moreover, the map uy—>u is
Lipschitz continuous from %) (R) into Y. Finally, fo 0,8)d0 = ["uo(0) dO for
all t=0.

Proof. The approach to be taken in the proof is based on the method of successive
approximations. Let upe Z(B) and define a sequence (u,),~, by

WH®=T@%+A7W—QMZM) Bun(s)gr(un(s))] ds.  (28)

Assume that the sequence u, is bounded in Y, namely, that there exist #, > 0 and y to
be determined later on, such that

(1) 55y <R, ¥n=1 and Vie[0,1].
We have from (28), combined with (17), that

i1 (6) = (D] < ¢ sup [[[BDws(s) — D't-1(s))]

0<s<t

+ HB(ﬂun(s)gF(un(S) - ﬂun—l(s)gl:(un—l(S)))”], VZ‘ZO and nz 1.

Denote L = max(|D'|,,|D"|,, ), which by the assumptions made in the introduction
is finite.
Then, according to part (1) of Lemma 2.1, we have

i1 (1) = un (O] UL+ BMYR) sup |un(s) — tn-1(8)| (5, V2=0 and n=>1.

0<s<t
We also have
|[B(utn+1(2) — un(1))[| < H/ BT (t — 5)B[D'n(s) — Pun(s)gr (un(s))
D'ty (s) + Putn—1(5)gr (tn-1(s))lds||,  V£=0.

which gives, in view of (21),

w—wE&MMUw@wa4®m

+ | B(Bun(8)gr (1 (5) — Prtn—1(5)gr (tn-1(s)))|[] ds,  V1=0.

[1B(uns1 (1) = un(1)) || <
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Using part (1) of Lemma 2.1 again, we arrive at

[1B(ttni1 (1) = un (OIS (BMYR + L))2CV1 sup un(s) — thn-1(5)| 5.

0<s<t

Combining the above two inequalities, we obtain

[t 1 (2) — un(1)|5(p)

<[(BMyR + L))(2CVt+1)] sup |uy(s) — Uun-1(5)|g(p), Vi=0 and n>1.

0<s<t
Then, by choosing 7, > 0 small enough so that
[(BMyR+ L))(2CV1o + 1) <3, (29)

the sequence (uy41(f) — u,(¢)) is the general term of an absolutely convergent series
in Y. To complete the proof of the theorem, we have to show that the sequence u,(¢)
remains bounded in Z(B).

From (28), one has

st (Dl < sup 1T (5)uolos H / (1 = 5)BID n(s) — Bun(5)gr un (5))] ds
0<s<1t
+ | /0 T(t — 5)BID n(s) — Puan(s)gi (un(s))] ds||, V20,

Using this inequality, we will show that one can find y > 0 and 7, > 0, so that
|tn(1)] ) <YR, Vn=1 and Vie[0,]. In fact, let us assume that [u,(?)|yp <IR,

Vtel0, t]. Then, in view of (21), combined with (19) and (17), we obtain

1 (0) |5y < CLR + [t + 2v/1C) (B max{|grun(s)] . , |Bgrin(s)|o } + L)

sup [un(s)] 5z, V120

0<s<t
Applying (23) and (24), we get
ltn 1 ()| o5y < CLR +7R[10 + 20 C|(BE 7| F| ,yR+ L), Vie[0, 1.
Therefore, by choosing 7y > 0 so that (29) holds and
[0 + 2y C)(BE 7 *|F| .y R+ L) <}, (30)
we arrive at
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The inequality will be extended to n + 1 if we can choose both y large enough for

CiR+1yR<yR (which holds as soon as y>2C)

and ¢y > 0 such that (29) and (30) hold which, once y has been chosen, can always be
accomplished. So, assuming y and 7, have been chosen as indicated, the first claim of
the proof is proved.

Now, let v be another mild solution of (9) on [0,7)] with the initial value
U()Gﬂgj(g)(R).

From (28), combined with (17), we have

[lu(2) = v()[| < [luo = voll + 20 sup [||B(D'u(s) — D'v(s))||

0<s<1

+ 1|1 B(Bu(s)gr (u(s) — Bu(s)gr(v(s)))Il],  Vie(0, 7]
which gives, in view of part (1) of Lemma 2.1

[lu(2) = v(D)|I<[luo — vol| + 2o (L + BMYR) sup |u(s) — v(s)|g(s), VI€[0, fo]-

0<s<1to
Using (21), we obtain

|1 B(u(t) = v()|I< [|Buo — vo)|| + (BMyR + L)2C/1y sup |u(s)

0<s<t

—0(8)| g V€0, 10].
Therefore,

u(2) = v(1)| g3y < [0 — w0l p)

+ [(BMyR+ L)(2CV1o + t0)] sup  [u(s) — v(s)]op), V€0, 1],

0<s<1y
which immediately yields

sup [u(s) — v(s)|g(p) < [0 — volgp)

0<s<tg
+ [((BMyR + L)(2CV1y + t0)] sup  |u(s) — v(s)|5g)-

0<s<ty

Then, for y > 0 and fy > 0 chosen as above, we have

|u(t) — v(1)]g(5) < [uo — volgp) +5 sup fu(s) — v(s)|gp), V€0, 0]

0<s<1y



M. Adioui et al. | J. Differential Equations 188 (2003) 406—446 419

So,
‘L{(l) _U(l)|§//‘(3)<2|u0 _UO|9(3)a VZG[O, ZO]7

which yields both the uniqueness of «# and the Lipschitz continuity of the map uy—u
in the ball %4 ) (R).
Finally, by integration of Eq. (1) on both sides, from 0 to 2z, one can see that

d 2n
E/u@gw:m
0

that is,

2n 2n
/Lwﬁw:/ up(0) do, for all £>0.
0 0

This completes the proof of the theorem. [

2.3. Continuation of solutions

This subsection is concerned with the extension of solutions to the integral
equation (20). Our first result in this direction is the following theorem.

Theorem 2.2. For every uye Z(B), the abstract Cauchy problem (9) has a unique mild
solution on a maximal interval of existence [0, tmax|-
If tmax < 00 then

lim sup [u(t)|gp = o©.

1= Imax

Proof. First, we note that a mild solution of Eq. (9) defined on a closed interval [0, 7]
can be extended to a larger interval [0, 7 + J], with 6 > 0, by defining u(¢) on [r,7 +
0], as u(t) = w(t), where w(z) is the solution of the integral equation

w(t) = T(t — t)u(z) + /T T(t— s)B[D'w(s) — pw(s)gr(w(s))] ds.

Existence and uniqueness of solutions on a maximal interval of existence follow from
the noncontinuation principle; namely letting [0, f.x) be the maximal interval of
existence to which the mild solution u(.) of Cauchy problem (9) can be extended, we
have the following alternative: either f,x = 00 Or f.x < 00 and

lim sup [u(?)| 45 = .

= tmax
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We will prove the second part of the alternative

if fmax<co then lim sup [u(t)|y 5 = .

= fmax

The proof is done by contradiction. Indeed, if fhix<oo, and
lim,_, ,,,, sup [u(?)| (g < 0, then [u(7)|, g would be uniformly bounded on [0, Zmax|.
Let N = SUPOSssth |D'u(s) — Bu(s)gr (u(s))|os)-
Given any p > 0, so that 0<p <<t <tnax, using standard algebra, we obtain the
following inequality:

(t) = (1)) < | T(Ottg = T(Vytol )+ [(T(p) = T = £+ p))

+/[’T<I_S>B[ u(s) — Bu(s)gr (u(s))]ds

9(B)

We now estimate each of the terms of the right-hand side of (31) separately. In view
of (21), there exists a constant C > 0, such that |T(t)u|9(3)<%|u|g(3>, 0 <t <tmax.
Therefore,

(B)
<VI=pCN|(T(p) = T(¢ —t+ p))lom)
[ (a9 = T =)D us) ~ pusrarus) d|  <2pCN
t—p 2(B)
and
/t/T(t—s)B[ u(s) — Buls)gr(u(s))| ds|  <2NCVF—1.
! 9(B)




M. Adioui et al. | J. Differential Equations 188 (2003) 406—446 421

Then, inequality (31) becomes

u(t) = ()5 < | T (Ot — T( Yo
+ 2BCN +T= pMN|(T(p) = T(1' — 1+ p))ly

+ 2NCV?t —t. (32)

Analyticity of T(r) entails that t— T(¢) is continuous in the uniform operator
topology from 0,+co] into Z(A4). So, |T(t)ug — T(f')uo|yp—0, and [(T(p) —
T(!' —t+p))lgm—0ast, ' > tmax. Since 0<p <t is arbitrary, the right-hand side of
(32) tends to zero as ¢, ¢ tend to #y,x. Therefore

lim u(f) exists (limit in Z(B)),

1= Imax

which, according to the remark made in the beginning of the proof, would entail that
the solution can be extended to the right of 4.y, in contradiction with the definition
of tmax. This completes the proof of the theorem. [

Global existence (i.e., the fact that the solutions are defined on the whole of ¢ > 0)
is established for positive solutions. For that, we will show, the boundedness of the
solution u(¢) in the Z(B) norm. This property, together with Theorem 2.2, implies
that f.x = oo. Prior to this, we will prove that (CP) preserves positiveness, which
will be needed in the a priori estimates of the solutions.

Theorem 2.3. (CP) preserves positiveness, that is: uy=0 implies that u(.,t) =0 for all
t=0.

Proof. Let u(.,?) be a solution of (CP) with initial value uy >0; u~ (resp. u*) denoting
the negative (resp. positive) part of u.

From
2n
/ u(0,1)do =1,
0
one has
2n 2n
/ W (6,1) de—/ (0,6 d0 =1,
0 0

that is,

/QHF(H’)u(@’,t) d9’—/0 FO)u(0, ) do| <2/FQ)| (1 + 2V2llu (L O, (33)

0 0—n




422 M. Adioui et al. | J. Differential Equations 188 (2003) 406—446

Now multiplying (using inner products) both sides of (1) by u~ (6, ¢), we have

2n B a
/0 (0,05 (0, 1) O

2n B 82
- /0 (0,12 (D(O)u(6,1) db

-7

Using the obvious identity
—|M7 (07 Z)|2 = u7(07 l)u(()a Z)a

and integrating from 0 to 27, we obtain
1 d 2n B 5
2n o 2
= D) |=u (0 0
[ oo gue.0] d
2n o
j— / —_ -
/0 D(0)u(0, 1) { (0, z)] a6

. ﬁ/ozn u(0,1) |:/9+7Z F(0u(0',t)do — /9 F(0)u(0, 1) dof %u_w’ ) do.

0 0—n

We now have, via the identity,
2 1,
ab<cea +gb , (34)

combined with (33) that

/0 " (u(@,t) { /9 MF(@’)u(e’,t) do’ — /9 0 F(0)u(0', 1) d@’}%u((),t)) do

—n
2

<FOR I (0P + 2V3R () + 5

o _
%” ('7t)

Moreover, one has via (34) and the fact that the functions D(.) and D/'(.) in [0, 27] are
bounded that

2n 2

D0, gy (0.0 dO<ID Ol (01 o] o (.

0
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Therefore,

d 2n ) 2n 9 2
- - < — —
dt/o (0, 1) do< 2/0 D(O) [80u (9,;)} do

+1D'()

2

0
89 u (., 1)

L, _
Ll 0lP e

+4lIFOR 0+ 293l C ol (ol

o 2
+ef ‘%u (0|,
which immediately yields
d 2n 5 2
— - < (-2D .
G| @nPdo< <20y o+ | (0

D OR (0P

+ 4~ IF()I (L 2v2xllu (Ol Ml (0l (35)

By choosing ¢ > 0 small enough, we can eliminate the term of the right-hand side of
(35) containing %u’(@, t). We arrive at the differential inequality

%Ilu’(-, OIP < Lollu ()l P(L+[lu (1)) (36)

(for some constant Ly, independent on u~ (., ?)). Let
ot) = |lu” ()|
Then, inequality (36) becomes
V(1) < Lov(1)(1 4 (1)),

so by integration, we get
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which, with

yields that

v(t)<0, for all z>0.

Therefore

[lu=(.,0)|| =0, for all >0,
that is, u(., ) =0, for all >0, which completes the proof of the theorem. [
Using the above result, we can give an estimate of the solutions as follows:
Proposition 2.2. There exists a function K : R -0, +co], nonincreasing, such that, if
u(.,t) is a solution of (CP) with uye2(B) and uy=0, then it holds that
|u(1)| ) < Ki(luolD[wol ), for —all 1[0, K([[ugl])], where — Ki(x) =2[C\ +
exp(L1K(x))] (Moreover, |lu(.,?)| is uniformly bounded on bounded time intervals.)
Proof. The proof is done in two steps. First, we show that the solution is bounded in
X norm on each bounded time interval. Then, we prove boundedness in the Z(B)

norm, using the result for the X norm.
Multiplying by u(0, ¢) both sides of Eq. (1) and integrating from 0 to 27, we obtain

1d 2n 5 2n ) 9
EE/O u=(0,1) do = /0 u(0, l)%<D(9)% u(0, l))d@

2n
—|—/O u(@,t)%(D’(@)u(@7 1)) do
2n 0+n
+ /3/0 u(0,1) {/0 F(o)u(o,t)do

' F d 0 0,1)do 37
- | F@nto o) da] Juto. av. (37)

—T

Integrating by parts on the right-hand side of (37), we get

2n 2n 2 2n
%% /0 W2(0,1)d0 = — /0 D(0) (%u(@, z)) o+ /0 (0, t)%(ﬂ(@)u(@,t))d@

+ ﬁ/ozn u(0,1) [/00% F(o)u(o,t)do

o 0
— /0771 F(o)u(a, t)da] %u(e, t) do.
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Using a similar argument to the one given in the proof of Theorem 2.3, we arrive at
the following inequality:

2

2r a . 1 2n . 2n a
/0 (0, 0D/ (O)u(6, 1))d0 < /0 W20, 8)d0 + o| D' ()% /0 <%u(0,z)> o,

and
2n 0+n 0 b
8 / u(0,1) [ / Flo)u(o, f)do — / F(o)u(o, t)do]—u(@, ) do
0 0 0—n 00
ﬁ 2 2 8 2
<4—\F(.)\20,/ uz(G,t)d6+ﬁs/ —u(0,1) ) do.
& o 0 0 60
Therefore
Ld ” 2(0,1)d0< (—Dg + | D' () +[3-)/27I 9 (0,1) 2d9
2dr ), DS RO AT W TP | 5t

+ (4§|F O] +%) /ozn (0, 1)do. (38)

By choosing ¢ > 0 small enough, we can eliminate the term of the right-hand side of
(38) containing (’%“(07 t). We arrive at a differential inequality of the type

d,
aﬂu

(. O <2Lalu (-, 0|
(for some constant L;, independent on ||u(.,?)||), which leads to
[Ju., Dl < e luo||. (39)

Combining (19) and (21), we have from (20)

[|Bu()]| < Ciluolgg) + CVt sup [|BID'u(s) — Bu(s)gr(u()IIl, Ve=0.

0<s<t
Then, according to part (2) of Lemma 2.1, we have

1Bu(O| < Cilutglyz) + CVE sup L+ BOIu(s)Il] sup [u(s)|ozy V220,

0<s<t 0<s<t
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Together with (39), we arrive at

[1Bu(1)]| < Ciluolg) + CV1 sup [L+ BOexp(Lit)]|uoll]

0<s<t

sup [u(s)]yp), Vi=0. (40)

0<s<t

Define K(r), for r=0, as the unique ¢ root (positive) of the equation
CV1[L + BOrexp(Lit)] = 1.

Using again estimates (39) and (40), we conclude that

(1)l () < 2(Cr + exp(LiK([[uo] ) w0 5y, for all 2€[0, K({[uo][)]-

This completes the proof of the proposition, with K; defined as mentioned. [

2.4. Regularity

In Section 2.3, we have proved that if the initial value is in 2(B), then the solution
takes its values in Z(B). We can achieve a higher regularity of the mild solution of
(CP) if we assume more regularity for the initial value. This is done in the next
theorem.

Recall that a function 4 : I — X is Holder continuous with exponent 7€ (0, 1) on I,
where [ is an interval, if there is a constant M such that [7]

[|h(2) — h(s)||< M|t —s|", for s,tel.

It is locally Holder continuous if every z€/ has a neighborhood in which / is Holder
continuous.
The following result describes the regularity of a mild solution of Eq. (9).

Theorem 2.4. For every uge Z(A), the mild solution of Eq. (9) is a classical solution.

Proof. If we show that the function
f(2) = B[D'u(t) — pu(t)gr(u(1))]

is locally Hoélder continuous from (0, oo) into Z(B), then it follows from the theory
of nonhomogeneous linear equations (see [7, Corollary 3.3]) that the mild solution of
(9) is a classical solution. That f is locally Holder continuous on (0, o0 ) will follow if
we prove that the map 7— u(z) is locally Holder continuous, from (0, c0) into Z(B).
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Indeed, let 0 <7< <1y, with #y = K(]|uo||) as in Proposition 2.2. Then
J @) = f(1) =D"(u(t) — u(t')) + D'B(u(t) — u(r'))
— B[Bu(t) — Bu({")lgr (u(t)) — Plu(t) — u(f')]Bgr (u(t))
— Blgr(u(t)) = gr(u(?)|Bu(l') — B[Bgr(u(t)) — Bgr(u(t')]u(?),
which implies
1 (6) = F (O Jult) = ult)| ) lgrult)

+1gru(t) = gru(t)l g u(?)|55)- (41)

2(B) + max(|D/|oo7 ‘D//|w)]

In view of (14), we have
lgru(t) — gru(t)] g <0lu(t) — u(t')| -
The fact that ¢, 7 <1 entails
(lgru(t)] 55 + max(|D'|,,, |D"] )] + olu(t')] (5 <&

(for some constant £ that can be chosen independent on u, ¢, ¢'). Then, inequality (41)
becomes

1 (1) = F (I <Efu(t) = u(@) g s)-

In order to estimate |u(¢) — u(t')|, ), we note that the quantity u(s) — u(¢') can be
broken down into the sum of three, from which the following inequality is derived:

|u(t) = u(?)| ) < |T(H)uo — T (¢ )tto| 55

+

/0 (T(t =) = T(' = ))BID'u(s) — u(s)gr (u(s))]ds

+ /tt T (¢ — s)B[D'u(s) — Pu(s)gr(u(s))]ds

%(B)

The last member of the right-hand side of (42) is estimated using

N = sup |D'u(s)— Bu(s)gr (u(s))|os

0<s<1y
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and (21). We obtain

<NCVT —t.

%(B)

/ T — ) BIDu(s) — Pu(s)gr u(s))ds

In order to estimate

we divide this quantity into the sum of three

I<

/0 T(s) (BIDult — ) — Pu(t — 5)gi(u(t — 5))

— B[D'u(t' —s) — Bu(t' — s)gr(u(f — s))})ds|@(3)

+ / T($)BID'u(! +5) — Bult — s)gr(u(f — 5)))ds
0 2(B)
+ /I T(s)[D'u(f —s) — pu(f — s)gr(u(d — s))|ds
! 9(B)
=L+L+5

In view of (21), it is clear that

LS CVE —t sup |u(t' —s) — u(t — 5)|gp)

0<s<t
SCVE —t sup |u(a +1 —1) — u(a)| g
0<o<t
L<2NCVY —t
and
L<S2NCVLEY —t.

(43)

(45)

(46)
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On the other hand, with uye 2(A4), we have

T(uy — T(t)ug = /t T (s)Aug ds,

t/
BT (! Yug — BT (t)uy = / BT (s) Auy ds.
t

Using ((17) (resp. (21)), we can see that
T (& Yuo — T(t)uo|| < (1" = 1) Auol|[, (47)
respectively,
|IBT (' )ug — BT (1)uo] [2C (V1" = V/1)|| Aug| | <2CVT = ]| Aug . (48)
Combining (47) and (48), we obtain
Tt Yuo — T (1)t 5y < C3V/1 — ttg] 4 (49)

(for some positive constant C3).
Consequently, from (43) combined with (44)—(46) and (49), we arrive at the
following inequality:

u(t') — u(t)| g5 < GV — tlug| g4 + 2NCVIE —

+ CVY —t sup fu(oc+1 — 1) —u(0)lyp, YOSISI<t.

0<o<t

Then

sup u(a -+ 1 — 1)~ u(0)| 5 < C3VT — o] g + 2NCVT

0<o<t

+ CVY —t sup |u(o+1 —1)— u(U)LCz(B)

0<o<t

VO<1<Y <.

By choosing /1y > 0 such that
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we obtain

sup |u(o + ¢ —t) — u(o)

0<o<t

o <KV — 1, YOSISE<t, 1 —1<hy

(for some constant K that can be expressed in the form of K> = K>([uo|y(4))). which
leads to

u(t) = u(?')|g(p <KV — 1, YOLKI<I<tg, such that ¢ — 1</,

This yields Holder continuity as defined from [0, 7] into Z(B), from which the
preparatory remark made at the beginning of the proof leads to the conclusion that u
is a classical solution. [

To conclude this section, we have proved that the Cauchy problem (9) is well
posed in Z(B). Solutions there are fixed points of strict contractions; initial values in
Z(A) yield classical solutions. This result has been obtained under a few assumptions
on the operators 4 and B that can be satisfied by a variety of examples: in particular,
there is no limitation on the dimension of the underlying physical space. The main
problem we faced here was the fact that 4 and B do not commute. If, on the
contrary, such a property is assumed (for example, by taking for B a fractional
power of (—A4)) [5] and in addition, an estimate similar #, (21),

|[BT (t)u|| < Ct *||ul|, Vt>0 for some a<l,

holds, then the integral equation (20) can be solved in X.

3. Stationary solutions, stability and bifurcation

In this part, we deal with steady-state proportion densities. We investigate
existence and multiplicity of steady-state solutions in terms of the parameter . We
find that besides a trivial steady state which exists for all , a branch of
nontrivial ones emerges by an odd type bifurcation (see [1, Theorem 1.7])
near a value f,. We determine the direction of the bifurcation (supercritical)
and we show that the variance is going down along the branch, that is, the
obtained nontrivial steady states represent the beginning of group’s organization;
variance of a certain arrangement is a possible measure of cost efficiency of that
arrangement.

The proof requires a number of properties to be satisfied by the linearized
operator. It is rather technical. In order to avoid cumbersome formulas further
assumptions will be made from now on, namely: the functions D and F are supposed
to be constant,
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3.1. Fixed point problem formulation

With the above-mentioned simplifications on F and D, we consider the problem

made up of (1)—(3) and (15) and we look for equilibria, i.e., for solutions of the form
u(0,t) = U(0), Vt. Such solutions must satisfy the system

DU'(0) — pU(0) [/gw U(c) do — /00

U(o) da} =", (50)
where y is a constant to be determined, 0 (0,2n), with boundary conditions
U0)=U2r), U'(0)=U'(2n) (51)
and
2n
U(@)=0 in (0,2n) and / U@)do=1 (52)
0
We introduce the following operator & defined by
0 1 o+m o
F(U)(0) = / B[ / U(c') do' — / U(o') da’} do. (53)
0 4 o1

In terms of the operator g;, defined by formula (5) for F = 1, #(U) reads

0
F0O) =5 [ a(U)@ds

(54)
which, in particular, in view of (8), yields
F(U)(2n) = 0. (55)
In terms of # (U), (50) can be written as
d d Y
adl _ S 7z -
S U(0) ~ BU(O) 5 7 (U)(0)

5
Integrating by parts and using the boundary condition, we arrive at

0
U(0) = UO)exp BF ()0 +55 [ exp BF(U)0) = F(U)(e)) do. (50

Using the boundary condition (51) together with (55), we obtain

2n
0= %/0 exp B(F (U)(2x) — 7 (U)(e)) do.
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from which we deduce that
y=0.
Hence, (56) reduces to
U(0) = U(O)exp B(7 (U)(0))

which, together with the normalization condition,
2n
/ U6)de =1,
0

leads to

_ axpBZU)(0))
STexp B(F(U)(s))ds

=acet A (B, U)(0). (58)

Then, from (58), the search for steady-state solutions is equivalent to finding fixed
points of #:

U=#(B,U). (59)

Remark 2. (i) We note that J# is of class C* in (f, U).

(ii) For any feR, and any constant function U = ¢, we have J# (B, U) = ﬁ In
particular, if we define U = 5, it holds that #(B, U) = U, for each f, thatis, U = U
is a trivial solution, for all f3.

3.2. Preparatory results

We just saw that the steady-state problem comes down to a fixed point problem
for a map # and that # has a branch of trivial steady states, U = ﬁ We are going
to determine a branch of nontrivial steady states emanating from the trivial branch
at some value ff = f,. This requires a number of preliminary facts to be established,
about the linearization of the map #(f, U) near U. We start with a few notations
and definitions. On occasion, we will use the following notation:

Z(B) = Du (B, ). (60)

Straightforward computation based on formula (58) gives

2n

2n
LA = 170 -5 [ FO0 6. (61)
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We denote

on{feX: Oznf(s)ds:()}. (62)

For any operator G with values in X, we define the mean value operator, denoted G,

2n
G(x) :% /0 G(x)(s) ds, (63)

and we denote Gy the projection of G onto the space X, parallel to the constant
function space, that is to say,

Gy=G— G. (64)
Using (61), (63) and (64), we can see that the operator £ (f}) reads as
=Lz (65)
2n

In terms of g;, defined by formula (5) for F = 1, and .#, the antiderivative operator
defined by

0
MM@=Af®W (66)
we have

1
F = — Foqg. 67
D g1 ( )

Lemma 3.1. ¥ maps Xy into X; g1 maps X into Xy. Moreover, it holds that

Fog) =g10f+(fogl). (68)

Proof. That .# maps X, into X is a well-known fact about antiderivatives of periodic
functions. It has been observed in the introduction that g, sends periodic functions
to periodic functions and formula (8) expresses the fact that g; takes its values in Xj.
In order to check formula (68), it is enough to compute % og1o.# and notice that

d
—og1of = ¢.
40 g1 g1

Applying the operator .# on both sides of the above identity, we conclude that, for
any ¢, we have

Fogi(@) = g1of (@) + ¢
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for some constant ¢ = ¢(¢). Taking the mean value of both sides, and using the fact
that g; maps into Xj, we arrive at the expression

c=(Jog1)(o)

from which the desired formula follows immediately.
Using the following obvious property, that is,

(fogl) = ]ogl (69)
and the fact that g;(1) = 0, we get the following:

gf()ogl = g]0<¢0 on X(). O (70)

Lemma 3.2. .9 and g1 map X, into Xy. Moreover, the following hold.

(Fog1)y = Fo°91, (71)

(J0)* =—S0; (91)* =—g1 on Xo. (72)

Proof. That .7, takes its values in Xj follows immediately from the defining formula
(64). For g1, see Lemma 3.1. Formula (71) can be derived from the proof of Lemma
3.1 using (69). The fact that g, is antisymmetric has already been mentioned in the
introduction, see formula (7). Finally, the formula for .#j can be checked by a direct
computation of the adjoint operator of .#,. [

We are now in position to draw the main consequences of the previous study for
the operator Z(f3).

Proposition 3.1. Z(f) is compact and self-adjoint on Xj.

Proof. Expression (61) shows that #(f8) is the difference of a multiple of # and a
finite rank operator. # takes its values in the Sobolev space H>(]0,2x[), which
imbeds compactly in X. Hence, the compactness of Z(f8). From (65), (67) and (71),
we have

Z(p) = %foogl

and, in view of (70) and (72), we obtain, as a result of the direct computation of the
adjoint of Z(p)

(L) =35 (070" = 5L gies0 = 3L sy

2. O
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We end this preparatory section with a few computational remarks regarding 5.

From
" (bgme) = bz )

i 1 . 1 i u\’
D]/f%ﬂ(ﬁ’%"'u) :fo%(ﬁ()a%*'ﬁ—ou) (ﬁ_0> )

: ! BY LB
D, A (ﬂ,%—i-u) (ﬁ_()) D{;fyf(ﬁm%‘i‘ﬁ—o”)

which, in particular, leads to
AV 1 .
<@) %(ﬁﬂ> =0, j=1 (73)
~ 1\ (BY 1

L. B

1 1 1
Dy H (ﬁ, E) = ﬁ—ODu% (ﬁoﬂ) (75)

we obtain

and

We also have

1 1 B
Diﬂ”(ﬁ%”)—ﬁo (ﬁov—w—o)*

which gives

Moreover,

pA (ﬁ,zﬁ“)f P(BF (1) 7 ()
(BT (u)

D, H (ﬁ,%—i—u)é = pH (ﬁ,%Jru) F (&) — (76)

with

&(u) = expu,

2
3= [ ol)ax
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Identity (74) for j = 1 shows that, if v denotes an eigenvector of D, #(f,, ﬁ) for the
eigenvalue 1, then v is also an eigenvector of D, # ([3,21—”) for the value ﬁﬁo We again
have

X [ﬂ’(f) -

(77)

These formulas will be used in the sequel with appropriate values of 8, &, { and u.
Furthermore, one can see that J# is phase-invariant, that is, introducing the phase-
shift p,, defined on X by

P, U() =U(. +9),
straightforward computation yields
P (B;-) = A (B,p,(.)):

So, if U is a fixed point of #(f,.), then p, U is also.
Changing now U into (¢U)(0) = U(—0), we find that

o (B, U)=H(p,aU).

So, #(p,.) sends even functions to even functions. This property will be used in the
sequel, when dealing with the bifurcation issue.

3.3. Spectrum

As a result of Proposition 3.1, we know that Du%(ﬁ,zl—n) is a compact and self-
adjoint operator, so the spectrum of .Z(f8) is reduced to a real point spectrum. Thus,
the eigenfunction problem reduces to looking for £€ X — {0}, and ueR such that

Z(B)(S) = ue. (78)

Such a function is necessarily differentiable, and taking the derivative we obtain

% [/00+n Hoyde - 0971 <(0) da} =10, 7
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that is

@) = o)

437

(80)

It is clear that ué e X, which allows the possibility that u =0 or fozn &(o)do = 0.

Therefore,

it wea(L (), n#0, then o2 g(6) = pe ana [ ewyan =o.

0
Exploiting the fact that &(0 + 21) = ¢(0) and [5" £(0)d0 = 0, we obtain
0+n 0
/ E(o)do = — ¢(o) do.
0 0—n
Consequently, Eq. (80) becomes

N 0
Z”gD gO)=-2 [ &) do,
0—mn

which yields, using (81), that

2nuD

5 [€'(0) + &0+ n)] =0.

Then
EO)+E(O0+n) =C,

where C is a constant.
Since [5" £(0)d0 = 0, it follows that C = 0, thus

£(0) = —¢(0 +m).
On the other hand, differentiating (82) and using (83), we deduce

2”;"’ £'(0) = —45(0).

The solutions of Eq. (84) can be written as

5(0) :AECO()+B€7w0,

where 4 and B are constants and w? = ;%' 02 T E(0)dO = 0 yields that

A, 5, B, _,,
Zietom _ 1y~ = ot _ 1) = 0.
(D(e ) w(e )

(81)

(82)
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Using the fact that & is 2z-periodic, we get via (85)

A" — 1)e® + B(e ™ — 1)e ™’ =0, for all 0, with w#0.
So A(e**™ — 1) = 0 and B(e 2" — 1) = 0. Then

e2um - 1.

Thus
20 = i2kn, k=1,

then

Consequently, we arrive at

2p

Me = Briz

Via (85), the eigenfunction corresponding to . is
ék(g) _ Aeik() + Be—ik97
that is

& (0) = pcoskl + gsinkf, p,qeR.

Moreover,

L (B)(eos(k))(0) = 5Lzl = (~1))cos(k),

__b
Drk?

Z(B)(sin(k.))(0) (1= (=1))sin(k0),

which in particular leads to
Z(B)(cos(2j.)) =0,
2(B)(sin(21.)) = 0.

Then the spectrum of #(f) is given by

2
o(2(f)) = {uk,uk :D(zkiﬁﬂ) k>0}u{0}, (86)

and the eigenfunctions corresponding to u, are generated by {cos(2k + 1)6, sin(2k +

1)0}.
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3.4. Stability and bifurcation

We will now apply the results gathered in Sections 3.2 and 3.3 to the study of
stability and bifurcation of steady states of problem (59). Using an observation made
at the end of Section 3.2, we are going to work in a space smaller than X, namely,
the space, denoted X", of even functions, defined as follows:

XV = {feXo: f is even}.

The restriction of Z(f) to X", denoted L, (f), is still compact and self-adjoint.
Then, in that case, the eigenspace for the eigenvalue y, is reduced to {cos(2k + 1)0},
and y, has algebraic multiplicity equal to 1 (86). We are now seeking nontrivial
solutions, possibly emerging from U = U at some value of  where this solution
becomes unstable. This goes through a bifurcation analysis starting from the study
of the linearization of Eq.(59) near U = U. Let us first recall the following
definitions and a classical stability condition:

Definition 3.1 (Iooss [6]). For a linear bounded operator L, the spectral radius of L,
denoted by r(L), is the supremum of {|1|: Aea(L)}.

(b) The fixed point 0 of a map K: X — X is (Lyapunov) stable iff for every
neighborhood % of 0, there exists another neighborhood ¥ <% of 0 such that
K"V )< U, ¥n=0.

(c) The fixed point 0 is exponentially stable iff there exists a neighborhood 7" of 0,
>0 and ke(0,1) such that 0 is Lyapunov stable and Vxe?", ||K"(x)||, <yk",
n— oo.

Lemma 3.3 (Tooss [6]). Let K : X — X be differentiable at 0 and satisfy K(0) = 0, and
let D(K)(0) = L be its Frechet derivative at 0. If the spectrum of L lies in a compact
subset of the open unit disc, then 0 is exponentially stable.

From the analysis made in Section 3.3, one can see that

2B
g v - —=
"(Za(p) = 5
corresponding to k = 0. Let f,(= %) denote the value of the parameter for which
r(Zev(B)) = 1. Then, according to Lemma 3.3, it follows that the equilibrium 5- is
exponentially stable if f<pf, and unstable if § > ,. We are now in a position to
conclude on bifurcation.

Theorem 3.1. (By,) is a bifurcation point of steady-state solutions of Eq. (59), that is

to say, in each neighborhood of (Py, ) there exists a pair (,U), U5, such that
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Proof. Differentiability of # together with (61) and (65) allow to write #, near
(By, U) as follows:

1
H (B, U) :%—&-ﬁﬁo

”U UH ) — 0. PLev(Py) is compact and r(ZLey(fy)) =1 is an
eigenvalue with odd multiplicity (equal to one). Then, the conditions of a classical
bifurcation theorem [1, Theorem 1.7] are fulfilled, thus a bifurcation of nontrivial
steady states takes place at (ﬁo,ﬁ). This completes the proof of the theorem. [

gev(ﬁ())(U - U) + g(ﬂa U)a

in which lim(ﬁ,U)ﬂ(/fm O) [lu-d|

3.5. Computation of the bifurcation branch, the expectation and the variance

We will now give more detailed information about the bifurcation branch
emanating from (f3,, ﬁ) and we will compute the expectation and the variance on the
local branch. We will first show that one can represent the branch in terms of a
smooth function f# = f(s). We will then compute a few derivatives of fS(s) at s = 0.
The computation requires some care, due to the fact that f(s) is known implicitly
only and depends heavily on the preparatory results collected in Section 3.2.

3.5.1. Computation of the bifurcation branch
As we have already noticed in Section 3.4, it will be sufficient to restrict ourselves
to X§'. Thanks to Proposition 3.1, L, (f) is compact and self-adjoint. N(I —

Zev(Py)) 1s one dimensional generated by v = C(\’;- , and so, compactness and self-

adjointness imply that, if we denote S= R(I — Lev(fy)), S is closed and is a
supplementary subspace of Rv in X", invariant through ¢, (), and I — L. (fy) is
an isomorphism from S onto itself. Finally, S is just characterized as the orthogonal
space of Rv, § = {v}*

By writing U = ﬁ—ku and u =sv+ o, with g€ S, the equation U = #(f, U)
breaks down into two equations:

{s—(v B+ sv+0) =L, 87

o=HB,L+sv+0)—L— (v, (B, £+ sv+0)—L)v.
Applying the implicit function theorem to the second equation of (87), we can solve

it for ¢ near (f,,0): it yields o = o(f,s), o(f,0) = 0. Differentiating the second
equation of (87) with respect to s, we obtain

do 1 do 1 Jdo
< _p _ e (oD _ e
s /s=0 o (B’ > (U * &v/s_o) <v, w (B’ 2n> (U + 6S/s_0> >U

0o
<ﬁ7 27r> D8 /s=0"
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For close to 1,1 — D, # (B, 5) is an isomorphism from S onto itself. Then g_?/S:O =

0. Therefore a(B,s) = O(s?). Now, let us insert ¢ = ¢(f,s) in the first equation of
(87), to arrive at the bifurcation equation

<v ,}iﬂ(ﬁ, + sv + (P, )) —;—n>

We first show that one can represent the branch in terms of a function ff = f(s). To
see this, consider the function

; 1 _ 1
%’(s,[f) _ <UV%(ﬁ72n+SUS+ O'(ﬁ,s)) 2n>7 S?éo,

which extends continuously to s=0 as %(0,[) :%. For s#0, the bifurcation

equation reads as
B(s,p) = 1.

We have %(0, fy) = 1 and §;2(0, fy) = 5-#0 and £ is of class C* (see Remark
2(1)). So, the implicit function theorem applies and insures that near (0, f,), the
solutions (s, 8) of the equation %(s, ) = 1 lie in the graph of a function f = f(s)
such that (0) = B, and f(s) is of class C*. Accordingly, we denote G(s) = a(B(s), s).
Our final goal is to compute a few derivatives of the function f(s). In terms of ¢ and
B, the bifurcation equation can be written as

5= <u, %”(ﬁ(s),% +sv + o"(s)) - %> (88)

Differentiating the bifurcation equation (88) two times with respect to s, we get
0= {0,020 (6). -+ 50+ 06) ) 0+ )
T
+ <v7 D, ﬁ_(v),zL +sv+ (f(s)) " (s)

70

& s aﬁ :
0 1

<v 8—ﬁ%<ﬁ() + sv+ 6(s )) <8s2 >

+ 2<v Dzﬂ}’/<ﬁ_( )sa= + sv 4 d(s )) (g—f) (v+<f’(s)>. (89)

Using (73)—(75), combined with the fact that ¢(.) and its derivatives belong to S the
supplementary subspace of Rv in X", invariant through D, # (ﬁo,zl—n), formula (89)
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1 2 0p
0= <v, D2 <ﬁ0,2n) 1)2> +ﬁoaf/so' (90)

On the other hand, using (77), we obtain

comes down to

1
2 o 2 = 2 —
f(ﬁo, 27r> v°=2cos*(0) — 1,

o))

Together with (90), the above equality leads to 229 — 0. Then,

Nﬂ=%+OM>

Using the Taylor expansion, up to order three, of #'(f,5- + u) in u in the right-hand
side of the bifurcation equation, substituting sv + ¢ for u and using the fact that
a(B,s) = O(s?), then substituting B(s) for f, we arrive at

5= sﬁéos) + <u,Di,}f (ﬁ_(s),21n>svo"(s)> +S63<U7Df,7f (B(S)721n> U3> +o(s%),

which can be rewritten as
(Bo = B(s) _ N N 53 _1
SOT = <U, D2# (ﬁ(s),%> sva(s)> + €<v, Dl (ﬁ(s),%) U3> +0(s%).(92)

Dividing both sides of (92) by s* and evaluating the limit at s = 0, we obtain

_Bgéo) = <v, D2 (ﬁmzi)u&”éo) > + é<v,Dsz (ﬁo,zi> u3>. (93)
0 T T

Let us now turn to the estimation of the first term of the right-hand side of (93).
Straightforward computation gives ¢”(0) = dsz(ﬁo, 0). Differentiating the second
equation of (87) with respect to s, we obtain

which implies that

0? 1 do*a
8_5‘2(/))0’0) :Di‘%(ﬁOaz )U +D %(/307 >a 2(ﬁ07 )

- <U7D5%<ﬁo,%>v > <v D %”<ﬁo, >3 5 (Bos )>

Via (91), combined with the fact that o(.) and its derivatives belong to
S the supplementary subspace of Rv in X§Y, invariant through D, # (ﬁo,;—n), we
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arrive at

& o

@(/30’0) = Di'}lf <ﬁ0721ﬂ> v? + D, H <ﬁ0721n>

o
2 o0, (94)

Denote, for a moment, ¢ the function %(ﬁm@ and differentiate both sides of
Eq. (94) with respect to 6 to obtain, via (77), (61) and (54)

&'(0) = —25sin(20) + 341 (£)(0)- (95)

Using the fact that g,(P) =0, for each polynomial or series P in sin(20n) and
cos(2n0) (see formula (5)), one can see that £(0) = cos(20) is a particular solution of
(95). So, the general solution of Eq. (95) is

¢(0) = cos(20) + £.(0), (96)

where &.(0) denotes an arbitrary solution of the homogenous equation associated
with (95). One can immediately see that this equation is analogous to the
eigenfunction problem (78) for = f8,. Using (78), (80) and (86), we arrive at the
following expression:

£.(0) = Acos(0) + Bsin(0).

The additional restriction to even functions yields B = 0, and the requirement that &
be in S leads to 4 = 0. So, we get

0o
@(ﬁOa 0) = COS(ZO),

from which, using formula (77) with the fact that g;(P) = 0 therefore & (P) = 0, for
each polynomial or series P in sin(260r) and cos(2n6), we obtain

2o L), 1 0% _
<07Du%<ﬁ072n 02 asz(ﬁ070) =0.

- (n2))

Using (77) and (76) again, we get

Therefore

1
D} (ﬁm%) v} = 4n*v® — 6mw,
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which yields that

Then,
s
Fls) = Bo + 5 Bos” + o) ©7)
The result reads, in terms of 2 = A(s) = %, as
- n
A(s) =§+?sz +o(s%). (98)

Consequently the branch of nontrivial solutions emanating from (3, ﬁ) is super-
critical (i.e., takes place for 4 > 7).

3.5.2. Expectation and variance
In this part, we will compute the expectation and the variance on the local branch.
Let Uy(.) be the bifurcated solution of (59) for s > 0 small. The expected value of Us,
E; is by definition
+n

E,= | 0U(0)do

-7

+n 1
7/771 0(%+s0050+0(s)>d9.

Then

The variance Vj is the integral

v | 0 EYUL0) a0

T

= [0 o) (= + 5050+ ofs) )0
{_n o(s <2n+scos —l—os)

:%— 4ns + o(s).

The expectation and the variance can be computed in terms of 4. In view of (98), one
then obtains the following approximate expressions:

E() = o(\/— Jo); WD=%—% (2= %) (99)
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On the other hand, the computation of the same quantities on the trivial branch
leads, respectively, to

2
E=0 and V:%,

that is a slight deviation from uniform distribution can be seen in the angular mean
value becoming possibly nonzero, while the angular dispersion is going below the
value %, giving a rough estimate of the gain incurred by the fish when playing the
gregarious strategy.

So far we have only considered local results, i.e., existence of solutions in a small
neighborhood of a bifurcation point. However, it is possible to show existence of an
extended branch of nontrivial solutions, as a result of a global bifurcation theorem

(see [8, Theorem 1.6]). In fact, in view of U >0 and fozn U(6) d6 = 1, it may be easily
seen that »# (8, U) is uniformly bounded on bounded f intervals; on the other hand,
H(0,U) = ﬁ (immediate from (58)), that is, the only feasible fixed point of #(0, U)
is U. So, Theorem 1.6 in [8] allows us to conclude that, if 4 denotes the connected
component of the set of nontrivial fixed point having (8, U) in its closure, then % is
unbounded in f: for each f > f§,, one can show that #(f, U) has a fixed point

U#U.

4. Concluding remarks

Let us first consider the results of the above two sections together. In Section 2, we
proved that the Cauchy problem associated with the system of equations (1)—(3) is
well posed in a suitable function space. Indeed, we have discussed existence,
uniqueness and positivity of solutions. We have also seen that the value of the
integral of the solution is a constant, so that the solution remains a proportion
density for all positive time. Section 3 focused on the study of the stability of the
trivial solution as a function of the parameter . Assuming that D(0) = D and
F(0) =1, the trivial steady state is the constant function U=, that is, an
individual’s orientation is uniformly distributed in all directions. It was shown that
stability is lost as the parameter  crosses a certain threshold f, and a set of
nontrivial steady states emerges near this value. In fact, below that value f3, the
dispersion dominates and the population organizes itself asymptotically as if there
were no gregarism. We have shown that the branch of nontrivial steady-state
solutions emerging from that trivial solution is supercritical. Close to f = f3,, the
bifurcated solutions read as: U(0) = 5=+ C(B)cos 0+ o(C(B)) with a constant
C(f) > 0 for > B,.

As a final remark, we comment on the interpretation to be given to the solutions in
the context of the physical environment of the fish. The angle 0 characterizes the
angular orientation of an individual fish body, lying supposedly in a horizontal
plane, with respect to a fixed direction, arbitrarily chosen. This has nothing to do
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with the actual location of the fish in the water volume. In what concerns the steady-
state solutions, a privileged direction has emerged from the preparatory study,
namely a symmetry axis has been found which has been used as the origin for the
orientation of angles. But, this axis is by no means connected to a specific horizontal
direction in the sea. Not only could this symmetry axis be supported by any one of
the horizontal directions but there is also no relationship between a given orientation
and the actual location of fish having this orientation. Introducing some rules linking
spatial locations and tail-to-head orientations of fish will be the subject of future
research.
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