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Abstract

Social organization is one of the fundamental aspects of animal behavior, and has received attention both from experimental
and theoretical perspectives. Examples of social groups appear at every size scale from the microscopic aggregates of mammalian
cells (such as fibroblasts) to macroscopic herds of wildbeast, flocks of birds, and fish schools. There are two general frameworks
when modeling such problems: the Lagrangian viewpoint and the Eulerian one. In this paper, we use both the approaches in
the study of fish alignment. An individual-based model (IBM) (Lagrangian) provides a virtual world where fish forming a fish
school try to adopt a common angular position. Fish are assumed to lie in horizontal planes, an individual angular position is
the angle made by the oriented axis associated with the individual (tail to head) with a fixed direction. Two main forces are
acting, a force of alignment, whose strength is assumed to be fixed in a given experiment but may be modified, and a force of
dispersion, accounting for all disturbances. A transition from dispersion-dominant to alignment-dominant can be observed in
the IBM experiments. A related PDE model (Eulerian) is used to determine the transition with sufficient accuracy.
© 2003 Published by Elsevier Science B.V.
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1. Introduction

In many animal species, individuals aggregate to
form temporary or permanent groups. Advantages of
group formation have been demonstrated for a wide
range of animals: it may improve food intake and
growth, reduce vulnerability to predation risks that
vary with fish size and environmental conditions, or
even save energy (for example, through hydrody-
namic effects in the case of fish grouping:Fréon and
Misund, 1999; Parrish and Hamner, 1997; Stöcker,
1999). Our interest in this paper is in fish schools.

∗ Corresponding author. Tel.:+33-1-48-02-55-83;
fax: +33-1-48-47-30-88.

E-mail address: arino@bondy.ird.fr (O. Arino).

A fish school is defined as the special moving con-
dition of fish in which all individuals are oriented in
a common direction, regularly spaced and moving at
a uniform speed. The control of mutual separation
distance involves individual forces acting on fish:
forces of mutual attraction when the individuals are
a sufficient distance from each other, and of repul-
sion when they come closer than a certain critical
distance(Breder, 1959). Each fish reacts differently
according to the range of distances in which a neigh-
bor is positioned. Note that the mean distance to the
nearest-neighbor (NND) varies among the species,
between 0.3 and 3 BL (BL: body length of fish)
(Aoki, 1980; Huth and Wissel, 1994; Pitcher and
Parrish, 1986). Each fish, having established its posi-
tion, uses its eyes and its lateral line simultaneously
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to measure the speed of all the other fish in a school
(Pitcher and Parrish, 1986). Aoki (1982)developed a
simulation model in which schooling fish display the
three behavioral interaction forces.Huth and Wissel
(1994) used a model derived from Aoki to examine
differences arising from different algorithms for bal-
ancing the effects of several neighbors.Warburton
and Lazarus (1991)also compared different behavior
algorithms of animal grouping.

Of the above three main forces implicated in fish
schooling, we focus here on the alignment, that is the
process by which an individual turns to adapt its ori-
entation to that of its neighbors. During the last 20
years orientation processes of fish and animals have
received much attention(Alt, 1997; Edelstein-Keshet
and Ermentrout, 1990; Grunbaum, 1998; Grunbam
and Okubo, 1994; Gueron and Levin, 1995; Gueron
et al., 1996; Mogilner et al., 1999; Parrish and Hamner,
1997; Parrish and Edelstein-Keshet, 1999). One can
think of many biological examples in which alignment
to a common direction or a set of common directions
occurs: in a flock of flying birds or a school of fish, in-
dividuals moving together as a group orient to the same
direction of motion(Grunbaum, 1994; O’Brien, 1989).
Alignment phenomena occur also in microscopic and
in nonbiological systems(Mogilner et al., 1996). A
discussion of alignment as a mechanism for enhanc-
ing chemotactic ability of social organisms such as
schooling fish towards weak, noisy gradients is given
in (Grunbaum, 1994). Locust swarms orient strongly
in the direction of the wind(Mogilner et al., 1999).
Flocks of migrating birds may use the earth magnetic
field as a directional cue(Mogilner et al., 1999). On
the microscopic scale, motile mammalian cells (such
as fibroblasts) tend to align strongly on an artificial
substrate(Mogilner et al., 1996). The degree of align-
ment of a group is sometimes expressed in terms of
the polarization coefficient. Polarization takes value
between 0 and 90◦ (Huth and Wissel, 1994). As it ap-
proaches 0◦, fish are nearer to heading in the same
direction, while as polarization approaches 90◦, fish
are heading at right angles to one another. Huth and
Wissel referred to these conditions, respectively, as
“polarized” and “confused”(Huth and Wissel, 1994).

Alignment is a dynamical process and, as such, can
be modeled according to two general frameworks, Eu-
lerian and Lagrangian(Grunbam and Okubo, 1994).
Eulerian models (also known as continuum or popula-

tion models) deal with the time evolution of the distri-
bution of animal density, described in most situations
by partial (integro) differential or difference equations.
The built-in mechanisms of such models do not gener-
ally include individual variability(Grunbaum, 1994).

In Lagrangian models (also known as individual-
based models (IBMs)) the state of every single in-
dividual is given by a set of characteristic factors
(location, age, etc.) and the time evolution of each
factor is described by ordinary or stochastic differen-
tial equations(Niwa, 1996)or by a set of local rules
(Deutsch, 1995; DeAngelis and Gross, 1992; Stöcker,
1999). In such models the trajectories of individual
animals are calculated according to equations that
may incorporate both physical laws (e.g. conservation
of momentum) and elements of social behavior (such
as attraction to, repulsion from, or tendency to align
with neighbors). Fundamental to this approach is the
recognition that individuals within a population are not
like identical molecules; they differ from one another,
and their differences have an effect on the behavior of
the entire population. Some time ago already,Huston
et al. (1988)anticipated the prospects of applying
the individual-based approach using computers and
the possibility of applying numerical simulations and
numerical solutions. Indeed, numerical simulations
flourished during the last 10 years; the results ob-
tained are frequently in accordance with observations
or real life experiments(Reynolds, 1999; Vabø and
Nøttestad, 1997). However, mathematical tools are
lacking for providing rigorous justification to such
findings.

This contribution addresses the issue of fish align-
ment in a school using an IBM approach. Alignment
here is meant as the nearing of the horizontal angular
positions of the tail-to-head line of fish supposedly
lying in horizontal planes. An IBM is described; its
implementation on a computer allowed a large number
of “virtual” experiments to be undertaken. Analysis
based on these results is performed. The view taken
here is that alignment is a dynamic process involving
a phenomenological species-dependent strength of
alignment competing with environmental noise. An
important feature of our approach is that we work un-
der the assumption of a sufficiently dense school and
a time scale short enough for all movements inside the
school, but alignment, to be negligible. In other words,
we are specially concerned with the behavior of fish
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in the case when fish feel neither attraction toward nor
repulsion from its neighbors. According toHuth and
Wissel (1994), the wide range of this “neutral zone” is
approximately 1.5 BL. It is natural to assume that the
interactions have some finite (maximum) visual lim-
iting distance, beyond which fish cannot perceive its
neighbor. For the sake of simplicity, we omitted this
assumption in the simulations; this point is discussed
in the conclusion. Another simplifying assumption
made in this work is that all fish in the school are
in some sense equal. We did not take existence of a
leader into account(Bumann et al., 1997; Krause et al.,
2000).

The main results of this work are that the dynamics
is controlled by a single parameter, that is the ratio,
λ, of the strength to the noise. Simulations show that
there is a threshold value such that whenλ is below
this value, the noise dominates, while above it an
alignment pattern starts to establish itself. In addition,
the stabilization time was estimated, it was found that
it decreases asλ increases.

Estimating an accurate value for the threshold for
alignment is not an easy task, especially when dealing
with an IBM. A mathematical Eulerian model, which
in fact arises from the IBM, was independently in-
vestigated and was used to help locate this threshold
value more accurately. It also helped improve the IBM.
A sketchy derivation of the passage from the IBM
to the Eulerian model is included. A detailed mathe-
matical analysis of the model can be found inAdioui
et al. (in press). Finally, the validity of the approach
followed in this paper, that is isolating the alignment
from the other processes involved in fish schooling,
is discussed in the conclusion: a time scale analysis
performed there shows that it is justified if the polar-
ization is high enough.

The paper is organized as follows. InSection 2, we
describe the Eulerian aggregation model we just men-
tioned. It is in fact a very mild adaptation of a model
that appeared earlier in the literature(Grunbaum,
1998). Some useful qualitative results are summarized
from Adioui et al. (in press). The IBM is presented
in Section 3: from generalities on the subject to the
model used in the simulations of this paper.Section 4
is devoted to the results. Three different results are
presented, corresponding to the following issues: (1)
(the computation of) the threshold; (2) the time of
stabilization; (3) the effect of density.Section 5of-

fers an extensive discussion, based in part on the
comparison of the results with observed characteristic
features.

The following general assumptions will be held
throughout the paper. We deal with fish schools of
rather small fish (sardine, anchovy, mackerel): the pa-
rameters that will be used on occasion are relevant to
such sizes. Demography (birth and death) as well as
growth are not considered.

2. Eulerian alignment model

In the Eulerian approach, the model describes fluxes
of individuals through any given angular positionθ
(Grunbam and Okubo, 1994). Since the total popula-
tion is constant, we may, and do, consider the propor-
tion of individuals having a certain angular position as
the state variable. For detailed explanations about the
Eulerian model, we refer toAdioui et al. (in press).
The distribution of angular positions,U(θ, t), evolves
according to

∂

∂t
U(θ, t) = d

∂2

∂θ2
U(θ, t) − β

∂

∂θ
(U(θ, t)[G × U(θ, t)]),

(1)

where d is the diffusion coefficient. We define the
functionG×U as the classical convolution ofU with
the functionG given by

G(θ) =
{

1 on ]− π, 0] (mod 2π)

−1 otherwise(mod 2π).
(2)

The second member of the right-hand side ofEq. (1)
is the analog of a gregarious effect, individuals tend-
ing to adopt the dominant orientation. At each time
t, an individual with positionθ at this time will turn
to the right, that is to say, counterclockwise, or to the
left, according to whether the proportion of individ-
uals whose angle position is in the right half-plane
(]θ, θ+π[) is bigger than the one in the left half-plane,
or the contrary. This term could also be interpreted
as a correction made by the fish to the dispersion
effect.

The parameterβ can be viewed as an intensity fac-
tor which sets up the strength of that correction. We
have performed the study in terms of the parameter
λ = β/d. It was shown that stability is lost asλ crosses
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a certain thresholdλc (= π/2) and a set of nontrivial
steady states emerges near this value. In fact, below
that valueλc, dispersion dominates and the popula-
tion organizes itself asymptotically as if there were no
gregarism(Adioui et al., in press). When the ratioλ
exceedsλc, the group starts to acquire a certain po-
larization. We have also proven inAdioui et al. (in
press)that the local branch can be extended to a larger
branch which is unbounded inλ, so that for eachλ >

λc, there exists a nontrivial steady-state. Describing
the evolution of the steady-state asλ becomes large
remains an open question.

3. Lagrangian alignment model

3.1. IBMs in ecology

We now present the Lagrangian model introduced
in this study and the IBM arising from it, that is
its computer simulation apparatus. In contrast with
the Eulerian approach which looks at fluxes, a La-
grangian model addresses the level of individual
organisms and describes changes in the state of in-
dividuals (here, it is just the angular position) as a
result of forces acting on them. In recent years, a
number of researchers have developed IBMs of fish
schooling behavior to investigate which movement
rules are required to produce cohesive schools capable
of directional movement (seeNiwa, 1996; Huth and
Wissel, 1994; Lorek and Sonnenschein, 1998, for a
review).

However, the subject did not really attract much
interest until the beginning of the 1990s where, proba-
bly stimulated by the availability of powerful personal
computers, it started to develop both at theoretical
(foundations) and application levels (seeDeAngelis
and Gross, 1992, for a review).

Much of the popularity of IBMs stems from their
ability to “imitate” real populations: in particular, each
individual within a population is unique and differs
from others in many biological respects(DeAngelis
and Gross, 1992). Another reason for IBM’s growing
use amongst modelers is that important features of
individuals are not taken into account in state variable
models (e.g. individual variability)(Grimm, 1999),
while, in contrast, IBMs are based on a somewhat
detailed description of the behavior of individuals

and their interactions with each other(DeAngelis and
Gross, 1992). All individuals of a population may
have different attributes like age, weight or position in
an area that may influence the behavior of individuals
(Gronewold and Sonnenschein, 1998).

Let us briefly recall that the principle of an IBM con-
sists in following each individual of a collection which
has been “seeded” at the beginning of the “virtual” ex-
periment, assuming they move or some of their char-
acteristics change during a time step, due to a number
of influences, namely(Mogilner et al., 2003):

(i) individual behavior (for example, ability to
move, specific speed, changes in internal state
over time);

(ii) interactions of individuals with one another (mu-
tual attraction or avoidance, repulsion at high
densities, etc.);

(iii) interactions of individuals and a collection of
individuals with a resource distribution, other
species, or other aspects of the environment.

3.2. A Lagrangian alignment model

Based on the principles we just recalled, we built up
a Lagrangian model, as follows. We assume that we
work with N individuals(N ∈ N−{0}), each of them
having—at some timet—a certain angular position:
(θk

N(t))1≤k≤N is the family of angles for theN indi-
viduals. Suppose that each(θk

N(t))t∈R+ is a stochastic
process.

The Lagrangian alignment model is given via a sys-
tem of stochastic differential equations as follows:

dθk
N(t) = F [(θl

N(t))1≤l≤N ](θk
N(t))dt + [

√
2d] dWk(t),

k = 1, . . . N,

where we assume the angular position of thekth
individual is subject to random dispersal modeled
as a Brownian distributionWk, with diffusion pa-
rameterd. The drift termF describes the alignment
interaction rule which assures that fish tend to align
in the direction of the average flux in their vicinity
and the strength of this force is determined by the
termβ:

F = β

(
ν1 − ν2

N

)
,
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with

ν1(θ) =
N∑

l=1

1]−π,0](θ − θl
N(t)),

ν2(θ) =
N∑

l=1

1]0,π](θ − θl
N(t)).

1]−π,0] (resp. 1]0,π] ) is the indicator function of the
interval ]−π, 0] (resp. ]0, π]) 1]−π,0](θ) = 1 if θ ∈
] − π, 0], and 0 if else. Using(2), we get

ν1 − ν2

N
= G ×

∑N
l=1 δθl

N(t)

N
,

that is

F [(θl
N(t))1≤l≤N ](θk

N(t))

= β


G ×

∑N
l=1 δθl

N(t)

N


 (θk

N(t)), (3)

whereδθl
N(t) denotes the Dirac measure at pointθl

N(t).

3.2.1. From microscopic rules to a macroscopic
description

The passage from the “microscopic” Lagrangian
description, to the “macroscopic” Eulerian one(1) is
undertaken by lettingN go to infinity in the above
description. So doing, theempirical distribution
θN(t) = (1/N)

∑N
k=1 δθk

N(t) converges to a probability
densityU(θ, t), β[G × U(·, t)](θ) is the limit of the
right-hand side of(3). We refer toCapasso (2000),
Friedman (1975)and Metivier (1968) for further
information on this subject.

3.3. The simulator and scenarios tested

The simulator is provided with an operator in-
terface, intended for real time and easy-to-perform
action-to-visualize alignment behavior. It is imple-
mented in JAVA (Jdk 1.1.8, SunMicrosystems), an
object-oriented program language. In an object-
oriented system, a class is a collection of data and
methods that operate on the data. Taken together,
the data and methods describe the state and the be-
havior of an object. The interface consists of three
components:

(i) the parameter window, that allows to set up
global variables (notably,d: diffusion parame-
ter (rad2/s), β: alignment parameter (rad/s),N:
number of individuals);

(ii) the situation window, that represents angular
positions of individuals. It allows to observe the
situation of fish’s angles;

(iii) the indicator window that allows to visualize the
evolution of the angular width of the distribution
of individual fish angles.

In Section 2, we have recalled fromAdioui et al. (in
press)that the parameterλ, expressed as the ratio of
the alignment parameterβ to the diffusion parameterd
plays an important role in the alignment phenomenon.
Concretely, when the ratioλ exceeds some threshold
valueλc, the group starts to be somehow polarized;
below that value, dispersion dominates. As already
mentioned, the conclusions drawn from the analytical
study are severely limited to the immediate vicinity
of λc and it was notably impossible to deduce from
mathematical analysis strong alignment, meaning tight
angular width with all individuals heading roughly in
the same direction(Adioui et al., in press).

The approach proposed here, that is numerical
simulations, was undertaken with the double goal of
exploring such properties and comparing these with
theoretical results, on the one hand, and, on the other
hand, complementing the theoretical approach, by
extending the range of parameters to be visited, for
example large values ofλ, and estimating further
relevant quantities, such as the time of stabilization.

In view of this, we are therefore going to consider
several experiments corresponding to different values
of d, λ, andN. Each scenario is characterized by a
single set of values for the parameters(d, λ, N).

Outputs consist of:

(i) the standard deviation (the angular width) of the
distribution of angular positions at the steady-state
(defined as any distribution of the angular posi-
tions that is unaffected by simulation runs).

(ii) the stabilization time, the timeτ after which
steady-state is achieved. Note that the average
angular position is not a relevant quantity, since
the space is considered isotropic. In fact, differ-
ent experiments will generally lead to different
averages, which are likely to change at each run,
even at a steady state.
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By preliminary experimental studies, it was shown
that some variability occurs in the outputs, on the
standard deviation as well as on the stabilization time.
For that reason, we perform five runs of the simula-
tor, for each scenario. This number of runs appears
to be sufficient to damp out randomness embodied in
the simulator. InMogilner et al. (1999), the results of
the numerical experiments describing the evolution
of propagating pulses were plotted three times.

Preliminary results have also shown that 1000 s of
simulated time is a sufficient long time to reach a
steady state distribution, with atime step less than or
equal to 0.1 s.

We perform our results for three values ofd (d =
0.011, 0.11, 1.1) corresponding to three different or-
ders of magnitude. Another aspect is the effect of the
school size. We compare two sizes:N = 100 and
1000. The simulations presented here were obtained
with the uniform distribution, as the initial distribu-
tion.

4. Simulation results

In this section, we present the main results obtained
in simulations.

4.1. Result 1 (threshold)

The theoretical study performed inAdioui et al. (in
press)leads to existence of a non-uniform distribution
for all λ larger than some critical valueλc (= π/2). The
stability of the solution, however, could only be as-
certained in the vicinity ofλc. Further solutions could
also emerge away fromλc. We are not able to derive
such solutions by theoretical computation.

4.1.1. Transitional dynamics
In accordance with what was found from the mathe-

matical analysis, we want to test a “numerical” thresh-
old value ofλ in the vicinity of which there is a sharp
change in stability. Concentrating on the standard de-
viation data obtained by simulation, we see that for
λ ∈ [0, 1.5], the standard deviation is first constant
and then goes down slowly, with a total relative varia-
tion less than 20%. Beyond the value 1.5, the value of
the standard deviation goes down faster and loses 85%
when λ increases from 1.5 up to 2.0. The value 1.5

is in surprisingly close agreement withλc considering
the erratic nature of the simulated data. Experiments
shown inFig. 1 demonstrate that the degree of align-
ment is controlled by a parameterλ: for λ = 0 there is
no alignment at all, no structuration can be observed;
asλ reaches the value 1.5, a dynamical phase transi-
tion exhibiting spontaneous breaking of diffusive be-
havior occurs, and therefore aligned patches start to
form.

4.1.2. Perfect alignment
We also investigated the dynamics of the system

away from the vicinity of the bifurcation pointλc, in
a range of the parameter values where the mathemati-
cal analysis is out of reach. Simulations undergone for
values ofλ (any) larger thanλc confirm the narrow-
ing of the angular width: with all due reservations, the
standard deviation approaches zero as inFig. 2. So,
increasing the parameterλ leads to pattern formation
manifested by collectively moving clusters consisting
of fish having a similar angular position. However, for
d = 1.1, the adverse situation (that is the broadening
of the angular width) does not occur beyondλ ≈ 6
(seeFig. 2). Computer simulations (which we do not
present here) show that whenβ exceeds the value 6.0
approximately, this property holds true also indepen-
dent on the value ofd.

4.2. Result 2 (time of stabilization)

We examined the time of stabilization, that is the
time it takes to reach a steady-state. We summarize
our findings in the following remarks and inFig. 3:

(i) 1000 s is a time long enough to reach a
steady-state.

(ii) The time of stabilization is at its maximum when
λ is close to the bifurcation pointλc.

(iii) For values ofλ (any) larger thanλc, the time of
stabilization decreases whenλ increases.

(iv) For λ fixed, the time of stabilization decreases as
d increases.

These results can be interpreted as: whenλ crosses
a critical valueλc upwards, while remaining close to
it, two steady states take place: a trivial one, weakly
unstable, and a non-trivial steady state, weakly stable.
Consequently the time of stabilization necessary for
an initial data close to the bifurcation pointλc, to
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Fig. 1. Phase diagram for alignment interaction. Shown are the regions of stable and unstable, as a function ofλ for d = 0.011 0.11, 1.1.
These figures were obtained after 1000 s for groups of sizeN = 100.

go away from the trivial steady-state weakly unstable
to the non-trivial steady-state weakly stable becomes
large.

In other words, the time required for dynamical
transition from unordered state to alignment is large

Fig. 2. Standard deviation vs. parameterλ. These values were obtained after 1000 s, for groups of sizeN = 100 for d = 0.011, 0.11, 1.1.

close toλc. In contrast, forλ far enough fromλc, the
alignment behavior occurs rapidly and then the time
of stabilization decays gradually to zero. The situa-
tion (iv) is rather largely different in the case whenλ

is close toλc. Comparing the case ofd = 0.011, 0.11
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Fig. 3. Time of stabilization vs.λ for d = 0.011, 0.11, 1.1 after 1000 s, for groups of sizeN = 100.

versus 1.1, the corresponding time of stabilization
(in s) is 564.555, 89.301 versus 9.834, for parameter
λ ≈ 1.7.

4.3. Result 3 (effect of density)

Another important question is, are simulations also
valid for bigger schools? In other words, is there a
lower or an upper limit for the simulations to be af-
fected by the size of the school?

A thorough treatment of this issue would require
a considerable number of experiments. Our result is
just illustrative: we compared two cases,N = 100 and
1000.

4.3.1. Standard deviation
The simulations presented earlier were performed

for schools of 100 individuals. When the size of the
group is very large, that is if we increase the num-
ber of school members (beyond 100), we get the
same results (Fig. 4). As shown inFig. 1, two plau-
sible scenarios for the transition can be proposed:
non-cooperative, so that the angular distribution of
individuals is nearly uniform on the one hand, and,
on the other hand, the cooperative one, in which in-
dividuals display schooling behavior.Fig. 4 shows

that with the same parameterλ, the values of stan-
dard deviation corresponding toN = 100 and 1000
are nearly similar. This result suggests that the group
maintains its structure while the number of organisms
increases. In other words, the dispersion of orien-
tations is not affected by the density: increasing or
decreasing the number of individuals with the same
parameterλ does not change the standard deviation.

4.3.2. Time of stabilization
In Fig. 5, we explore the time of stabilization in

terms of the density of the individuals. Experiments
shown inFig. 5demonstrate that the time of stabiliza-
tion depends mainly on the size of the school. This
dependence is high enough in the vicinity ofλc. In
fact, comparing the case ofN = 100 and 1000, the
corresponding time of stabilization (in s) is 564.555
and 929.611, respectively, for parametersλ = 1.7
andd = 0.011 (seeFig. 5). This means that the stabi-
lization time of transitional dynamics of the angular
distribution from angular disorder to alignment is
very important for large groups. For values ofλ much
larger thanλc, the stabilization time decays rapidly
to zero forN = 100 as well forN = 1000. Further-
more, the remarks made in the case ofN = 100 (see
Section 4.2) hold true also forN = 1000.
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Fig. 4. Phase diagram for alignment interaction. Shown are the regions of stable and unstable, as a function ofλ for d = 0.011, 0.11.
These graphs were obtained after 1000 s, for groups of sizeN = 1000.

4.3.3. Variability
The analysis of the outputs for each simulation

shows that some variability occurs, on the standard de-
viation as well as on the stabilization time. We can see

Fig. 5. Comparison of standard deviation vs. parameterλ between the groups of sizeN = 100 and the groups of sizeN = 1000. These
values were obtained after 1000 s ford = 0.011, 0.11.

that the variability is at a maximum in the vicinity of
λc, and then decreases rapidly asλ increases (Fig. 6).
Fig. 6 also shows that the variability of standard de-
viation depends on the size of the population. In fact,
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Fig. 6. Comparison of time of stabilization vs. parameterλ between the groups of sizeN = 100 and the groups of sizeN = 1000. These
values were obtained after 1000 s, ford = 0.011, 0.11.

we can remark that the variability of standard devia-
tion corresponding toN = 100 is greater than the one
for N = 1000. This difference reaches its maximum
in the vicinity of λc. In contrast, the variability of the
time of stabilization is higher forN = 1000 than for
N = 100, especially in the vicinity ofλc for d = 0.11
(Fig. 6).

5. Conclusion

In this paper, a mixed Lagrangian–Eulerian ap-
proach was undertaken in the study of the alignment
process in a fish school. Most of the paper was de-
voted to the IBM; an earlier work done on a PDE
arising from the Eulerian approach was presented
elsewhere(Adioui et al., in press). The PDE was
used to calibrate the IBM on the value of a threshold,
which was only imperfectly reproduced by the IBM.
In this sense, the approach is really mixed.

The work was done under simplifying assumptions
which notably allow us to concentrate on the compe-
tition between alignment and dispersion and discard
the other individual forces of attraction and repul-
sion. Both the Eulerian model and the IBM are rather
simple ones and we do not suggest that real animals

will adhere strictly to them. We were interested in ex-
ploring how a spontaneous preferred orientation may
arise, what types of interactions promote this kind
of pattern formation, and under what conditions. The
alignment response forms the main phenomenon of
interest here.

We performed our results for three values of the
diffusion coefficientd (rad2/s), d = 0.011, 0.11, 1.1.
The corresponding statistical dispersion of angular
position (in ◦), at successive time intervals of length
0.01 s, is 0.8498, 2.6874, 8.4983, respectively. In the
literature (Huth and Wissel, 1994; Mikhailov and
Calenbuhr, 2002), the parameter which controls dis-
persion of angular position at 0.5 s is equal to 15◦,
so it leads to a value ofd = 0.0685 (rad2/s). This
typical value is in the range of orders of magnitude
of d taken in our investigation.

PolarizationP is frequently defined as the average
of the angle deviation of each fish to the mean swim-
ming direction of the school. Here, it is the standard
deviation of the angular position (no swimming is
involved during the alignment process). The values
of the parameterλ used in the experiments, that is
λ ∈ [0, 40] are sufficient to reproduce the high levels
of polarization reported by some authors(Huth and
Wissel, 1994; Mikhailov and Calenbuhr, 2002).
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For example, mackerel schools show the highest
parallel orientation (P ∈ [8, 12◦]) (Huth and Wissel,
1994). With our simulation model, we can reproduce
these values ofP by changing the range ofλ. For
example, asλ is increased from 5 to 20,P decreases
accordingly from 20◦ to approximately 5◦. A crucial
assumption of our model is that fish are at rest with re-
spect to one another. In fact, a more useful view would
be to assume that alignment is taking place in a mov-
ing school where mutual distances may change with
time, but it acts much faster than the other processes.
Suppose for example a school moving at a speedv

with fish heading possibly at different directions.
Let tv be the time necessary for the distance of two

fish to go from 1 BL to over 5 BL, which we assume
to be the maximal distance of perception. Denotingα

their mutual angle, it is a matter of easy calculation to
get thattv = 2/v sin(α/2). Estimatingα as equal 2P ,
we obtain a mean value estimate of the time it takes
to two fish to be out of mutual perception, just as a
result of drift, namely,tv = 2/v sin(P). A typical value
of the maximal velocity of a fish is 1.3 BL/s(Huth
and Wissel, 1994). In order for the alignment process
to succeed, it is thus necessary that the stabilization
time τ be much less thantv. The data obtained by our
experiments show that this phenomenon is reproduced
if, P ≈ 2◦ (corresponding toλ = 40). Indeed, forP ≈
2◦, tv = 38 s andτ = 12 s, so we have(τ < tv). In the
case ofP ≈ 10◦ (corresponding toλ = 10), however,
we have (forv = vmax) τ = 80.624 s, far too much
abovetv = 8.3763 s. According to the formulav =
2 BL/tv sin(P), such a polarizationP ≈ 10◦ requires
v < 0.135 BL/s, that is forv = vmax/10.

Compared to the literature, our results overestimate
the polarization that is needed for a school to persist
at a given speed, or, at a given polarization, the speed
should be lower than in the literature(Mikhailov and
Calenbuhr, 2002). The orders of magnitude though
are not so incredibly different, if we take into ac-
count the fact that the model used here is really a
very basic one: the force of alignment is certainly
at fault by giving the same importance to all neigh-
bors of a fish independently on their angular distance
to it. Also, in all experiments the initial state is the
uniform distribution: we did not account for a pos-
sible initial dispersion width which in general will
be less than the maximum provided by the uniform
distribution.

Otherwise, when the group is not polarized, the
velocity of fish must be negligible in order to reform
into a polarized school. This result agrees with the
findings in Huth and Wissel (1994)and Mikhailov
and Calenbuhr (2002). So, schools with a high paral-
lel orientation find food patches better, because they
are highly mobile.

One of the main qualitative results of this work is
that bifurcation from angular disorder to alignment
occurs when the ratioλ of controlled to uncontrolled
turning is greater than some critical value. Both sim-
ulations and mathematical analysis show that the
distribution of angular positions of a fish group under-
takes a continuous dynamical phase transition when
λ reaches a critical value, manifested by a change
from dispersion to alignment, that is forλ ∈ [0, 1.5],
the standard deviation is first slightly constant and
then goes down slowly, with a total relative variation
less than 20%. The two markedly different distribu-
tions could be associated with two distinct behaviors
that a group of fish would be able to display and
the transition could correspond to the passage from
one to the other according to a variety of circum-
stances.

Hara (1985)observed such transitions in the ocean:
Japanese sardine groups which where performing
amoebic movements at the beginning of observa-
tions were gradually drawn up in order and thus the
groups would perform rectilinear movements. This
behavior is also reproduced if, when a fish is sur-
rounded by food, it loses its polarization and each
fish snaps at food on its own. After the food patch has
been consumed, the school reforms(Mikhailov and
Calenbuhr, 2002). These observations display exis-
tence of two types of basic behaviors: shoal (fish
which are randomly oriented within a group and are
weakly polarized) and school (a group of fish that
swim in a synchronized manner, i.e. with similar
speeds and direction (highly polarized))(Fréon and
Misund, 1999). This suggests that the parameterλ

could in fact be a function of the satiation state of the
group or some other time dependent variable, associ-
ated with the group. Work in this direction is highly
desirable.

Another aspect treated in this paper is the effect of
the parameterλ on the time of stabilization: it is higher
for λ close toλc and then decreases asλ increases
(Figs. 7 and 8). We have also shown the influence of
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Fig. 7. Comparison of variability of standard deviation vs. parameterλ between the groups of sizeN = 100 and the groups of size
N = 1000. These values were obtained after 1000 s, ford = 0.011, 0.11.

density on the dispersion of orientations as well as on
the stabilization time (Section 4.3).

A sort of paradoxical result that we found, not in-
cluded in the section of results, is that the angular
width ceases to diminish for large values ofβ. This

Fig. 8. Comparison of variability of time of stabilization vs. parameterλ between the groups of sizeN = 100 and the groups of size
N = 1000. These values were obtained after 1000 s, ford = 0.011, 0.11.

result, rather surprising if we keep in mind the signifi-
cance ofβ, can in fact be interpreted by saying that, if
the individual reactions of fish are too fast, they tend
to act in anticipation of the alignment force and thus
indirectly enhance the noise. One should also point
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out that part of this effect may be due to the method
used in implementing the computer simulation, that is
synchronous simulation. Asynchronous computations
might be more robust than the synchronous ones to
artificial oscillations introduced by the numerical ap-
proximation, and could possibly extend the polarizing
effect ofβ a little further than our actual findings.

Finally, we would like to comment about the as-
sumption in both the Lagrangian and the Eulerian
models that a large number of fish, or even an infinite
number of fish in the Eulerian model, influence the
orientation of a given fish. In fact, a fish will most
probably only look directly at a low number of its
neighbors, the nearest ones in its sight’s cone. So, if
we consider a time step close to the reaction (time)
to nearest neighbors, the assumption is certainly not
correct. But, if we assume that the reaction of a fish
to its nearest neighbors is much faster than the time
step of the simulation, then the position taken by a
fish after one simulation run will indirectly reflect
the positions of the neighbors of its neighbors, of the
neighbors of the neighbors of the neighbors, etc. This
would define different layers of neighbors, each layer
acting at a distinctive intensity, dependent upon the
distance to the fish. The situation considered in this
work could correspond to 10 nearest neighbors and
two layers, therefore roughly the same intensity for
the two layers, leading to the model of the paper.
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