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1. INTRODUCTION

A very important question in many practical situations is to know if there exists a mean value
of bounded solution x of differential equation

dx

— () = , X(2)).

a t( ) =S¢, x(£))
By the mean value we understand the limit

1 T
lim — de

if it exists. Several authors have found a class of functions which have the mean value—the
almost periodic. In [1], Zhang introduced an extension of the almost periodic functions, the
so-called pseudo almost periodic functions (p.a.p. functions) (for more details on this notion,
see [2-4]).

A well-known extension of almost periodic functions is the class of asymptotically almost
periodic functions (which was introduced by Fréchet), that is, functions of the type

f=g+e¢,

where g is almost periodic, &(f) is continuous and &(f) = 0 as ¢ = oo.
The definition of a p.a.p. function given in [1] is as follows: any function f which can be
written as a sum

S=g+o,

where g is almost periodic and ¢ is continuous, bounded and M(||¢|) = 0. Here M(-) is the
“‘asymptotic’’ mean value, defined by

n

.1
M(y) = lim — 3
row 2r

r

w(s) ds.

The main purpose of Zhang’s [1] paper is to investigate existence of pseudo almost periodic
solutions of a pseudo almost periodic nonlinear perturbation of a linear autonomous ordinary
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differential equation

dx
3 @) = A0 + SO + nGx(1), 1). )

Recently, Ait Dads and Arino [3] considered the extension of Zhang’s situation, by introducing
a slight extension of the notion of pseudo almost periodic function, namely, they did not
assume that ¢ is continuous, nor bounded, just the zero mean value condition and then
considered a nonlinear perturbation of the type (1), assuming that A4 is time dependent, with
pseudo almost periodic coefficients. Under the assumption that the linear equation has an
exponential dichotomy they proved an analogous existence theorem concerning pseudo almost
periodic solutions, using the technique of exponential dichotomy. As for the space of almost
periodic functions and some of its generalizations, pseudo almost periodic functions have many
applications in the theory of differential equations. In this paper we are concerned with the
same problem in a general Banach space.

Our work is organized as follows. In Section 2, we state some facts on pseudo almost periodic
functions with values in a Banach space; in Section 3, we prove the main theorem on pseudo
almost periodic solutions of the linear system; in Section 4, we consider the nonlinear case.
Finally, we give a few examples.

2. PRELIMINARIES AND BASIC RESULTS

2.1. Semi inner product

Definition 2.1 (Deimling [5]). Let (E, ||-||) be a Banach space. The upper semi inner product is
defined by

.1
s = Il lim = dly + el = (D
and the lower semi inner product by

1
- = Iyl lim = diyl = Ty = ex).

Both limits exists for every norm, and they coincide with the inner product, if E is a Hilbert
space.
In the case when E is a uniformly convex space we have (x, ¥), = {x, ¥)_.

Definition 2.2 (Hanebaly [6]). F: E — E is called dissipative if there exists a constant ¢ > 0,
such that

(Flx) — F(»),x = py_ < —clx -y @
Remark 2.1. Notice that inequality (2) is essentially weaker than the classical Lipschitz condition
IFx) = FO)ll = &lix -

but it only guarantees existence of solutions to the right.
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2.2. Some results on generalized pseudo almost periodic functions
Definition 2.3 (Bohr [7]). Let (E, | -||) be a Banach space. Then

fiR—-E
is called almost periodic if
(1) f is continuous, and
(ii) for each & > 0 there exists /(¢) > 0 such that every interval I of length /(¢) contains a
number 7 with the property that

lfit+ o - fOl < e, forall t e R.

Set
¢: R — E, Lebesgue measurable, such that
PREY(R, E) = 1 ("
o8 lim j lo@)ll ds = 0
roow ol |,
and
@: Q X R = E, such that p(x, *) € ®QE(R) for every x € Q, and
- 1 ('r
PRELQ X R, E) = lim j lox, 5)] ds = 0

uniformly in x € Q, where Q C E.

Definition 2.4. A function f: R = E is called generalized pseudo almost periodic (generalized
pseudo almost periodic in ¢ € R, uniformly in x € Q) if

S=8g+¢
where g € Q®(R, E) - (QP(Q x R, E)) and ¢ € PARG(R, E) - (PEPNQ X R, E).

Remark 2.2. Note that g and ¢ are uniquely determined in terms of f. Indeed, since
N
Mo = tim - | lowlas
row &l _,

is a norm on Q®(R, E), then, if fe PRO(R,E), and f=g, +¢, =g + ¢,, one has
N(g, — &) = 0, whichimplies that g, = g,, and thus, ¢, = ¢,. Then g and ¢ are called the almost
periodic component and the ergodic perturbation, respectively, of the function f. Denote by
®GA®(R, E) the set of generalized pseudo almost periodic functions.

Example. Let
@) = sin¢ + sin nz + t]sin mz|" for N> 6

Fflx, ) = cosx(sin £ + sin zt + ¢t|sin n£]") for N > 6.

Let us prove that ¢(f) = ¢|sin nf|"", has zero mean value, while being unbounded.
@(¢) = o at the points ¢t = £+ + k, as |k] — o,
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Let us prove that
LT
lim ~ E le@| ds = 0.
r—ow I’ 0

Let us look at the integral

172

k+1 k+1 . .
j p(H)dt = j tlsin me)" dr < 2(k + 1) g |sin 72| “+°" dr
k k o

1/2

<2k + 1) j |sin 7¢|*" dr.

k+1
g o(t) dt

k

We will show that

is bounded above by the general term of a convergent series, which will complete the proof of
the example.
We know that

) 1
(sin zay'*'  withe < =

n { (sin ey cos mt dt = 5

1
0 A+1
which implies that

@ 1 (sin zay**!
1y dt < .
L (sin )" (A + 1) cosna

On the other hand, we have

(sin may"*! _ expl(A + 1)/2] log sin® na _ expli4 + 1)/2)(sin>na — 1)
cosma cos ma - cos Ta )

Now, let us study the function

exp(—[(4 + D/2]u?)
U

U = Cos ma.
If we put B = (4 + 1)/2 (which condition guarantees the fact that (exp(—Bu?)/u < 1).

Consider

then

<1 ®¢(\/l_?u)<L.

exp(—v?)
v VB
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Since ¢ is nonincreasing, then, p(v) = 1/+/B, for some v = v,.

1 v
VBu) < — & NBu > vy & u > —=.
PNBU) < 5 B @ U> g
Let us compute the value of vg
exp(-vp) _ 1
Up \/—E ’
one has
vB
1+ v§<expu,2,=——,
Up
this implies that
UB+ Ug<\/§=’UB<Bl/6.
o(NBu) < ¢(vg) & vg < VBu.
This is true if
BY® < </Bu,
SO
Bl/6
u>piz= :
Here
A+l
B = s A=k
2
So, it suffices that
kN + 1 -1/3
U > .
()
On the other hand
1 (k” - 1)—1/3
U = COs Ta = a < —arc cos .
n 2
Then, one has
@ 1 1 A+ I\
sintu)y du < —, for @ < —arc cos .
L( y A + 1) m ( 2 )
So, one has
E (1/7) arccos((A N +1)/2)~173 N
sin )" du = ———,
Jo (sin ) 2k + 1)
and
1/2 N -1/3
1 1 o+ 1
E (sin m)*" du = = — —arc cos( ) .
(1/m arccos((kN+1)/2)~1/3 2 n 2
But
. (n T
s1n<5—arccosa> = azi— arc cos «, asa — 0.
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Hence for k large enough one has

51/2 (sin mu)*" du =< 1 (kN * 1>—1/3.
¥4

(1/x)arc cos((k N +1)/2)" V3 2

k+1 1 1 kN+l—1/3
L ¢(t)dt52(k+l)[n(kN+l)+7—t( ; ) ]

In the case where 1 — N/3 < — 1 (i.e. N> 6), the series with general term ff*'@(s)dt
converges, consequently (1/r) {; ¢(r) d¢ — 0, as r — +oco. This ends the proof.

In conclusion

3. THE SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
3.1. The linear bounded case

We consider the following problem

0 = ax0 + 5o, 3)

and the following hypotheses:
(H,) Suppose that A: E — E is a dissipative, bounded linear operator;
(H,) Suppose that f: R = E is bounded, continuous and pseudo aimost periodic.

TueoreMm 3.1. Under the hypotheses (H,) and (H,), equation (3) has one and only one bounded
solution which is pseudo almost periodic.

Proof. First we prove the uniqueness. Assume that equation (3) has two bounded solutions
x,; and x,. Then v = x; — x, is a bounded solution for the linear equation

dx
3 O = Ax@. @

Let us note that the Dini derivative
— vt + k) — )

D u() = lim , )
h=0" h
then one has
HD v)? = (Av(), v(O))- < —cllv@)]*. (6)
By integrating the differential inequality (6), we have
lo)ll < exp(—c(t — a)llv@|  for ¢ > a. M

Since v is bounded, we can take @ near infinity and consequently we have v(f) = 0= v =0,
which gives the uniqueness property. W

In the sequel we need the following result.
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Remark 3.1. If A is dissipative then
llexp(tA)|| < exp(—ct), for ¢t = 0.

Indeed for v, € E, let v be a solution of equation (4) with initial value v,. By integrating the
differential equation (4) we find that

I(exp tA)vp|| = exp(—ct)llv,|  for all £ = 0.
So
lexp(zA)|| < exp(—ct)  forall t = 0.

We now continue the proof by establishing the existence. The only bounded solution of
equation (3) is given by
et

x(t) = j eXpUA( — $)/(s) ds.

Since
lexp tA| < exp(—ct), for all £ = 0,

then, x is defined and furthermore

IMSMH

exp(—c(t — s)) ds,

o0

1 1
< 71 lexp(—c(t = Il < 171 -

x is a solution for equation (3). If f(¢) = g(t) + ¢(¢), where

g € R®(R, E), and ¢ € PAC(R, E),
then

x(t) = j exp A(t - $)f(s)ds

t

= S exp A(t — 5)g(s) ds + g exp A(t — s)p(s) ds.

—

Let
Cr

u(t) = 5

t

exp A(t — $)g(s) ds and v(t) = g exp A(t — s)e(s) ds.

— -0

Then u is an almost periodic function. Indeed, g is almost periodic, using Definition 2.1. Then,
for € > 0, there exists # > 0 such that, for all p € R, there exists 7 € [p, p + 7] with

supllgt + 1) - gl < e.
teR
It follows that
€
sup |l + 1) — v(@)|| = -.
teR (&

So v is almost periodic.



1148 E. AIT DADS et ai.

In order to show that x is in ®?@®(R, E), we need to show that u € PREY(R, E), i.¢. we need
to show that

1 ("
im — =0. 8
lim 3 lu(o)]| dt = 0 ®
We have
0 < lim — { |lu()|| d¢
< lim & 3 3 exp(—c(t — Nl ds de
. 1 r -r
= lim S dt(j exp(—c(t — 9)llee)|l dS)
1 r t
+ lim P g dt(§ exp(—c(t — )| o) || ds)
1 r t
~im 2| (|| oot - oo )
e Jl ™
1 r -—F
+ lim > S dr § exp(—c(t — s)| o) ds.
el ) -
Jy
Now

t

S~
l

N N
ﬂm;jwwwj
r -r

r—+o

exp(—c(t — $)) ds,

o

1 r
tim 5 | ool decexpi—et = L,

1" 1
lim j lel dt(— [1 — exp(—c(t + f))])-

C

Since —r<¢=<r and ¢ >0, then (1/c)1 - exp(—c(t + r)) is bounded. Furthermore,
@ € PAFP(R, E), then J, = 0.
Also

J, = lim 2ir jr dt g—r lo(s)|| exp(—c(t — s)) ds.

oo
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By using the Fubini theorem, one has

r

L
= tim 2| expteallotot as |

> ) exp(—c(?)) dt,

lim lell X , exp(cs) dS(1 [exp(—cr) — exp(cr)]),
r—o 21 © C

tim ol (511 - exp(—2cr)]> .

It is clear that J, = 0. This completes the proof of Theorem 3.1. W

Remark 3.2. Looking to the quantity J,, we can assume that ¢ is unbounded, in this case the
end of proof is as follows

Jp = lim L j dtj o)l exp(—c(z — s)) ds,

1 * o0 r
jim £ j ool dtj exp(—c(t — ) ds,

o0

Ly 1
lim > 5 el dt(; [exp(—c(t — r)) — exp(—c(t + r))]>,

1 1 {=
= - lim j o)l exp(—c(t — r) de

Crow r

- % lim i’_ jw (O exp(—c(z + r)) dt.

r—w 2

If we consider the quantity

1"
H0 = 3 | ool expi-otc = mat,

r

and, integrate by parts, we obtain

1 t 4o
hr) = 5 [ (jo o) du) exp(—c(t — r))]

* o0

t
+ 2£ j <E e du) exp(—c(t — n)dt.
r r 0

It is clear that the first term in the above equality tends to zero as r = + and, by hypothesis
¢ € PQRE(R)", we have

Q=

rr
\ lo(t)|dt =0  asr— .

=r
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So, we have that there exists () such that

j lo) du = s(r.

0
Now, one has

"

c o t
3 }r ({ [rzen]| du) exp(—c(t — ) dt

0

< @' Swtexp(—c(t - r)dt

r

= [f_(r_)_g :-ltexp(—c(t - r))] - - ene r’exp(—c(t - n)dt
r o c r

r

S, Lk o 1)
r r

r c c
This last quantity goes to zero as r goes to infinity. By the same arguments, we prove that the

quantity

11 [*
-—— = S @)l exp(—c(t + r)) dt
c2r i,

goes to zero as r goes to infinity.
Consequently, we have that J, = 0 as r — oo.

3.2. The unbounded linear case

In the sequel we consider the following equation

dx
d_t = Ax +f(t), (9)
Xy € D(A),

where A is an unbounded linear operator, and the following hypotheses:
(H;) Suppose that A is an infinitesimal generator of a stable Cy-semi group, (S(¢)), » o on the
Banach space X, that is, there exist constants M, ¢ > 0 such that

|S(Hl = M exp(—ct), fort = 0.

(H,) Suppose that f: R = X is p.a.p., f is continuously differentiable and

d
Yo

< o,
dt

sup
telR

THEOREM 3.2. Suppose that (H;) and (H,) hold. Then equation (9) has one and only one
bounded solution which is pseudo almost periodic.
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For the sequel we need the following propositions.

ProPoSITION 3.3 (Zaidman [8]). Let X be a Banach space and let (S(¢)), ., be a one-parameter
semigroup of class C,, satisfying the following inequality

ISl = Me™, =0

where M > 0 and ¢ > 0. Let A be the infinitesimal generator of S(¢) and let u: R = D(A) be a
solution of the equation
dx

dr _ 4 10
a - (10)

Then, if one has sup, ¢ §5*" |u(s)|* ds < =, it follows that u = 0.

ProposiTioN 3.4 (Zaidman [8]). Assume that f is C'. In that case, for any element x, € D(A),
the solution u of equation (9) is given by
t

u(t) = S(t)x, + g S(t — $)f(s) ds.
0
For the proof of these propositions we refer to [8].
Remark 3.3. If u is a bounded solution of (10), then the condition of proposition 4.1 is satisfied.

Proof of the theorem. Uniqueness. Let #, and u, be two bounded solutions of equation (9),
then v = w; — u, is a bounded solution of equation (10). By Proposition 4.1, v = 0. So,
ul = uz.

Existence. Let u be the function defined by

i

u(t) = ! St - s)f(s)ds = Rlim S St — $)f(s) ds.
© =+ J_R

We remark that ¢ = S(t — ¢)f(0) is continuous over [R, ], then, it is Riemann integrable,
which implies that |* ; S(+ — 5)f(s) ds is defined. Let us prove that u is a solution of equation
(9). We have

't

u(t) = lim j

t+n

S(t — $)f(s)ds = lim g S(s)f(t - s)ds.

0

Let x = ¢ + n. We define the function v,(x) by
U,(x) = j S(s)g (x — s) ds,
0
where g,(x) = f(x — n). It follows that g, is C'. By Proposition 3.4,

V,(x) = EXS(s)g,,(x - 5)ds and v,(00=0
0
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and v, satisfies
dv,

— = Ay, + g,.
dt Un gn
Taking x = t + n, one has
dv,
T Av, + f(0).

Then, v, is a solution of equation (9), and

va(t) = j " SE)f( — s)ds.

0

So,
dv,
dt

= gm’ S(s)ad—tf(t — gYde + St + n)f(—n).

0
We have also that
IS¢ + mf-ml = Mexp(=ct) exp(-en)| Sl = 0.

Henceforth, lim (dv,/dr) exists and is equal to {g S(s)(d/df)f(¢t — o) do uniformly on any
bounded subset of R,

dv, dv,
5 = A SO = Avy =L = 10

v () =),  Av, = ut) - f(O).
Since A is a closed operator, then

u(t) e D(A) and Au(t) = v@) — f).
One has

d
T v,(t) = wu(f), uniformly on any bounded set of R,

v, ~ u(?), uniformly on any bounded set of R.

Hence, u is differentiable and (d/df)u(f) = v(z). So
d
Au = au(r) - f(0, fort e R.

Consequently, u is a solution of equation (9) which is bounded. To end the proof, it suffices to
show that u is pseudo almost periodic. The bounded solution of equation (9) is given by

u(t) = St S(t — s)f(s)ds.
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Since
|S(H)] = Mexp(—ct), forallt = 0,

then, x is defined and furthermore, we have

t

Ixll < 171 j Mexp(—c(t - 5)) ds,

—0

M M
< |1 — lexp(=c(t - D) = £l it

u is a solution of equation (9). _
If f(8) = g(t) + o(t), where g € GP(RR, E), and ¢ € PQRF,(R, E). Then

t t

S(t — s)g(s)ds + j S(t — s)p(s) ds.

—o

u(t) = g S(t — s)f(s)ds = S

v

Let

t t

S(t — s)g(s)ds and w(f) = j S(t — $)e(s) ds.

— 00

u(t) = j

—o0

Then v(¢) is an almost periodic function. Indeed, g is almost periodic, using Definition 2.1.
Then, for ¢ > 0, there exists # > 0 such that, for all p € R, there exists 7 € [p, p + 7] and

supllg(t + 1) — gl s ¢,
teR

which gives that
M.
sup ot + 7) - v(®)|| < 7
teR c

So v is almost periodic. _ _
In order to show that u is in ®G®(R, E), we need to show that w(¢) e PAF,(R, E), i.e. we
need to show that

lim 1 5 | w()|| d¢ = 0. 11)
rooo 2F

—=r

The proof is similar to the one given in Theorem 3.1. This ends the proof of Theorem 3.2.

4, EXAMPLES
Consider

d_x = Ax + f(f) (12)
dt
where f: R — H, where H is a Hilbert space, ¢ — f(¢) is continuous, bounded, pseudo almost
periodic, and 4: H — H, defined by Ax = —x.
We have (4x, x) = —|x]|?, so 4 is dissipative; using Theorem 3.1 we have that equation (12)
has only one bounded solution which is pseudo almost periodic.
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We consider the following equation

u

W=—Au + f(t, x), t=0,xeR"

) (13)
u(©, %) = u,(0), a—‘t‘(o,x) = u,(),

where

u, € H((R") = {v e [*(R™) g% € LZ(IR”)}

where dv/dx; is a distribution derivative u, € I*(R").
f: R x R" — R satisfying that f = g + ¢, with g is almost periodic in ¢ uniformly with respect
to x, g(t, *) € LX(R"), o(t, -) € LX(R")
G: R - I*(R")

t g, )
is almost periodic
¥: R — I2(R™)

1= @, )

satisfies the ergodicity property that is

1 +r
oy j ¥ 2myds = 0,  asr— +oo.

So the problem (13) is equivalent to the following

| u 0 7| uw 0

hdl = + 14

AR BT HEE &
with the variables change u, = du,/ar.

Henceforth, the phase space is X = H'(R") x L*(R").

ProrposiTioN 4.1 (Pazy [9]). The operator
0 1
A=
)

is the infinitesimal generator of a C, semigroup S(¢) on the space H Y(R™) x I%(R") satisfying
the following inequality

IS < 4exp(-2t), =0

D(A) = H*(R™) x LX(R™).
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So if we put V = [ Zl} , then, the problem (14) becomes

2
d
—V =AV + F(1), tz0
ds (15)
V) = V.

ProPoSITION 4.2. If F is a continuously differentiable function such that
dF(@)
ds

then equation (15) has one and only one bounded solution W which is pseudo almost periodic
solution.

sup
telR

< o,

Remark 4.1. In this case the function that is defined by v(z, x) = W(£)(x) satisfies the problem
(13) and is pseudo almost periodic in Z*(R") norm.
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