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INTRODUCTION

The problem of existence of periodic and almost periodic solutions of functional
differential equations has been considered by many authors. There are many papers in
this area. We can quote the works of [1-8].

In finite dimensions, for linear periodically forced equations of the type

dx
@ O = A0x® + 1O )

the following alternative is well known.
If the homogeneous equation

dx
3 O = A0

has x = 0 as its only periodic solution then equation (1) has one and only one periodic
solution for each periodic forcing f.

Extensions of this result have been obtained in three directions:

(1) from finite top infinite dimension;

(2) from periodic to almost periodic forcing;

(3) from linear to nonlinear equations.

For periodic forcing in infinite dimensions in the nonlinear situation one of the classic
results was described by Perov and Trubnikov in a series of papers. Apart from a Hilbert
structure, the main assumption made by Perov and Trubnikov is a strong dissipativeness
condition. This assumption, quite natural in many applications has also been considered
in nonHilbert settings.

Amongst the authors who worked in this direction, we can quote Ait Dads [1], Hanebaly
[31, who deals with a more general dissipativeness condition. These authors have extended
to nonlinear almost periodic equations the above mentioned alternative. The method
developed in {1, 3] consists of two steps.

First, to prove existence and uniqueness of a bounded solution of the equation; then,
using a suitable characterization of almost periodicity due to Bochner, to show that the
bounded solution is almost periodic.

1 This work was supported by the Med-Campus European programm Med Biomath 237.
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Recently, Kato and Imai did some work in that direction. In [9, 10], they deal with the
following differential equation

dx
3 ) = A@XO) + 1) @

aiming at extending an old existence result obtained in [6] by using dissipative type
conditions on A.
Let us recall the essential steps of these two papers.
Throughout R” is, as usual, the space of n-tuples of reals, ||-]| is an arbitrary norm
on R”.
A:Rx R" > R"

SiR— R”
We denote
[L:R"xXR* =R
the function defined by

1
[x,»] = lim —(lx + Ayl — |Ix]).
h-o0* R

Assuming the following conditions;

(K;) A(¢, x) is a continuous mapping.

(K,) f(¢) is a continuous mapping and || f() + A(#, 0)| < N for all € R, where N is a
positive constant.

(K5) There exists p € C(R, R), such that for some positive constants &, y, Ty the
following two properties hold:

@ pi)=-6 (tel-=,T)
and
I
(ii) lim PR p(o)do = —y (uniformly for s > T,).
t— 40 [ — 5

(X,) For all (¢, x,¥) e Rx R" X R”
[x -y, 4@, %) ~ AW, ] < p®lx - y|.

(K,) Is a strong dissipativity condition.
The main result is given in the following theorem.

TueoreM 0.1 [9]. Suppose that conditions (K,)-(K,) are satisfied. Suppose, furthermore,
that A(¢, x) is almost periodic in ¢ uniformly for x € R” and f is almost periodic. Then,
equation (2) has a unique almost periodic solution on R.

In this paper, we relate the results obtained by Kato and Imai to those obtained
previously by [1, 3]. We show that the methods introduced in [1, 3] apply to the situation
envisaged here. In fact, they allow to handle a more general setting than in [9, 10}, since
our results are stated in an arbitrary Banach space. As a preliminary, a discussion of the
assumptions introduced in [9, 10], is made.
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In particular, the main assumption, as regards the novelty in Kato and Imai’s papers,
that is (K;), is reformulated and a more general assumption, along the lines of (K,), is
shown to suffice.

The proof of this result is presented as follows.

One proves the uniqueness of the Cauchy problem, which gives the uniqueness of
bounded solutions defined over R. After this, one shows that the bounded solutions are
asymptotically equal at infinity, that is, the distance between two solutions is going to zero
(this affirmation is given in Lemma 1.2). Using this last result the proof of the periodicity
or almost periodicity of the bounded solution is given.

1. PRELIMINARIES
Let (E, ||+|)) be a Banach space, and let us consider equation (2) with
A:RXE—-E
fiR—E.
(1) Hypothesis (K;) implies the following.

(H;) Suppose that there exist p € C(R, R) and positive constants d, J,, T, and T,
such that

pO<-6  tel-o,~T
py<-8, tell, +wl.

In fact part (ii) of hypothesis (K;) implies there exists 7y, T; > T, such that v¢ > 7, and
s = T;, one has

| B y
s LP(O') do = -2

then, letting s tends to ¢, we obtain

POy = -2 = -5,

The next two lemmas correspond to Lemmas 2.2 and 2.3 in [9], assuming (H,) instead
of (K;).

LeEmMa 1.1. Suppose that (H;) is satisfied. Then,

t
S p(eg)do - — ast— +o
-T

supU exp(g p(o) da) ds; t = —7},} < o,
_Ib s

and,
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Proof. 1t follows from (H,)

t

t T
S plo)do = j p(o)ydo + j plo)do

-Ty -T T

T
SE plo)do — 6,(t — T;) > —o© ast - +oo,
_TO

Since

t
gp(a)das—él(t—s) fort=zs=T1,,

we have, for each t = T;

t t T "t t t
j exp j (p(o)do) ds = j exp | (p(o)do)ds + S exp j (p(o)do) ds
~Ty s -T Js T s
T, rTy :
= g exp j (p(o) do) dsexp S (p(0) do) ds
T 5 T
+ S exp g (p(o) do)
T, s
n T, t
< E exp S (p(o)do) ds + E exp[-a,(t — )] ds
-T s I
n T 1
= j exp<§ (o) da) ds + 6_{1 — exp[-d,(t — T
~T s 1
Therefore,

t t I T
E exp § (p(o)do)ds = g exp § (p(o)do)ds + —1—

-Ty s 51

forall t = -7,.

LeEMMA 1.2. Suppose that (K,) is satisfied. Let u(7) and v(¢) be solutions of equation (2) on
an interval [a, b]. Then

@) - w0 < lu@ - v@| exp(g (@) da) )

for all ¢ € {a, b].

The proof is similar to the one given in Lemma 2.3 in [9]. It is not related to the
dimension of the space.
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2. EXISTENCE OF BOUNDED SOLUTIONS

Suppose that (K,) and (H,) are satisfied. Let N, § and T; be positive constants as given
in (K,) and (H,), respectively. Set r, = N/4,

t t t
= maxil, sup expg p(o)do, sup S epr (p(o) do) ds} 4)
~-Tyss=st 5 -Tpst J-T, s
and
r=T(@r, + N). 5)

We remark that r is finite by Lemma 1.1. Then, we have the following theorem.

THEOREM 2.1. Suppose that conditions (K,), (K,), (H;) and (K,) are satisfied. Let 7 be as
defined by (5). Then, equation (2) has a unique bounded solution u(f) on R, |u(?)||z < r
for ¢t € R. Furthermore, if v is any solution of equation (2), then |lu(f) — v(6)|| = 0
as t— oo,

Proof. The first part of this is similar to the one given in [1] by considering the Cauchy
problem

dx
a;(t) = A, x() + f(@), x(-n) =u, €E. (6)

Then (6) has a unique solution u,, on [—n, +n].

Using Lemma 1.2, we can prove directly that the sequence (,) is a uniform Cauchy
sequence in every bounded subset of R. Indeed, let » and m be two positive integers such
that m = n. Then, u, and u,, are defined on [—#, n} and, by inequality (3) in Lemma 1.2,
for t € [—n, n], we have

tn(®) — ] < (=) — (=) exp(g

t

p(o) da) .

Let

o = [lun(—n) — u(=n)|.
So, if —n < t < T, then

exp<gt (o) da) < exp(—=d)(¢ + n),

which yields that (u,) is a uniform Cauchy sequence in every bounded subset of R.
If -n<-T, <t then

t -Ty t
exp(ﬂ p(o) da> = exp(g (o) do) exp<§ pl(o) da)
-n -n -T

< exp(g (o) da) exp(-8)(—T, + n).

-T
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So,

exp(j p(o) da> exp(-0)(—Ty, + n) = 0 asn — o
T

which implies that (u,) is a uniform Cauchy sequence in every bounded subset of RR.
So, its limit is a bounded solution of equation (2) over R, which ends the proof. W

3. ALMOST PERIODICITY PROPERTY

In this section, we begin by the Bochner characterization of almost periodicity.

THEOREM 3.1 [1]. Let f € C(R X E, E). Then f(¢, x) is an almost periodic function in ¢
uniformly with respect to x in E, if for any real sequences 6,, o,, there exist two
subsequences 6,,, g, such that:

f@ + 6, x) converges to a function g(¢, x)
and
J@+ 6, + g,,x) and g(t + o, x) converge to a same limit A(¢, x).

Furthermore, g(¢, x) is also almost periodic in 7 uniformly with respect to x in E.
Now, we are in a position to give the main result of this section.

THEOREM 3.2, Suppose that the hypotheses (H;) and (K,) are satisfied. Suppose,
furthermore, that A(¢, x) is almost periodic in ¢ uniformly for x € E and f(¢) is almost
periodic in ¢. Then, equation (2) has a unique almost periodic solution on R.

Proof. Without any loss of generality we can assume that f = 0. Note that, in view of
Theorem 3.1, for each sequence o, € R, there exists a subsequence noted by 6,, such that
the sequence

A8, %) = At + 6,,%)

converges in R x E, with as a limit a function B(¢, x), the convergence being uniform in
R x K, where K is any compact subset of E. B(¢, x) is almost periodic in ¢ uniformly with
respect to x in compact subsets of E. Clearly assumptions (K,) and (K,) are satisfied by B.
(H,) and (K,) are supposed to be true. So, Theorem 2.1 applies and yields that equation
(2) has a unique bounded solution defined over R. Let u(¢) denote this solution. It is easy
to verify that the function B satisfies the same conditions as A. So, the limit equation

dy

= = B(t, y), 7

= = B, ™

has a unique bounded solution defined over R. Let u, be this solution and consider the

sequence (u,) defined by u,(¢) = u(t + 6,); u, is a solution of the following equation
dz

= =A,t 2 = Al + 6,,2).
& 28, 2) ( 2)
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We will show that for all £ € R, u,(f) converges to uy(f) in E. In fact, put
Un(t) = ”un(t) - “o(t)"-

D.|fOl = @), f' @)
Then,

D+ U,,(t) = [un(t) - u()(t)saq;(un(t) - u()(t)):l

= [un(t) — ug(t), At + 0,, up(1)) — B(t, uy(1))]
= [u,(6) — uo(t), A(t + 6, u, (1)) — A + Oy, up(1))
+ At + 0, u(t)) — B(t, uy()}
< [u, (1) — uo(t), AU + 6, u, (1)) — At + 6,, ug()))
+ [ua(0) — ug(t), A(t + 0, uo(1)) — B(t, up(t))]
< p@Ollun(@) — up@ll + [ua(t) — ug(t), AU + 6,, ug(t)) — B(t, ug(1))]
< p(O)(a(0)) + [ua(t) — uo(t), AU + 6, ug(1)) — B(t, up())].
From this, we conclude that

D, v,(1) = p(H)va(1) + bu(0), ®
where
bn(t) = ”A(t + 9,,, uo(t)) - B(t’ uo(t))"-

To prove this inequality, we have used the following property of the function [, ]:
X,y + 21 < [x, 5] + [lz]l.

Then, integrating the differential inequality (8), we have the following inequality

Uu(t) = exp g p(a)da - v,(t) +

ty

(exp E p(o) da) b,(s) ds.

Jio
S—

I J
Letting ¢, fixed and 7 go to +, we obtain, thanks to the fact that whenn = —o, J = 0,

because A(s + 6, uy(s)) converges to B(s, uy(s)) uniformly with respect to s € [1,, ¢]

im sup v,(f) < Mexp(E p(o) do) M= ’sug llu@) + ug(+)|.

n-— +o to
This being for every ¢, < ¢, we arrive at

lim supv,(f) = 0.

n— +o

Thus, we have proof that u,(f) converges to uy(t) for each 7 € R.
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In order to conclude the proof of Theorem 3.2, we apply the second characterization of
Bochner’s theorem. Let 6,, o, be two sequences in R, we have to show that we can
determine two subsequences 8,, o, such that:

u(t + 6,) ~ vt)
and
u(t + 6, + o,) and v(t + o,) converge to a same limit w(?).

The subsequences can be determined as a consequence of the almost periodicity of A(¢, x).
So, we have

A+ 6,,x) > B(t,x)
and
A(t + 6, + o,,x) and B(t + o,,Xx)

converge to a same function C(¢, x). Finally, applying the first part of the proof, we can
see that u(t + 6,) converges to the unique bounded solution v of the equation defined by
Band u(t + 0, + a,)and v(t + a,) converge to the unique solution w(¢) of the equation
associated with C.

Remark. Hypothesis (K;) as well as (H;) yields existence of bounded solutions. It is not
necessary for this to assume that the equation is almost periodic.

On the other hand, in the case the equation is almost periodic, then (K,) as well as
(H,) read

[x — y, A(t,x) — A, )] < -O|lx -y, x,y€E, for every £ € R.
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