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INTRODUCTION

In [1, 2], the following question was considered: to prove the existence
of sustained oscillations near a steady state for delay differential equations
of monotone type. Our model equation was

x'(1)= —x(1)+ x*(t — w), (1)

which is connected to a problem of electronic avalanche. Equation (1) is of
monotone type when restricted to non-negative solutions. This means that
for any pair of initial data ¢, ¥, such that 0 < ¢ <, the solutions x,(¢)
and x,(¥) are in the same order: x,(¢)<x,(¥). For recent advances on
monotone semiflows generated by functional differential equations, please
refer to [7]. For our equation, oscillations of interest are those near the
equilibrium point x=1. By a translation of the origin, (1) can be treated
as a special case of the following class of delay differential equations,

x'(1) =1 (x(1), x(1 = 1)), (2)

where fis C!, f(0,0)=0, and f is increasing with respect to the second
variable. When f is of this type, we say that the equation has a positive
feedback. These will be the basic hypotheses throughout the rest of the
paper. Sustained oscillations refer to solutions oscillating near 0 whose
oscillations do not damp out at infinity. Periodic solutions are of this type
[3], but we are concerned here with more general types of oscillations.

It was proved in [1, 2] that existence of sustained oscillatory solutions
is implied by the fact that O is not a homoclinic point.

The question of whether 0 may be a homoclinic point of an equation of
type (2) was recently treated by Yulin Cao [5]. In fact, the main issue
addressed in [5] is not homoclinic points. Two important properties are
proved in [5]: (1) A count function for the zeros of a solution is shown to
be non-decreasing along the solutions. This is the so-called discrete
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Lyapunov function [5, Theorem 1.5]. (2) A strong relation is established
between the exponential decay of solutions and the number of zeros [5,
Theorem 2.27]. (See Section 2 for more precise statements.) In the case of
positive feedback, it is then concluded that 0 is not a homoclinic point.

In this short note, we would like first of all to exploit the above result
in the problem of sustained oscillations: we prove that infinitely many
such solutions can be exhibited. Our secondary purpose is to make some
comments regarding the proof of [5, Theorem 2.2]. We propose a sim-
plification which uses the same technique as the one presented in Cao’s
paper but concentrates on the main mechanism of the proof.

1. SUSTAINED OSCILLATORY SOLUTIONS

We consider an equation of type (2) with the same general assumptions
as those stated above. We denote
of _J

a=-" (0, 0), b= P (0, 0).

Throughout most of our paper, > 0, but a few results hold if b is just 0.
It is possible that zero might not be the only steady state, and indeed it is
the case for our model equation (1). For that equation, let us recall that
we consider oscillations near x= 1.

The state space for Eq. (2) is € =€([ — 1, 0], R), the space of continuous
functions from [ —1,0] into R. For ¢ €%, #(¢) denotes the number of
zeros of ¢ (= oo if there are infinitely many zeros).

We need a result on the roots of the characteristic equation associated
with Eq. (2). The linearization of E. (2) near zero is

x'(t)=ax(t)+ bx(t—1), (3)
whose characteristic equation is
A=a+bexp(—4). (4)

We introduce the numbers I~ (a, 6) =inf{f, § >0, such that a + if is a root
of (4) for some a <0}. I'*(a, b)=sup{B, =0, such that a +if is a root of
(4) for some o >0}. As a convention, we set I~ = + o0, I* = — o0, if the
corresponding set is empty.

The following result was proved for the first time by Wright (8], in a
more general setting. See also [5, Lemma 3.17.

ProPoSITION 1. For each b >0, ae R, we have

I (a,b)>1I%(a,b).
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We now look at the discrete Lyapunov function, having in view relating
it more explicitly to the count function #.

LEMMA 2. Assume that [ is C', £(0,0)=0, and f(0, y) #0 for y #0. Let
¢ in 6, such that # (@) < + 0. Let x be the solution of (2), such that x,= .
Then, #(x,)< + oo, for each t = 0.

Proof. Denote by t the infimum of 720 such that #(x,)= + c0.
We want to show that 1= + 0. Assuming on the contrary that 1 < + o0,
we show first that near 7, x has only finitely many zeros. Denote
g()=f(0, x(z+t—1)), a(t)x=f(x, x(t +1t—1))—f(0, x(t +T—1)).

Equation (2) can be rewritten in the form

xX'(t+1)=a(t) x(t+ 1)+ g(1), (5)

which, integrated from 0 to ¢, yields
x(t+ r)=f exp (f a(u) du) g(s) ds.
0 s

By the property defining t, we may assert that x(z) has at most a finite
number of zeros near t—1 [on an interval Jt—1—¢, t—1+¢[ (with
£>0)if 1>0, or just a semi-interval [t—1, t—1+¢[ if t=0]. So, we can
find a neighborhood # of 0 in R (or # < R™* if 1=0), such that the only
zero of x(t+7—1) in £ is +=0. Therefore, in view of the assumption on
f(0, y)#0 for y #0, we may conclude that the function g keeps a constant
sign in each of the sets # "R~ and # N R™*, so the only zero of x(¢+ 1)
in £ is 1=0.

We can now conclude the proof of Lemma 2: suppose first that 1=0.
Then, from the above argument, we deduce that for >0 small, x has no
zero on ]0, ¢], which implies that # (x,)< #(¢) < + o0, in contradiction
with the definition of z. Suppose now that 7> 0. Then, we deduce from the
above that there exists ¢>0, such that x has no zero other than 7 on
[t—¢, t+¢]. Therefore, for t<r<t+¢ we have #(x,)< #(x,._.)+1
< + o0, also in contradiction with the definition of 7. |

LEMMA 3. Assume the same hypotheses as those in Lemma 2 for f. Let
@ €€, such that # (@) is finite. Let x be the solution of (2) such that x,= .
Then, the zeros of X on [0, + o[ are either a finite family or an increasing
unbounded sequence (1,,).

We may now restate [S, Theorem 1.5] as follows.

PROPOSITION 4.  Suppose the same hypotheses as those in Lemma 2, and
suppose moreover that there exist M, <0< M,, both finite, such that
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M, <x(t)<M,, for t= —1, and (Of [0y )(x, y)#0 for each (x, y) such that
M, < x, y< M,. Then, the sequence (or the finite family, if there are only a
finite number of zeros) #(x,) is non-increasing. Finally, #(x,)< #(p)+ 1.

Proof. For this proof it is convenient to write Eq. (2) in the form
x'(ty=a(t) x(t) + b(t) x(t — 1), (6)

where a(t) and b(z) are obtained by using the Taylor expansion of zeroth
order of f(x, y) near (0, 0), and then

y'()=c(t) yt -1, (7)

where y(t)=exp(— [§ a(s) ds) x(¢), and c(t)=b(t)exp ([{_, a(s)ds). We
note that x and y have the same zeros, and the assumption on
(af/0y)(x, y)#0 is transformed into b(¢) #0, for each 7> 0, which implies
the same property for ¢(¢). Denote by ¢, the sequence of zeros of x on R*
(which are also those of y). From y(¢,)=y(t,,,)=0, it follows that y'(z)
takes the value O at some point t*e ]t,,¢,, ,[; therefore we have
y(t*—1)=0. We saw in the proof of Lemma 2 that the count number
# (x,) is incremented by at most 1 each time a zero of x is passed from left
to right. Now, let us vary ¢ from ¢, to ¢,,, ,. #(x,) may have increased from
1 at 7, but it loses 1 when ¢ crosses the value t*, since the point #* — 1 will
no longer be counted. Therefore, # (x, )< #(x,)—1, for r*<t<t,,, so0
#(x,, )< #(x)+1< #(x,), for ¢ near ¢,, ,. The proof is complete. |

In accordance with [5, Definition 1.2] we may define the discrete
Lyapunov function for such functions ¢ to be V{(¢)= #(x,), where ¢, is
the first zero of the solution x on R*. Clearly, for each r,<r<t,, |,
V(x,)= #(x,,,,) We adopt the convention that, if there are only finitely
many zeros, and f is the last one, then V(x,)=0, for 7> t,. This choice
differs from that made in [5], where the author assigns the value 1 when
there is no zero. In this way, Cao does not distinguish between slowly
oscillating solutions ( a class of solutions which cancel at most once in
each interval of length 1 [6]) and solutions which cease oscillating after
a finite time. This is justified in Cao’s perspective by the fact that the
author is mainly interested in small solutions; neither of the two classes of
solutions above can be a small solution. Our purpose is different from
Cao’s. We are motivated by the study of oscillatory properties of all
possible types.

Whatever definition we take, it follows immediately from Proposition 4
that V is non-increasing along the solutions.

PROPOSITION 5. (&) Suppose the same hypotheses as those in Lemma 2,
and suppose moreover that b #0. Let ¢ in € such that # (@) < + 0. Assume
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that the solution x of (2) such that xy= ¢ goes to zero as t - + o. Then the
JSunction V(x,) is ultimately non-increasing. More precisely, there exists T =0
such that V(x,)= Constant for t=T. Denote & * =lim,_, , . V(x,). We
also have lim sup, _, , ,, #(x,)=A4"".

(b) Suppose now that 0 is a hyperbolic point of Eq. (2), and z is a solu-
tion of (2) defined on R, such that z(t) — 0 as t - —oo. Then, #(z,) < + oo,
for each t in R. There exists T<O0, such that V(z,)= Constant, for t<T.
Denote A"~ =lim V(z,). We also have limsup,_ __ #(z,)=A4"".

= — oo

(c) Suppose finally that 0 is hyperbolic as in (b). Let z#0 be a solu-
tion of (2) on R, such that z(t) approaches 0 as t — + o0, and df/3y #0 at
each point of a square [M,, M, 1x[M,, M,], where M, <z(t)< M,, for
every t in R. Then, we have A"" < A ~.

Proof. For part (a), we observe first that, in view of Lemma 2,
#(x,)< + 0 for each 1= 0. Now, from the assumption & #0, we deduce
M >0, such that df/dy #0 at each point (x, y), for which |x|, |y| <M.
Moreover, there exists t, such that for r=>t—1, |x(¢)] <M. We are in a
position to apply Proposition 4 with — M, = M, =M, and to conclude that
V(x,} is non-increasing for ¢ > T. Since V takes only integer values and is
non-negative, we may conclude that V(x,} is constant on an interval
[7, +oc[. Now if ¢, denotes the sequence of successive zeros of x, we have,
for n large enough and ¢, <t <1, ., #(x,) < #(x, ). So assuming that n is
large enough for ¢, > T, we have #(x,)< A " for t>1,, which yields the
last result of part (a).

Let us turn to part (b). z, has a principal part at —oo equivalent to a
solution of the linear equation (3), which is a combination of exponential
solutions with a positive real part exponent, # (z,), which asymptotically at
— oo is the same as the corresponding number for the principal part of z,
at — oo, is therefore not larger than /% (a, b)/n. So, #(z,) is uniformly
bounded on R. Choose t <0, so that |z(1)] < M, for 1 <. Then, Proposi-
tion 4 applies on J— oo, ] and yields that V(z,) is non-increasing on this
interval. Since it is bounded above by the number /" (a, b)/n, we conclude
that V{(z,) keeps a constant value for 1 < 7 for some finite 7. This constant
value is denoted A4 . There are two situations: either A"~ =0, which
means that z(z) #0 for each 1< T (in this case, the last result of part (b)
follows trivially), or 4"~ = 1. In the latter case, the zeros of z on ]— o0, T']
constitute an unbounded decreasing sequence f,, and we have N~ =
#(z,), for each n. For 1, ,<t<r,, we have #(z,)<#(z, )=A",
completing the proof of part (b).

Part (c) follows immediately from (a) and (b} after it is noted that the
assumption made now leads to the conclusion that V(z,) is non-increasing
on the entire real line. |
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We may now restate [5, Theorem 4.1] in the case of interest to us here,
that is, equations of type (2) generating a monotone semi-flow. Our
assumptions differ slightly from those in [5, Theorem 4.1] but the proof
follows the same lines; therefore we omit it. It may be of interest to point
out that the same idea as that used in [S5, Theorem 4.1 has been
considered, and indeed applied in a very special case, more than ten years
earlier in [1,2]. However, it was then impossible to reach the generality
achieved in [5] because the essential facts contained in [5, Theorems 1.5,
2.2] were not known.

THEOREM 6. Assume that fis C', £(0,0)=0, b= (f/éy)(0, 0) > 0. Select
M, <0< M, both finite such that df/0y >0 at each point of the product
[M,, M,]x[M,, M,]. Then, no homoclinic orbit through x =0 may exist
with range within the interval [M, M,].

COROLLARY 7. Assume that [ is as in Theorem 6 and verifies any one of
the following additional assumptions:

(1) (8f/0y)(x, y)>0 for each (x, y) e R?
(I1)  (f/oyNx, y)>0 for each (x, y)€ 1z;, + o[ (resp. J—o0, z5[),
where z, (resp. z,) is a steady state of Eq.(2), z, <Q (resp. z,>0);
(ITL) (effoy)(x, y)>0 for each (x, y), z, < x, y<z,, where z, <0<z,
are two steady states of Eq. (2).

Then, no homoclinic orbit of (2) through O can exist.

Proof. The only thing we have to prove is that for each possible
homoclinic orbit z of (2), there exists M, <0< M,, both finite, such that
M, <z(t)< M,, for each te R, and (df/dy)(x, y) >0 for each (x, y) in the
product [M,, M,]x [M,, M,]. This result is obvious in the case (I). We
prove it in the case (II) with a steady state z, <0. The proofs of the other
cases follow the same lines. All we must prove is that z does not take the
value z,, therefore, z(¢) > z,, for all ¢. Since z goes to 0 at + oo, assume that
lim inf z < z; implies that for some #,, z(ty) =z,.

We can choose for ¢, the first point, starting from — oo, to have this
property. So, z(#) > z, for t <t,. On the same interval, Eq. (2) leads to the
inequality

2(1) =2 f(2(2), z,),
which can be written

Z'(t) z ale)(z(1) — z}),
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where a(t)=jé (8f)oxNz, + 0(z(t)—z,), z,) d is continuous. Integrating
the latter inequality from ¢ to t,, 1t <t,, we obtain z(¢)< z,, for t<1t,, in
contradiction with the definition of t,. We may take M,=z,, M,=
max{z(t): teR}. |

Remark 8. Equation (1) is an example of situation (I1).

THEOREM 9. Suppose f is C', f(0,0)=0, and f verifies any one of the
assumptions stated in Corollary 1 (which in particular means that b > 0). Sup-
pose moreover that the characteristic equation associated with the linearzation
of Eq. (2) near O has no imaginary root and has at least two roots with a
positive real part. Finally, assume that each solution of (2) exists for all
positive time. Then, Eq. (2) has at least one sustained oscillatory solution.

Proof. In view of [1, Theorem 3.2.5] or [2], the conditions of
Theorem 9 entail that if Eq. (2) has no homoclinic orbit, then they have at
least one sustained oscillatory solution. Therefore, the conclusion follows
Corollary 7 readily. |}

In fact, more can be said about the number and the construction of such
solutions, combining the monotonicity property (see the Introduction) of
the semi-flow due to the fact that f(x, y) is increasing in y, and the discrete
Lyapunov property studied by Yulin Cao. We would like to elaborate on
that now. Let us first recall a very simple procedure (explained notably in
the proof of [1, Theorem 2.2.1]) that we employed in order to construct
oscillatory solutions.

Select two arbitrary functions @, @, 0o <0<¢,, with ¢, and ¢,
linearly independent. Then, consider the segment of data

@, =(1—-14) 9o+ Ae,, 0<igl.

It is ordered through the usual order on the space of continuous functions
on [ —1, 0]. If we denote by x; the solutions of (2) associated with ¢,, we
have

A<p=x;,<x,.
We then consider the sets A% defined by
*={1€[0,1]: +x,(¢)>0, for all large ¢ }.

From the simple fact that oscillatory solutions must cancel at least once
on each delay interval, we may conclude that A* and 4~ are open subsets
of [0,1] and are disjoint, and Qe A~, leA*. Therefore, the union
At U A~ #£[0, 1], which implies that there are solutions x; which oscillate
over their entire domain.
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Using the above procedure and the discrete Lyapunov function, we can
prove the following.

PROPOSITION 10. Under the same assumptions as those in Theorem 9,
Eq. (2) has oscillatory solutions x with the property that V(x,)=2, for each
t 20. For such solutions, we also have lim inf,_, , . #(x,)=1

More generally, for every oscillatory solution x such that #(x,)=1 for
some s, it is true that V(x,)=2 for t=zs and lim inf, _, , , #(x,})=1.

Proof. We need only choose ¢, and ¢, in the procedure explained
above in such a way that any convex combination of these two functions
has at most one zero on [ —1, 07]. A sufficient condition for this is that the
function ¢, (8)/¢,(8) be strictly monotone on [ ~1, 0].

Select a function { = ¢, which leads to an oscillatory solution. Denote by
t, the zero of {. It is not difficult to see that 71,€ ]—1, O[. The next zero of
the solution z=x, is in ]0, 1[. Denote it ¢,.

We have #(z,)<2. Assuming that #(z,)=1 leads to the conclusion
that z no longer cancels after t,. So, #(z,)=2=V({). By construction, z
is oscillatory, which implies that z has infinitely many zeros. On the other
hand, V({) < + oo, which implies that the zeros constitute an unbounded
increasing sequence f,. For each n, we have 1< #(z,) <2, which, for
the reason given before, gives #(z,)=2. Therefore, we deduce from the
definition of V that V(z,) =2, for each ¢ >0.

In order to prove the second part of Proposition 10, it is convenient to
write the equation in the form (7), changing z into y, which has the same
zeros as z. For each n> 1, there is at least one point ¢, € 1t,,¢,,,[ such
that y'(t,,) = 0. This implies y(¢, — 1) =0, from which we may conclude that
#(y)=1for1,<t<t,,,, and then liminf,_, . #(y,)=1

For the last part of Proposition 10, we need only observe that we can
repeat the above proof with y = x_ and z(t)=x(z+s). |1

Proposition 10 applies in particular to the linear equation, obtained by
linearization of (2) near x=0, that is, Eq. (3). In view of the proof of
Proposition 1 and the fact that solutions of linear equations are asymptoti-
cally equivalent to a combination of exponential solutions, we then deduce
from Proposition 10 that the lowest positive imaginary part of roots of the
characteristic equation associated with (3) lies in the interval Jn, 3n/2[.

THEOREM 11. Suppose f verifies the same conditions as those in
Theorem 9. Then, each oscillatory solution x such that # (x,)=1 for some s
has sustained oscillations.

Proof. The characteristic equation associated with Eq. (3) has one real
root, which by standard results on monotone semiflows [7] yields the
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leading eigenvalue, the eigenvalue with the largest real part. All roots have
multiplicity one. So, assuming that the characteristic equation has at least
two roots with a positive real part implies that it has a complex root with
a positive real part. In other words, /¥ (a, b) > 0. This also implies that the
oscillatory solutions of the linear equation which go to zero at + oo have
more than one zero on each unit interval. In fact, I (a, b) = 37, which
means that the distance between two consecutive zeros of a function of type
exp(az) cos(Br +7), with & <0, is not larger than i. Such a function has
at least two zeros in each interval of length 1. Now, suppose x is an
oscillatory solution of (2) and #(x,)=1 for some s and x goes to 0 as
t — + 00. From Proposition 10, we deduce that V(x,}=2 for ¢ > s, which in
particular means that x has only a finite number of zeros on each unit
interval. Theorem 2.2 of [5] then applies and guarantees that x will not go
to O faster than any exponential, therefore has a principal part at + oo
which is a combination of exponential solutions with a negative real part
exponent. This implies that for ¢ large enough # (x,) > 2, which contradicts
the property established in Proposition 10 that liminf,_ , . #(x,)=1.
This contradiction compietes the proof of Theorem 11. |

The above procedure shows that as soon as the characteristic equation
has more than one root with a positive real part, it has infinitely many
sustained oscillatory solutions. In fact, most oscillatory solutions are then
sustained. This fits the idea which motivated our research, that for
monotone delay equations, the appearance of unstable oscillations in the
linear equation probably reflects the appearance of sustained oscillations in
the non-linear equation.

Suppose now that x has sustained oscillations and is uniformly bounded
on a positive semi-axis: this, by the way, is the case for all oscillatory
solutions of our model equation. Then, the points lying in the omega-limit
set of x, give rise to sustained oscillatory solutions defined on the entire
real axis. It would be interesting to look at such solutions and determine
what kind of functions they are.

2. COMMENTS ON YULIN CAQ’S PROOF OF [5, THEOREM 2.2]

Theorem 2.2 of [5] states that a solution of (2), if it is finitely oscillatory
(ie., V< + o), decays at most exponentially at + 0. In our opinion, this
result is a breakthrough in the study of delay differential equations and will
probably have consequences other than the one we derived in Section 1.

Until now, it has been known only for time-independent linear delay
differential equations [6] and is known to be false in the case of time-
dependent delay equations [6]. A related though weaker result was proved
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in [4] for monotone delay differential systems: solutions whose components
cease to oscillate eventually cannot go to 0 at a super-exponential rate.
Surprisingly, the proof of Theorem 2.2 is based on quite an elementary
although very neat observation, which is, essentially, that if you assume a
solution has a rapid decay from ¢ to r+ 1, it indicates rapid oscillations
before ¢. It seems to us however that the proof is a little difficult to follow;
part of the construction can be put aside. We propose another proof based
on the same idea but, we hope, concentrating on the main mechanism of
this result. Before we start, we would like to mention that the converse of
this result is more or less known: at least when 0 is a hyperbolic steady
state, solutions which decay at most exponentially are asymptotically
equivalent to a combination of exponential solutions of the linear equation,
therefore are finitely oscillatory.

So let x be a solution of Eq. (2), where we only assume that fis C',
f(0,0)=0, and b= (8f/dy)(0, 0) # 0. Suppose x is defined on R™*, and for
some ¢y, #(x,)< 4+ o, and x(r) -0 as t - +c0. We may choose ¢, large
enough for Proposition 4 to be applicable on [t,, + oo[. Therefore, we
have # (x,)< #(x,)+ 1, for t=1¢,.

Set N = #(x,)+ 1. We want to prove that x does not go to zero faster
than any exponential. The proof is done by contradiction. First of all,
the equation is rewritten in the form of Eq.(7), and x is changed to y.
y has the same zeros as x and goes to 0 faster than any exponential,
too. c(1) > bexp(—a)=g4¢, as t— +o0. c(t) is defined in (7). A first
preparatory result is [5, Lemma 2.3]: For each 7>0, 0<d <1, there
exists a constant C= C(T,d), such that for each interval Ic[—T,0],
[I| =46, min, ., |y(s)| S C(T, d) maxg<, <, |¥(s)]. Let us now express the
fact that y — O faster than any exponential. This implies notably that for a
sequence 7, —» + oo, we have

1Yo il/ly, I =0, as n— +oo.

In order to simplify the notations, we denote generically any pair of the
family # by

F={(c(t+1,), yt+1,)/y,l):neN}
The notation for a generic pair is (d, z). For each pair, we have the relation
Z()=d(t)z(t—1) (1= —71),
for some 7.

We now summarize the main property of the family # due to the
assumptions placed on y that we use throughout the rest of the proof.
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For each T>0, ¢>0, we can find (d, z)e F, such that
|d(¢)—c| <e, for t= —T, and |z,|| <e, while of course
(*) llzoll = 1. Finally, #(z,)<Nfort> —T.

A contradiction is obtained by showing that #(z,) is actually larger than
N, for some r= —T. ,

For a moment, fix 7>0, 0<d< 1, and ¢>0. Suitable values of these
parameters are determined later. Choose z as above. For each interval 7, of
length 6, I€[—T, 0], we have

min{|z(s)| :sel} < Cs,

where C =max(C(T, ), 1). We take & small enough for Ce < 1.

Now choose a point §,€ [ —1, 0], where |z| is maximal: [z(0,)] = 1. On
each interval [08,— 4, 8,], [0y, min(8,+ &, 0)], the function |z| also takes
values not larger than Ce. Therefore, |z| has a local maximum at some
point 8y€ [6,— J, 8,], which implies that z'(8;) =0. In view of the equa-
tion verified by z, we obtain z(8;,—1)=0.

At the same time, we may note that on each side of 8, there are points,
say t;, 8,—6<t,<8,, and t,, 0,< 1, <8,+ 5, where

() = (1=Ce)d (i=1,2).

We may choose ¢, < 8. In fact:

Either min{|z(?)| : 05 <1< 0y} < 1. In this case, |z(6,)| is a local maxi-
mum. We can take 0, =60,, which yields the claimed fact immediately.

Or min{|z(¢)] : 03 <t<6,}>1. In this case, |z| drops from not
less than 1 to below Ce on the interval [8,—4, 8;]. So, there exists
t,e[6,— 4, 6;] for which the desired inequality holds.

Set M =max{d(s):s2 —T}. We then have |z(t,—1)| = (1 — C¢)/0M,
for i=1,2. Since T is still arbitrary, we now choose é and & so that
(1 —Ce)/6M = 1. First, choose & so that dM < 1. Next, choose ¢ small
enough for the ratio to be not less than 1.

Summarizing what we have obtained so far, we find that on
[—2-96, —1+ 6], the function z has a zero (the point 83 — 1) surrounded
by two points where |z| is “large,” namely, the points ¢, —1 and ¢, — 1.
Precisely, we have

0~ 08— 1<t,—1<0,—1<t,—1<0,+5—1,

z2(05—1)=0, |z(¢t,— 1) =1, i=1,2.

Using the same idea as that above, we can now produce a maximum for
|z] on JBy—1, t,—1+4] and one on [#, —1—4, 65— 1[, each of which
yields a zero for z on the interval [6,—2—28, 8, —2+ 25].
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The same procedure can be repeated. Suppose that at step k+1,
we have k zeros 0,,0,,..,6,, all contained in [0;,—k—2(k—1)4,
0,—k +2(k—1)4], and two points ¢, ¢,

0,—d<t, <6, 0,<t,<8,+90,

such that |z(z,)]| =1, i=1, 2.

Each interval (8,,0;,,), 1<j<k~—1, contains at least one point 6;
where z'(6;) =0, yielding z(6; — 1)=0. We also have an extremum for z on
[t,—46,6,[, say at 85, and one on ]8,,t,+ 6], say at 8;. Therefore, we
obtain z(8; —1)=0, for j=0, .., k.

Set 6,=60, ,—1, for j=1, .., k+ 1. By construction, these points lie in
the interval [6,—k—1—-20—-2(k—1)5,0, — k — 1 + 26 + 2(k —1)6]
= [0, — (kK + 1) — 2kd, 8,— (k+ 1)+ 2ké]. Finally, from |z(6)] = 1,
we deduce that there exists ;e [8,—9, 05], where |z'(¢})] = (1 — Ce)/é,
therefore, |z(7;, —1)| = 1.

Set 7, =1,—1. We have |z(7,)| =1, with 8, —8<7,<8,. Similarly, we
can construct 7,€ [§k+,,(7k +1+6]. The procedure can be continued as
long as the interval [0, —k —2(k—1)d, 8, —k + 2(k —1)d] is contained in
[ —T7, 0], which, with 8,e [ —1, 0], holds if

—k+2(k—-1)6<0 and —1—k-2(k—-1)6=2—-T.

The first inequality holds with no restriction on k if we assume that § < 3.
The second inequality, together with 6 <31, holds if k< (T —1)/2. We are
now in a position to choose 7 in order to obtain a contradiction.

We take 7'=2N+ 3. With this choice, the above procedure can be
repeated at least until k= N+ 1, and it yields k= N+ 1 zeros for z on an
interval of length 4NJ, contained in [ — 7T, + oo[. On the other hand, we
know that z has at most N zeros on each interval of length 1 contained in
[—7, +o[. So if we restrict é in such a way that 4NJ < 1, we will arrive
at a contradiction.

In order to complete the proof, let us show that we can indeed choose
7, 4, and ¢ in such a way that all the conditions stated above hold. First,
we take T=2N + 3. Next, we choose 6, so that § <min(3}, 1/M, 1/4N); then
¢ can be chosen so that ¢ < (1 —dM)/C(T, ). Finally, we choose z, that is,
a translate of y, y(r +¢,), with n large enough for condition (*) to hold.
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