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1.INTRODUCTION

Let E be a real Banach space, with norm |.|. We consider the following nonlinear ordinary
differential equation

X 4 g(x) Ax =h(o), (1.1)

where A is periodic (respectively, almost periodic), A € L(E) is a bounded linear operator and
g is a function whose properties are stated hereafter. To this equation, in which # plays the
role of a forcing term, we are interested in finding periodic (resp. almost periodic) solutions. A
special case of equation (1.1) was introduced by Bayliss in [1]

x'(e) + [x]“x(¢) = h(r) (1.2)

with a > 0. Equation (1.2) was also considered by Arino and Hanebaly [2] who extended
Bayliss’ results from Hilbert spaces to Banach spaces, however assuming o < 1. Related
results have been obtained by Kartsatos [3,4]. The present work is an extension of Arino and
Hanebaly’s results, using a completely different method. While these authors put the emphasis
on the dissipativeness of (1.1) and made extensive use of the semi-inner product as a
substitute to the inner product in a Hilbert space, our main effort here is on establishing
compactness properties of trajectories under appropriate conditions on h. A crucial observa-
tion is that the term g(x(s)) may be absorbed using a change of the time variable.

Throughout the paper, we will assume the following basic hypotheses on g and 4:
(Al) g: E->R" gx)>0,if x#0.

e g is continuous and sends bounded sets into bounded sets.

g is coercive in the sense that g(x) — +, as |x| > +.

oFor each £>0, inf, . . g(x)>0;
(A2) eh: R— E, is continuous and bounded.
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2. GLOBAL EXISTENCE OF SOLUTIONS

THEOREM 2.1. In addition to (A1), and (A2), we assume:

(A3) x — g(x)Ax is locally Lipschitz continuous in x, continuous in (7, x); and
(A4) x > —Ax is strongly dissipative

(i.e. for some ¢ > 0, (Ax, x), = c|x|, where (,,.), denote the + semi-inner product [3,5].

Then, the Cauchy problem for equation (1.1) is well posed, that is: For each (¢y, x,) ER X E,
there exists one and only one function x defined on an interval [#,, t, + al (a > 0) such that:
x verifies equation (1.1) on its domain, with x(zy) =x,. x can be continued as a solution of
(1.1) over [ty, + % in a unique way. Moreover, its extension, still denoted x, is uniformly
bounded on [z, + %[ . Finally, |x(¢)| is ultimately bounded by a quantity which depends only
on h (not on x).

Proof. Local existence and uniqueness follow readily from the fact that, by (Al) and basic
assumption on A, the function

F(t,x)= —g(x)Ax+ h(1) .1

is locally Lipschitz continuous in x, continuous in (7, x).

Denote x the maximal solution. The domain of x is an interval [z,, T*[. We have to prove
that 7* = +o, and x is uniformly bounded on [z,, + >[. As a preliminary, let us observe that
the function F, as defined by (2.1), is bounded on bounded subsets of E. In fact, we have
|F(t, )l <lhl« + sup, . p 8(x)IAlLe) R, for x| <R. We also know, by (Al), that: sup, . »
g(x) < +=. Therefore, the noncontinuation principle [6] holds, that is: if 7% < + then we
must have: lim sup, , ;- [x(¢)| = +,

To conclude the proof on existence and boundedness, we only have to prove that x is
uniformly bounded on its domain. For this, we look at

1d” 2
It is well known [5] or [6] that

2 S x) = (0, x(0)

Using standard properties of the semi-inner product, we arrive at
(x",x)-<(—g(x)Ax,x)_+{(h,x)+
(x',x)- < —g(x) (Ax, x>+ + |hls |x ()

So, in view of (A4), we may deduce the following inequality

OIS (2(0D < =g (o). e + [l x(o)]

(il—;(lx(t)l)s —g(x).clx() + |hl.. 2.2)
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From the coerciveness of g, it follows that the right-hand side of (2.2) is negative if |x(¢)| is
large enough. For each £> 0, let us introduce the number Rh’g (finite, due to coerciveness)

Ry = inf{ p>0: —g(x)clx| + Al < — ¢, for |x| = p}.

Then, we have: |x(¢) < max(R, ,,|x,], for 1 <T* We will now prove that: lim sup, , . .|x(¢)|
<Ry,

In gfact, assume on the contrary, that lim sup [x(¢)]>R,,. For each R’ such that,
R, <R’ <lim sup|x(r)|, we have |x(z)| > R’, for each t. Otherwise, if |x(¢")] <R’ for some ¢'
then, |x(z)] <R’ for each each ¢>1¢’, since, the right-hand side of (2.2) is negative for
|x| > R, ,. Therefore, lim sup, , . |x(s)]<R’, a contradiction. This yields |x(¢z|> lim
sup, _, , .|x(s)| for each 1, from which it thus follows that liminf, , , ,|x(s)| = lim sup, _, , |x(s)I,
that is: |x(#)| converges to a limit. However, then there exists ¢, such that

t=ty, |1x(DI=R,,,

therefore,
Lxh< ¢  forezu,

The latter inequality leads to an obvious contradiction. The proof is complete. B

3. PRECOMPACTNESS OF POSITIVE ORBITS

THEOREM 3.1. Assume (A1) through (A4) hold, and that the forcing term 4 has a relatively
compact range (i.e. clos{h(R)} is compact). Let (zy, x,) € R X E. Denote x the solution of (1.1),
such that: x(ty) =x,. Then, x([z,, + =[) is relatively compact.

The proof of theorem 3.1 makes use of the measure on noncompactness for which we refer to
[5] or [6].

Proof. We consider two situations:

(1) lim inf, , , ,|x(¢) > 0. In this case, there exist 7, > ¢,, and £> 0 such that |x(¢)| > &, for
t>t,

Therefore, in view of (A1) we can find n > 0 such that g(x(¢)) = 7, for t>t,. So, we may
deduce, using (A1) and an estimate of |x(¢)| given in the proof of theorem 2.1, that there exists
0<a<b< +x= with, a <g(x(t)) <b, for 1> 1.

a=a(&)=inf{lg(x)|: x| > &)
b=b(h, x,) =sup{lg(x)l: x| < max(R,,|x,])}
with R, =inf{ p: —cg(x)lx| +|hl. < 0,|x| = p}.

Introduce the new time variable

(1) = f'g(x(s))ds.

1

Denote y(1)=x(t(7)), x(1) = y(1(1)).
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In terms of y and 7, equation (1.1) reads as

Wi()
m =h(7). (3.1)

Now, if we denote K = co(h(R), by assumption of theorem 3.1, #(R) has a compact closure and
$0, using for example a property of the measure noncompactness, K is compact too. In terms
of K, we can express the range of h. In fact, we have

MR c{rk:b"'<r<a™', kek}=K,,.

y(r)+Ay(7) =

K o5 18 clearly a compact, convex subset of E.
Using the following representation of y

v(7) =exp(—AT1).y, + [ exp(—As).(r—s)ds,
0
we will now conclude that y(r) takes its values in some compact subset of E. From
assumption (A4), we deduce that exp(—A + ¢/t is a contraction for each 7 > 0.
For each subset X of E, and each interval J of R, we introduce the following notation

Ky/J={exp(—A +cDt.x: rel’, xeX}, (K if J=1{0, +=[).

We can see that if X is compact, K, is relatively compact too.

The fact that exp(—A +cI)t is a contraction is crucial in proving compactness of K. In
fact, it guarantees that exp(—A4 + ¢/)t.x converges (uniformly in x € X) to zero as t - +o.
Therefore, we can express

Ky=Ky /10, TIUK, /[T, + .

Ky/10,T] is compact as the continuous image of a compact set, and the diameter of
Ky/IT, + [ goes to zero as T — + .

Denote: H, = co(0, K, Hy= co(0,co(Kg)). H, and H, are compact.

From the variation of constants formula, we can see that

y('r)e{Hle%Hz}, r>0.

The sum of two compact sets being compact, we conclude that y(R, ) is relatively compact. So,
the same holds for the solution x for ¢ >¢,. Thus, x([z,,7,]) being compact, the conclusion of
theorem 3.1 is reached in this case.

(2) lim inf, , , |x(¢)| = 0. If, moreover, lim sup, , , |x(¢)| = 0, this means that |x(¢)] - 0, as
t — +oc. Obviously in this case, x([#,, + =) is relatively compact. So, let us assume that lim
sup, ., ,Llx(l=d>0.

For each 0 <p <d, we will evaluate the measure of noncompactness of the part of x
outside of the ball B(0, p). Select a number ¢, > ¢, such that |x(¢,)| < p. For each ¢t > ¢,, such
that |x(¢)| > p, denote ¢, the largest time in [z, t] for which [x(¢)| = p. So, we have: |x(s)| > p,
t<s <t. Using the same argument as in the first case, we arrive at the conclusion that

x(s)E{H{’+ lsz"},
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where Hf = K5, ,, € B(0, p), (because exp(—A +(1/y))t is a contraction for each ¢ > 0);
and

Hf = co(0,c0(K g4 ). 5))-

This implies that
a{x(s):[x(s)|> p} < a(H{’ + %H{).

We already noticed that H{ is compact, so, a(H{) = 0. On the other hand, from Hf C B, p),
we deduce that a(Hf)< C, p (where the constant C, depends the particular measure of
noncompactness we are dealing with).

So

a{x(e):[x()l > p} < C, p.
Now, we have
afx(0):[x() < pt <C,p.
Therefore, using another property of the measure of noncompactness, we obtain
a{x(t):t = t,} <max(C,,C,)p.
This being true for each p > 0, we may conclude that

alx():t=21,)=0. m

COROLLARY 3.1. Suppose the norm on E is strictly convex, and (A1) through (A4) hold. Then,
for each h, continuous and almost periodic, equation (1.1) has at least one almost periodic
solution.

Proof. We know by theorem 3.1 that for each (14, x,) € R X E, the equation (1.1) has at
least one solution x defined on interval [z, + = such that x([¢;,, +[) is relatively
compact.

Then the conditions of the theorem 1.2, Chapter VII in [7] are satisfied. We may conclude
that equation (1.1) has at least one almost periodic solution.

CoroLLARY 3.2. Let us consider equation (1.2). In the case the norm on E is strictly convex,
a>0 and h is continuous, almost periodic, then, equation (1.2) has at least one almost
periodic solution.

This result is an immediate consequence of corollary 3.1. It should be noted that this
statement complements the one given in [2] where the method used seems to be restricted to
a <l

4. CONSTRUCTION OF SOLUTIONS DEFINED ON R, WITH A RELATIVELY
COMPACT RANGE

In the case of an arbitrary Banach space, we do not know whether the conclusions of
corollary 3.1 hold. In this section, we will show that at least a very partial property can be
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verified: namely, that there are solutions defined on R whose range is relatively compact. As a
remark we may note that if, in addition to A(R) relatively compact, we assume that for some
sequence (1,), cg, t, = +%2, h(t +t,) - h(z), locally uniformly with respect to ¢, then equation
(1.1) has at least one solution y defined on R, such that y has a relatively compact range.

In fact, we know by theorem 3.1 that if for each (¢,,x,) € R X E, we denote by x the
solution of (1.1) with x(¢,) =x,, then x({z,, + 2[) is relatively compact.

Select one such solution, consider the sequence x(z +1,). For each R > 0, if we restrict ¢ to
vary in [ —R, R], it is easily seen that the sequence of functions x(.+¢,) satisfies the conditions
of the Ascoli-Arzela theorem [S], therefore, it has a convergent subsequence. Using the
diagonal procedure, it is possible to find a subsequence which converges on each interval
[-R,R]. Denote y the limit. Clearly, y is a solution of (1.1) defined on R, and clos(y(R) C
clos(x([#,, + o)), therefore, y has a relatively compact range. The condition we used on 4 is
obviously verified by almost periodic functions. However, it is a far more general assumption.
However, we will now see that the same arguments as in the proof of theorem 3.1 yield the
above result without any further assumption on h apart from h(R) being relatively compact.

THEOREM 4.1. Under the same assumptions as in theorem 3.1, equation (1.1) has at least one
solution x, defined on R and such that the range of x is relatively compact.

Proof. We introduce the following sequence of functions x, : for each n, x, is defined on
[—n, + [, and is a solution of (1.1) on this interval, with x(—n) =0. For each p> 0, we
know (see proof of theorem 3.1) that there exists a compact set K, (depending only on #)
such that

x()eBO,p)+K,, 12-n

and, we have: a(B(0, p) + K,) = Cp.
So, for each t €R, and p > 0,

al{x,(t):n>-1}) <Cp, thus,
a({x,(t):n>—1})=0.

Since the x,s are uniformly bounded too, we deduce from the Ascoli-Arzela theorem that the
restriction of x, to any bounded interval is relatively compact.

So, using the diagonal procedure, we can construct a subsequence which converges uni-
formly on each bounded subset of the real line towards a function x. Obviously, x is a solution
of (1.1) on R. Moreover, for each p >0, we have x(¢) € B(0, p) + K, for each p >0, which
leads to

afx():reR}=0.

The proof of theorem 4.1 is complete. W
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