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Abstract – This note introduces a model of growth and dispersion of marine phy-
toplankton, focusing on the effects of currents (3D) and vertical mixing. Our method
consists in describing these effects as the product of the horizontal current, which is
solved along characteristic lines, and the coupled action of vertical current and vertical
diffusion, restricted on each characteristic line of the horizontal current. One thus
obtains explicit formulae, which it will be possible to use in the study of the phytoplank-
ton distribution. © 2000 Académie des sciences/Éditions scientifiques et médicales
Elsevier SAS
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Résumé – Modélisation du rôle des courants et de la turbulence sur la croissance
et la dispersion du phytoplancton marin. La note présente un modèle de crois-
sance et dispersion du phytoplancton marin, en insistant sur les effets du courant (3D)
et de la turbulence verticale. Notre approche consiste à décomposer ces effets en le
produit d’un transport horizontal, intégré suivant les caractéristiques du champ horizon-
tal, et d’un couple transport–diffusion vertical, considéré sur chaque caractéristique du
champ horizontal. On obtient ainsi des formules explicites qui pourront être ensuite
utilisées dans l’étude de la distribution du phytoplancton. © 2000 Académie des
sciences/Éditions scientifiques et médicales Elsevier SAS

croissance et dispersion du phytoplancton / dynamique du phytoplancton /
courants marins / diffusion verticale / méthode des lignes / semi-groupes

Version abrégée

Dans cette note, sont rapportés des travaux en cours
dans le cadre de la modélisation de l’étude de la survie
de l’anchois du golfe de Gascogne, dans le stade
larvaire. Dans les premiers jours d’activité alimentaire,
la larve se nourrit essentiellement de phytoplancton. La
note décrit un modèle de croissance et dispersion du
phytoplancton à partir d’hypothèses sur le champ de
courant et sur le coefficient de mélange, justifiées par

un modèle numérique de circulation de P. Lazure et
A.-M. Jegou. D’après des simulations faites à partir de
ce modèle, il apparaît que : a) la colonne d’eau
comprend une couche supérieure, dite couche de
mélange, où la diffusion est surtout verticale ; b) le
coefficient de mélange vertical décroît avec la profon-
deur et s’annule pratiquement au sommet de la ther-
mocline, c) ainsi d’ailleurs que la composante verticale
de la vitesse. Ces remarques engagent à diviser l’action
de l’océan sur le phytoplancton en deux parties : une
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partie horizontale, qui est essentiellement un transport
et une partie verticale qui est la somme d’un transportet
d’une diffusion. La note présente la résolution du
modèle de dispersion du phytoplancton en s’appuyant
sur la distinction entre mouvement horizontal et mou-
vement vertical. Deux cas sont envisagés :

Dans le premier cas, on considère que les compo-
santes horizontales du courant sont constantes en z sur
toute la couche mélangée. La méthode consiste alors à
intégrer l’équation d’abord le long des courbes carac-
téristiques associées au champ de courant horizontal,
puis à intégrer l’équation parabolique scalaire obtenue
sur chacune des courbes caractéristiques. Les détails
mathématiques se trouvent chez Arino et al. (soumis
pour publication).

L’hypothèse faite dans le premier cas est très forte:
elle ignore notamment les effets de cisaillement dus au
vent, elle n’est pas en accord avec les simulations de
Lazure et al. (1999). Dans le deuxième cas, on envisage

la dépendance verticale du vecteur vitesse et de tous
les paramètres du modèle. Dans ce cas, l’étude est faite
en décomposant la couche mélangée en fines sous-
couches et en considérant que dans chaque sous-
couche le champ de courant horizontal est constant en
z. On suppose en même temps que la composante
verticale du courant est affine en z dans chacune des
sous-couches. Il s’agit ici d’une approximation du
modèle complet. Les deux résultats démontrés chez
Arino et al. (en préparation) sont, d’une part, que le
problème approché admet une solution pour chaque
valeur de la donnée initiale et, d’autre partque la
solution du problème approché converge, dans un
sens faible, vers une solution du problème complet.
Dans la discussion finale, nous déterminons le compor-
tement asymptotique dans le premier cas et sous des
hypothèses additionnelles. À noter qu’il ne s’agit ici
que d’un exemple, l’étude complète dans l’un ou
l’autre cas sera faite ailleurs.

1. Introduction

The purpose of this note is to present preliminary results
regarding the modelling of phytoplankton in the sea. Mod-
els of phytoplankton are many and respond to a variety of
motivations ([1–4] among others). It should be remem-
bered that this denomination comprises a great number of
living organisms, who use the energy provided by sunlight
to transform mineral elements present in the sea into
growth and reproduction. It is also known as primary
production, and is an element of the food chain, between
minerals and zoo-plankton. One of the reasons that mod-
elling of phytoplankton attracts mathematicians (besides
other specialists) is the apparent complexity of its behav-
iour, which in particular comprises chaos. Our interest in
the study of phytoplankton arises for a different reason: it is
in fact closely linked to the study of the abundance of the
anchovy, Fagraulis encrasicolus, of the Bay of Biscay.
Annual fluctuations of the captures of the anchovy, from
10 000 to 30 000 tons, are not well understood yet; how-
ever, an increasingly popular view is that much of it is due
to the larval stage of the anchovy and particularly the early
part of this stage when the main food for the larvae is the
phytoplankton [5]. A model coupling the dynamics of the
larval anchovy to that of the phytoplankton has been
proposed by Arino and Prouzet [6]. For the phytoplank-
ton, which is the subject of this note, the model stresses the
following three main factors.

a) The transport entailed by the currents. The currents
are computed using Navier-Stokes equations and are
introduced in the equations of the phytoplankton as time-
dependent coefficients.

b) The vertical diffusion induced by vertical mixing in
the upper part of the water column, the part above the
thermocline.

c) The production of new phytoplankton as a result of
photosynthesis which is itself dependent on the quantity of
light that a cell receives. Density dependence comes into
effect during periods of high activity, in the form of super-
ficial layers of phytoplankton preventing the lower layers
from receiving as much light as could possibly reach these
layers. This is known in the literature as the shading
effect [7].

The main emphasis here is put on the currents and the
diffusion. Based on data provided to us by Lazure and
Jegou [8], of which a typical example is shown in figure 1,
the domain of study has notably been restricted to the
upper layer, the so-called mixed layer, with no boundary
conditions at the lower part of the layer. As regards the
results we are looking for here, we have in mind analytical
results. As far as possible, we look for explicit formulae or
formulae which can be expressed in terms of simpler ones.
The note focuses mainly on the coupling of the horizontal
transport and the vertical diffusion. Two situations are
envisaged: section 2 considers the special case where the
horizontal velocity is the same throughout the whole
mixed layer. Section 3 deals with the general case where
the horizontal velocity changes with depth. This case is
treated by means of a sequence of approximations: the
mixed layer is subdivided into a finite number of thin
layers within each of which horizontal velocity can be
considered constant with respect to depth. The note will
only describe the general picture of the work, mathemati-
cal details can be found in Arino et al. (submitted) and
Arino et al. (in preparation).
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2. The model and its treatment in a
special case

The region of interest is a small cyclindrical domain of
the Atlantic ocean, Ω = D ×]0, z*[, where D is an open
subset of the surface, and z* is the distance from the
surface to the top of the thermocline. We assume that the
region under investigation is small enough for the surface
D to be assimilated to a portion of a plane. As a system of
co-ordinates for the plane we choose a line going from
east to west, as the x-axis and a line going from south to
north, as the y-axis. The vertical depth from the surface to
bottom is given by the z co-ordinate. The model aims at
describing the variation in size and location of a patch of
phytoplankton which, at the initial time of observation,
lives inside an open subset of Ω. Assuming that horizontal
movement is mainly a transport, it will take some time for
the phytoplankton to reach the horizontal boundary of Ω.
The observation is supposed not to go beyond this time, so
that no contribution (source or sink) is accounted for as
coming from the horizontal boundary. The time span of
the study is an interval [0, T]. The state variable is the
biomass density of phytoplankton at time t and position P
(where P = (x, y, z)), the function �(t, P). As just mentioned,
�(t, P) is not the density of the whole phytoplankton, it is
the density of the phytoplankton arising from the initial
patch.

The proposed model is as follows:

�
��
�t + div �V� t, P �� � = �

�z � h� z � ��
�z � − µ� z �� + rJ� t, P, � ��

�� 0, P � = �0� P �

h� 0 � ��
�z� t, x, y, 0 � − V3� t, x, y, 0 ��� t, x, y, 0 � = 0

(1)

The notation (1)r instead of (1) will be used to stress the
influence of r.

V(t, P): = (V1,V2,V3) is the current velocity. We will also
use the notations Vh = (Vl, V2), Vv = V3. Assuming local
incompressibility of the sea water [8, 9] yields div V = 0.
Throughout this section, it is assumed that Vh does not
depend on z. Note that the above assumption together
with the incompressibility assumption implies that Vv = a
(t, x, y) z + b (t, x, y).

The remaining parameters and functions have the fol-
lowing definitions.

The function h (z) gives the vertical diffusion rate. From
the computations made after the model of circulation by
Lazure and Jegou [8], one sees that h is of the order of
10–2 m2/s above the thermocline and loses two to four
orders of magnitude near the thermocline, where we
consider it equal to 0.

It is generally admitted that the phytoplankton has a
specific mass slightly higher than that of water. The total
effect of gravity and the geometry shape of the phytoplank-
ton is a sinking effect which, for simplification, we model
here as a mortality rate, added to the biological mortality
rate. These effects are incorporated in the function µ(z).

The production of new phytoplankton is modelled by
the quantity rJ (t, P, �) �, in which r is the concentration of
nutrient transformed by the phytoplankton; r is assumed to
be constant [7, 10, 11]. r plays the role of a control
parameter of the model: dependent upon whether r is large
or small, the system will maintain itself or will be driven to
extinction. The role of r on the long-term dynamics of the
system will not, however, be focused on here.

J� t, P, � � = J0� t �exp

�− k0 z − k1 �
0

z

��
D� x, y, � z − τ �tan� α � �

� � t, η, �, τ �dηd�dτ� (2)

J0(t) is the irradiance intensity hitting the sea surface at time
t, k0 is the diffuse attenuation coefficient in the water due
to water alone, k1 is the diffuse attenuation coefficient due
to the phytoplankton alone.

The model chosen for the limiting effect of the higher
layers of phytoplankton on the light available to lower
layers expresses the idea that the competition for light
incurred by a given particle comes from the particles
which are on a light ray passing through the particle.

The set of all particles in competition with a given one is
a cone with vertex at the particle, the axis is the vertical
and the angle is the maximum angle 0 < α < π for which
the irradiance is effective.

D (x, y, δ) is the disk of centre (x, y) and radius δ > 0.

Figure 1. Distribution of the mean (a) vertical velocity (resp. (b)
mixing coefficient) over vertical on 1-week period, averaged over
surface grid points (from the model of circulation by Lazure and
Jegou [8]).
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No boundary condition is necessary at the lower level
z = z*, since at this level we have (see figure 1) h(z*) . 0
and Vv, (t, x, y, z*) . 0.

For the analytical treatment of problem (1)r, it is conve-
nient to consider at first the linear problem associated with
it, that is to say, we first assume that r = 0, and thus we deal
with (1)0. Under the assumption on V, the equation can be
viewed as the superposition of a transport equation in the
horizontal variables and a diffusion equation in the verti-
cal variable. Integration of the transport equation along the
characteristic lines (abbreviated as c.l), reduces the
problem, on each given line, to an equation in two vari-
ables: the vertical co-ordinate z and the time s spent on the
c.l. Each c.l is determined by the initial point (x0, y0), so
that the problem is finally reduced to a two-parameter
family of 1D evolution equations. The c.l starting from the
point (x0, y0) is obtained as a solution of the following

system of ordinary differential equations
dt
ds �s� = 1,

�dx
ds �s�,

dy
ds �s�� = vh� t�s�, x�s�, y�s��, with

� t� 0 �, x�0�, y�0� � = �0, x0, y0�. In fact t, x, y should be
written as t = t�s, x0, y0 �, x = x�s, x0, y0�, y = y�s, x0, y0�.

We denote �fl � s, z �, or �fl � s, z, x0, y0 �, the restriction of
the solution along the c.l emanating from the point (0, x0,
y0), �fl � s, z � = �� tfl� s �, xfl� s �, yfl� s �, z �. In terms of �fl ,
equation (1) reads

�
��fl
�s = �

�z
�h�z �

��fl
�z
� − V√v�s, z �

��fl
�z − µ�z ��fl

�fl �0, z � = �0�x0, y0, z �

0 = h� 0�
��fl
�z �s, 0� − V√v�s, 0��fl �s, 0�

(3)

For equation (1)0, the final result is as follows: denoting
S0(t) the solution operator associated to equation (3), �(t, x,
y, z) = S0(t)(�0(Φ(– t, x, y),.)) (z). Once the linear problem
has been solved, the full nonlinear problem (1), can be
handled using a perturbation method. The reader is
referred to Arino et al. (submitted for publication) for
details on the mathematical treatment.

3. The more general case –
approximation, piecewise constant in z,
of the horizontal velocity

We divide the upper layer [0, z*] into n + 1 sublayers
[zi – 1, zi], z0 = 0 and zn + 1 = z*, assuming that zi – zi – 1 is
small enough for V1 and V2 to be considered constant in z
in each sublayer. More precisely, we approximate V1 and
V2 by their mean value on the interval [zi – 1, zi],

Vk
i
� t, x, y � = 1

zi − zi − 1
�zi − 1

zi Vk� t, P � dz k = 1,2 and V3

by V3
i
� t, x, y, z � =

V3� t, x, y, zi � − V3� t, x, y, zi − 1 �

zi − zi − 1
� z− zi − 1 � + V3� t, x, y, zi � so that the approximation

still satisfies the incompressibility condition. The func-
tions h and µ are approximated as follows

αi = 1
zi − zi − 1

�zi − 1

zi h�z�dz, µi = 1
zi − zi − 1

�zi − 1

zi µ�z�dz. On

each sublayer, the equation breaks down into a problem
whose solution �i would ideally be the restriction to [zi–1,
zi], of the solution of the full equation:

��i
�t + div �Vi � i

� = αi
�

2 � i

�z2 − µi � i + rJ� t, P, �̃ �� i (4)

where �̃ is such that �̃� �zi − 1, zi �
= � i. The equation will be

denoted (4)r . to account for the perturbation by the phy-
toplankton growth term. The equation is supplemented by
the initial value � i

� 0, P � = �0� �zi − 1, zi �
� P � = �0

i
� P �, the

boundary condition at z = 0, α1 ��1 � �z � t, x, y, 0 � −
Vv

1 �1
� t, x, y, 0 � = 0 and conditions imposed at the inter-

face of any two sublayers to ensure continuity of the
function �̃, � i

� t, x, y, zi � = � i + 1
� t, x, y, zi � and

αi �� i � �z � t, x, y, zi � = αi + 1 �� i + 1 � �z � t, x, y, zi � or
1 ≤ i ≤ n. In contrast to the original problem in which the
mixing coefficient vanishes on the top of the thermocline,
the diffusion coefficient on the lower sublayer is 7 0
although it tends to 0 as n approaches + ∞. Therefore, it is
necessary to introduce some kind of a boundary condition
at z = z*. We assume a zero flux

αn + 1
��n + 1

�z � t, x, y, z* � = 0. For the resolution of the
equation, we proceed as in section 2. First, we consider
the linear equation for r = 0. We integrate the equation
along the c.ls associated with the horizontal velocity. On
each sublayer, the velocity field determines a different
flow, Φ i such that Φ i

� s, x0, y0 � = � xfli
� s �, yfli

� s � �, where
� xfli

� s �, yfli
� s � � is the solution of the equation defined by

the horizontal velocity starting from (x0, y0). We denote
�fl i

� s, z �, or �fl i
� s, z, x0, y0 � the restriction of the solution

along the c.l emanating from the point
� 0, x0, y0 �, �fl i

� s, z, x0, y0 � = � i
� tfl� s �, xfl� s �, yfl� s �, z �. In

terms of �fl , equation (4)0 reads

��fl i

�s = αi

�
2�fl i

�z2 − Vv
i
√

��fl i

�z − µi�fl i (5)

with initial and boundary conditions computed in terms of
those verified by the �i, that is: �fl i

� 0, z � = �0
i
� x0, y0, z �,

α1 ��fl 1 � �z � t, x, y, 0 � − Vv√
1
� 0 ��fl 1

� t, x, y, 0 � = 0 and

��fl i
� s, zi, Φ i

� − s, Φ i + 1
� s, x0, y0 � � � = �fl i + 1

� s, zi, x0, y0 � 1 ≤ i ≤ n

αi

��fl i

�z � s, zi, Φ i
� − s, Φ i + 1

� s, x0, y0 � � � = αi + 1

��fl i + 1

�z � s, zi, x0, y0 �
(6)

The conditions (6) link the values of �i corresponding to
different values of the horizontal variables, leading to
quite a complicated system. On the other hand, it is not
difficult to see that, providing that the velocity functions
are smooth enough, Φ i

� − s, Φ i + 1
� s, x0, y0 � � → � x0, y0 �
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as the maximum thickness of the sublayers tends to 0. It is
thus natural to consider the following simplified interface
conditions

�fl i
� s, zi, x0, y0 � = �fl i + 1

� s, zi, x0, y0 � 1 ≤ i ≤ n

αi

��fl i

�z � s, zi, x0, y0 � = αi + 1

��fl i + 1

�z � s, zi, x0, y0 �

which leads to the following system of equations

�
�ui

�s � s, z � = αi
�

2 ui

�z2 − V3√
i �ui

�z − µi ui, 1 ≤ i ≤ n + 1

ui
� 0, z, x0, y0 � = �0

i
� x0, y0, z �

�u1

�z � s, 0 � = 0

αi
�ui

�s � s, zi, x0, y0 � = αi + 1
�ui + 1

�z � t, zi, x0, y0 �

ui
� s, zi, x0, y0 � = ui + 1

� s, zi, x0, y0 �, 1 ≤ i ≤ n

�un + 1

�z � s, z*, x0, y0 � = 0

(7)

The resolution of system (7) is undertaken in detail in Arino
et al. (in preparation). It is also shown there that the
solutions of the sequence of approximations converge, in
some sense, to a function which is a solution of the original
problem, that is to say, (1)0 in the general case where the
velocity vector V(t, P) is allowed to vary with depth. After
this first step, (1)r is handled the same way as in the
particular case (section 2), using a perturbation technique.

4. Discussion

This note presents current work in progress on the
mathematical modelling of marine phytoplankton dynam-
ics. It focuses on a possible way for dealing with a some-
what mathematically complicated equation, which is of
first order in the horizontal variables and second order in
the vertical variable. At this point, no qualitative features
on the phytoplankton dynamics have been drawn. We can
only anticipate the sort of results that can be obtained.
Looking first at (1)0 in the case when Vh is independent of
z, the trajectories of all the cells of phytoplankton, which
at time t0 are on the same vertical, cross a same vertical at
any time, that is, the vertical projection of these trajecto-
ries on the sea surface is a single curve, an orbit of the
horizontal current field Vh. If in particular Vh has a stable

equilibrium, then all the cells which at some time enter a
right cylinder with axis passing through the equilibrium
and of radius small enough will tend to accumulate
towards the axis of the cylinder, where they are dissipated
asymptotically. The situation becomes more complicated
when taking the production of phytoplankton into
account. Using r as a control parameter, the same result as
for r = 0 survives for small values of r. The situation
changes after a certain value of r beyond which a non-zero
stable steady-state emerges. The study of the stability of
this steady-state could possibly reveal further changes
while r or some other parameter is increased. A thorough
investigation of the dynamical features of equation (1)r
under the assumption that Vh is independent of z remains
to be carried out. The more general case dealt with in
section 3 is of course far more complicated. A preliminary
step would consist in looking at the behaviour of the
solutions of the approximate equations (7). Let us briefly
put our approach in perspective with the related literature.
The subject is probably one of the most flourishing and its
bibliography would span a whole book. Models range
from those taking into account physical processes at full
strength (diffusion and advection in the three directions) to
those concentrating on the birth and death processes, the
effects of nonlinearities and delays (see for example [12]).
Typically, qualitative studies, description of phytoplankton
profiles in the water column or on the sea, are undertaken
in models restricted to one spatial component, most of the
time the vertical one. Taylor et al. [13] falls into that
category. A great wealth of works which combine physical
and biological processes are simulations where each of
these processes is switched on and off in turn. Good
representatives of this line of work are articles by Franks et
al. [2–4]. Although extremely appealing, conclusions
drawn from such simulations should be taken with
extreme caution since this approach corresponds in fact to
a crude approximation of the true equation. Crude models
have also been proposed in order to estimate some char-
acteristic features of the phytoplankton; for example, the
critical size of phytoplankton patches: see Okubo [1] and
references therein on this. Compared to all those works,
our approach is intended to allow the treatment of phy-
toplankton dynamics in a more general framework than
usual, accounting for both the vertical and horizontal
spatial dependencies. The present note is a preliminary
step to be followed by the study of the dynamics of (1)r in
the case when Vh is independent of z first, and then, in the
general case.
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