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1. Introduction

In this paper, we introduce a mathematical model for the coupled dynamics of the
phytoplankton and its nutrient in the sea. We then provide a rigorous derivation of
the existence of solutions, combining the solving of a �rst-order transport equation,
arising from the horizontal currents, with a second-order di�usion–advection in the
vertical coordinate. This method, subjected to some simplifying assumptions on the
currents, allows the handling of a three-dimensional equation by solving in sequence
a two-dimensional and a one-dimensional one: as a consequence, the solution operator
which, to a known initial state at a given time, associates the value of the state for
time further on, can be decomposed into the product of two simpler ones, which has
the potential of leading to more explicit and tractable formulae than one would think
of, and thus, facilitate further qualitative study of the solutions.
The phytoplankton occupies a central position in the food chain: it transforms the

mineral nutrients into primitive biotic material, using external energy provided by the
sun to perform this transformation; this material is in turn stored by the members of
a higher trophic level, made up of the zooplankton and the larvae of �sh. The phy-
toplankton has for long generated a lot of interest from various perspectives. With no
attempt to be exhaustive, let us mention the following works: on the mathematical side,
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a typical work is the one by S. Ruan [11] who investigates qualitative features — sta-
bility, bifurcations — of delay di�erential equations, with possibly in�nite delay and/or
partial di�erential equations. In principle, the delay is related to nutrient recycling and
delayed growth response [3–5,11] (see also [13] for a comprehensive presentation of
reaction di�usion equations with delay). Restrictions in such models (constant coef-
�cients, no transport) make them far from being adapted to the oceans. There is a
category of models which deal only with some physical or chemical aspects of the
phytoplankton growth, see for example [14] and references therein: these are generally
systems of ordinary di�erential equations from which it is possible to estimate some
parameters. Most spatial models are treated by simulations: this in principle allows the
consideration of very complicated models. Examples of such studies can be found in
articles of Franks and his co-workers [7–9].
The model we present here is tractable, to a certain degree, while it features both

biological and physical aspects of the phytoplankton dynamics, roughly, intermediate
between simulation models of Franks, on the one hand, and models of the type con-
sidered by Zonneveld [15,16], on the other hand. The model describes the dynamics
of the phytoplankton-nutrient system. The zooplankton is not explicitly included: it is
hidden in the term of phytoplankton mortality. The model describes the variations of
concentrations of both species (phytoplankton and nutrients) as a result of transport and
vertical di�usion (“the physical processes”), on one side, and the production and growth
of new phytoplankton and its recycling as new nutrient (“the biological processes”),
on the other side. The parameters involved in the description of the physical pro-
cesses are the current velocity and the vertical mixing coe�cient, both supposed to be
known functions of time and space, provided by the resolution of a circulation model.
Further assumptions will be made in the sequel on the parameters, with essentially the
objective of uncoupling as much as possible the horizontal and vertical components.
Assuming this is done, we proceed in two steps: First, we reduce the equation along
the characteristic lines of the horizontal �eld: on each such line the equation comes
down to a scalar reaction–di�usion–advection equation with variable coe�cients. Then,
the second step consists in solving equations on the characteristic lines. This is done
using a perturbation theorem [10]. The main message of the present paper is to show
that such a strategy for tackling a 3D-problem can, under some reasonably restrictive
assumptions, be undertaken. In a subsequent work [1], this idea was pursued in the
general setting, using an approximation procedure. The rationale for developing such
an approach close to analytical approaches as opposed to a brute numerical simulation
of the 3D-problem is that, by decomposing the problem into the successive solving of
two simpler ones, it gives a chance to have a better insight in it and to possibly �nd
useful analytical relationships between the coe�cients.
The paper is organized as follows. Section 2 is devoted to a detailed presentation

of the model and the main assumptions. Section 3 states the main results: we �rst
address the linear problem, assuming that cells do not grow, we notably discuss the
main hypotheses ensuring solvability; then, the nonlinear problem is dealt with. The
main body of the paper develops the viewpoint of the oceanographic and biological
implications of the model. The most involved mathematical arguments are deferred to
the appendix.
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2. The model

The model that we are going to present describes the coupled dynamics of phyto-
plankton and nutrients in a sea. The model was initially conceived as part of a model
of a �shery of the Bay of Biscay, part of the western continental shelf of the Atlantic
ocean. Since the paper is purely theoretical, no speci�c feature of the Bay of Biscay is
incorporated in it, so the model is not restricted in this way and it applies to a variety of
situations. One of the features of the Bay of Biscay project was that the physical inputs
of the model were treated as data, incorporated in the model as time-dependent coef-
�cients or whatever. This di�ers from the work done by Franks and coworkers [7–9]
for example, where the numeric treatment undertakes both the dynamics of the sea
water movement, modeled by any one of the classical partial di�erential equations,
and the coupled dynamics of the nutrients and the phytoplankton. While the approach
followed here is, with regards numerical computations more time and memory consum-
ing than that undertaken in Franks et al. and similar works, and does not lend itself
as easily as the other approach to simulations of sudden environmental changes, it is,
on the other hand, based on a minimal set of hypotheses and does not, in particular,
assume anything about the comparative scales of the physical and biological processes.
Suppose the phytoplankton and nutrient population live in a habitat


 = {(x; y; z); (x; y) ∈ D;−�(x; y)¡z¡ 0};
where D is an open subset of the surface, nonempty and bounded with a suitably
smooth boundary and � : �D → (0;+∞) is accordingly smooth; �(x; y) represents the
distance between the bottom (corresponding to the coordinates (x; y) ∈ �D) and the sea
surface. As a system of coordinates for the horizontal plane we choose a line going
from east to west as the x-axis, and a line going from south to north as the y-axis.
The vertical coordinate is oriented upwards and is equal to zero at the sea surface. The
phytoplankton and nutrient are characterized by their respective spatial density, that is
to say, at each time t, ’(t; P) and N (t; P) can be thought of as the phytoplankton and
nutrient biomass per unit of volume evaluated at the point P at that time. The full
model is as follows:

@’
@t
+ div[�1V (t; P)’]

=
@
@z

(
h(z)

@’
@z

)
− �(z)’+ cJ (t; z)’(t; P)f(N (t; P));

@N
@t
+ div[�2V (t; P)N ] =

@
@z

(
h(z)

@N
@z

)
− J (t; z)’(t; P)f(N (t; P));

’(0; P) = ’0(P); N (0; P) = N0(P);

h(0)
@’
@z
(t; x; y; 0)− �1V3(t; x; y; 0)’(t; x; y; 0) = 0;

h(0)
@N
@z
(t; x; y; 0)− �2V3(t; x; y; 0)N (t; x; y; 0) = 0;
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’(t; x; y;−�(x; y)) = 0;
N (t; x; y;−�(x; y)) = N bt(x; y): (1)

Here V=V (t; x; y; z)=V (t; P) stands for the full current vector at time t and position
P = (x; y; z). As usual, the model is made up of equations decribing the dynamical
processes, both physical and biological, taking place in the interior of the time ×
space domain and the exchanges at the boundary of the domain: initial values at t=0,
and boundary values at z =−�(x; y) and 0.
We now discuss in some detail the parameters and functions of the model.

2.1. The velocity V (t; P)

The velocity vector V (t; P) of the current is supposed to come from the exact reso-
lution of Navier–Stokes equations [2].
Two other facts or assumptions about V are: (1) We assume that the sea water is

incompressible, which yields:

@V1
@x

+
@V2
@y

+
@V3
@z

= 0:

(2) We also assume that the velocity of the horizontal propagation is bounded and V1
and V2 do not depend on z, that is

@V1
@z
(t; x; y; z) =

@V2
@z
(t; x; y; z) = 0:

As a consequence, V3 is a�ne in the interval [�(x; y); 0]

V3(t; x; y; z) = A(t; x; y)z + B(t; x; y):

Further restrictions will be introduced later on. The parameter �1 (resp. �2) multiplying
V in Eq. (1) is a number between 0 and 1 which indicates how fast the current
“entrains” the phytoplankton (resp. nutrient). It is a simpli�ed model of the e�ect of
viscosity. We assume it to be constant although it would be natural to assume �1
depends on the phytoplankton density.

2.2. Horizontal boundary conditions

Eq. (1) does not show any horizontal boundary conditions. Choosing the right bound-
ary in the x and y direction is a di�cult issue that we mainly avoid here by assuming
that the initial value has a compact support in the interior of the domain and we
consider the solutions as long as their support does not cross the lateral boundaries.
Another possibility would be to assume that the domain D is such that the trajec-
tories of the horizontal velocity never cross the boundary of D. This means that D
is made up of parts where the horizontal velocity is tangent to the boundary and=or
parts unbounded in the direction of the trajectories of this vector �eld. An important
consequence of this assumption is that the 
ow associated to the horizontal velocity
is, at each moment, a di�eomorphism of the interior of D onto itself.
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2.3. Vertical boundary conditions

The boundary conditions at the sea surface z = 0 express the fact that there is no

ux of nutrient or phytoplankton across the surface. At the sea bed z =−�(x; y) it is
assumed that there is no phytoplankton and the density of nutrient is constant in time.

2.4. The mixing coe�cient h(z)

The function h(z) gives the vertical di�usion rate. For simplicity, we assume that h
depends on z only, while in fact it is a function of the three space variables and time.
Moreover, the boundary condition at the sea bed makes h(z) cancel there.

2.5. Initial conditions ’0; N0

Initial conditions are functions de�ned on 
, with horizontal projection of the sup-
port inside a compact subset of the interior of D. Two further natural properties of
such functions are that they are nonnegative and live in L1(
). We occasionally
denote L1+(
) this set; more generally, we will use such classes of functions as L

2, L2+
or L∞, L∞+ .

2.6. Production of new phytoplankton

The production of new phytoplankton is modelled by the expression

cJ (t; z)’(t; P)f(N (t; P))

with

J (t; z) = J0(t) exp [− k0z]; (2)

J0(t) is the irradiance intensity hitting the sea surface at time t. k0 is the di�use
attenuation coe�cient in the water due to water alone. J (t; z) is a simpli�ed model of
photosynthesis i.e. is the chemical energy that is produced from radiative energy per
existing biomass and unit time. This energy is partly used to build new biomass. Apart
from the radiation intensity, the water temperature determines the rate of photosynthesis.
However, the temperature variable is not taken into account in our model.
c is a conversion coe�cient; it is the quotient between the absorbed nutrient mass

per existing biomass and unit time.
The function f(N ) describes the nutrient uptake rate by phytoplankton. We assume

the following general hypotheses on f:
(1) f(N ) is non-negative, increasing and f(0) = 0.
(2) There is a saturation e�ect when the nutrient is very abundant, that is, f(N ) is a

continuously di�erentiable function de�ned on [0;∞) and

f(0) = 0;
df
dN

¿ 0; lim
N→∞

f(N ) = 1:
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These hypotheses are satis�ed by the Michaelis–Menten function

f(N ) =
N

ks + N

where ks¿ 0 is the half-saturation constant or Michaelis–Menten constant (see [12]).

2.7. Time of observation T

We limit the study of the model in a �nite time interval when the phytoplankton
remains in the domain 
 and does not reach the horizontal boundaries of the domain.

3. Investigation of the model

The purpose of this section is to arrive at the formulation of the main result stating
that the problem of determining the evolution of phytoplankton and nutrient in terms of
an initial value can be solved. In mathematical words, this means solving the Cauchy
problem associated with Eq. (1), with the additional and not necessarily self-evident
constraint that the solution should remain nonnegative. The main result of the section is
stated in Theorem 3. The section proceeds as follows: we �rst look at the linear case,
which means that we assume there is no phytoplankton growth, that is, we assume that
J0(t) = 0 or c = 0: It will be further designated as Eq. (1)0. This can be seen as an
extreme situation where, in the absence of growth, the phytoplankton would die out and
the nutrient would replenish. In this special situation the system appears more easily
than in the nonlinear case to be decomposable into two processes: a horizontal transport
and a vertical migration. We �rst show how this decomposition can be performed, to
arrive at a system of advection–di�usion equations in one dimension parametrized
by the horizontal coordinates. Next step is the solving of the latter equations, which
in principle is simple enough. Combining the above two steps results in the general
solution of (1)0, expressed by formula (6).
Section 3.1.1 states su�cient conditions ensuring that the equation for the verti-

cal process can be solved: conditions are (H2); (H3) and (H4). A discussion of these
assumptions is made at the end of the section.
Section 3.1.2 concludes the study for Eq. (1)0. The result is stated in a theorem

stipulating that a solution can be ascertained as long as the time does not exceed some
value, expressable in terms of the initial value. This is an upper estimate of the time
during which the solution is not in
uenced by the exchanges through the horizontal
boundaries. In Section 3.2, we turn to the solving of Eq. (1). In order to make our
arguments more speci�c, we choose the nonlinearity f(N ) to be of the Michaelis–
Menten type (see [6–9,12]), that is,

f(N ) =
N

ks + N
;

in which ks is the half-saturation concentration at which half of the maximum uptake
rate is reached. As long as we do not know whether positivity is preserved along the
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solutions, it is convenient to substitute |N | for N in the denominator of f. Now, the
main problem arising from the presence of the nonlinearity is the very nature of this
nonlinearity which, in the equation for the nutrient, introduces a possibly unbounded
coe�cient (due to ’). In order to circumvent this problem, it is convenient to relax
the nonlinearity by adding the quantity �|’| (�¿ 0) to the denominator of f. So, we
have to deal with a family of problems from which a desired solution, if any, will be
obtained by letting � go to zero. A crucial step in the proof will be the determination
of a priori estimates independent on � which will enable us to prove some sort of
compactness property for the family of solutions indexed by �. Then, a solution of the
original equation will be obtained as a limit of a convergent subsequence.

3.1. The linear equation

In this subsection, we deal with the linear equation associated with Eq. (1)0. We
assume that

V3(t; x; y; z) = V3(z); V3(0) = 0

and

�(x; y) =−zb:
For each �xed z, Eq. (1)0 reduces to a system of �rst-order hyperbolic equations in
(x; y) which can be solved by integration along the characteristic lines. These are the
curves with parametric representation of the form: (�t(s); �xi(s); �yi(s)); i=1; 2; solutions
of the following system of ordinary di�erential equations:

d �t
ds
(s) = 1;

d �xi

ds
(s) = �iV1(�t(s); �xi(s); �yi(s));

d �yi

ds
(s) = �iV2(�t(s); �xi(s); �yi(s)) (3)

with initial value

(�t(0); �xi(0); �yi(0)) = (0; x0; y0) for i = 1; 2:

The index i corresponds to �i: as a consequence of di�erent viscosities, the phyto-
plankton and the nutrient move di�erently in the current. We assume the following
additional conditions for the horizontal components:
H1: V1 and V2 are Lipschitz continuous in (x; y).
In fact �t; �xi; �yi (i = 1; 2) are functions of the initial values x0, y0 and should be

written as

�t = s; �xi = �xi(s; x0; y0); �yi = �yi(s; x0; y0):
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We denote ( �’(s; z); �N (s; z)) or ( �’(s; z; x0; y0); �N (s; z; x0; y0)) the restriction of the solu-
tion along the characteristic line emanating from the point (0; x0; y0),

�’(s; z) = ’(�t(s); �x1(s); �y1(s); z);

�N (s; z) = N (�t(s); �x2(s); �y2(s); z):

In terms of ( �’; �N ), Eq. (1)0 reads

@ �’
@s
=
@
@z

(
h(z)

@ �’
@z

)
− �1V3(z)@ �’@z − �(z) �’;

@ �N
@s
=
@
@z

(
h(z)

@ �N
@z

)
− �2V3(z)@

�N
@z
:

The condition at the sea surface yields

h(0)
@ �’
@z
(s; 0)− �1V3(0) �’(s; 0) = 0;

h(0)
@ �N
@z
(s; 0)− �2V3(0) �N (s; 0) = 0;

which, with the simplifying assumption made at the beginning of the subsection,
reduces to

@ �’
@z
(s; 0) = 0;

@ �N
@z
(s; 0) = 0; (4)

while, at the sea bed, we have

�’(s; zb) = 0;

�N (s; zb) =N b( �x2(s); �y2(s)):

In fact, we really have

�N (s; zb) = �N (s; x0; y0; zb);

where (x0; y0) is the origin of a characteristic line. For notational convenience, we will
occasionally drop the reference to (x0; y0). So, to each (x0; y0); we have associated the
following system of equations:

@u
@s
=
@
@z

(
h(z)

@u
@z

)
− �1V3(z)@u@z − �(z)u(s; z);

@v
@s
=
@
@z

(
h(z)

@v
@z

)
− �2V3(z)@v@z ;

u(0; z) = ’0(x0; y0; z); v(0; z) = N0(x0; y0; z);
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@u
@z
(s; 0) = 0;

@v
@z
(s; 0) = 0;

u(s; zb) = 0; v(s; zb) = N b( �x2(s); �y2(s)): (5)

Conversely, once problem (5) has been solved, we have

�’(s; z) = u(s; z; x0; y0);

�N (s; z) = v(s; z; x0; y0):

If we denote �i (i = 1; 2) the map de�ned by

�i(s; x0; y0) = ( �xi(s); �yi(s));

we have

(xi0; y
i
0) = �

i(−t; x; y)
from which we can express the solution of (1)0 in terms of the initial value as follows:

’(t; x; y; z) = u(t; z;�1(−t; x; y));

N (t; x; y; z) = v(t; z;�2(−t; x; y)): (6)

We want to underline that, for the moment, the equations for the phytoplankton and the
nutrients are independent of each other. Coupling will be introduced by the nonlinear
growth term.

3.1.1. Solving of Eq. (5)
We denote A the operator de�ned by the right-hand side of problem (5),

A
(
f1
f2

)
(z) =

(
A1f1(z)
A2f2(z)

)
(7)

with

A1f1(z) =
@
@z

(
h(z)

@f1
@z

)
(z)− �1V3 @f1@z − �(z)f1(z);

A2f2(z) =
@
@z

(
h(z)

@f2
@z

)
− �2V3(z)@f2@z :

A is de�ned on a set of functions from [zb; 0] into R2. The most natural choice would
be to consider the set of functions f such that: f ∈ L1(zb; 0) × L1(zb; 0) and Af ∈
L1(zb; 0) × L1(zb; 0). We remind the reader that the notation L1 denotes the set of
(Lebesgue) integrable functions. The operator A is not completely de�ned by the above
expressions. Boundary conditions have to be glued to the de�nition of A. This will
restrict the expected domain of A. It also renders necessary the introduction of further
assumptions on the parameters of the equation, namely
(H2) V3

h ∈ L1(zb; 0); � ∈ L∞(zb; 0);
(H3) 1

h ∈ L1(zb; 0):
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We note that, while the assumption on � is quite reasonable, the one made on V3
and h is rather technical. And, indeed, if we consider both assumptions together, then
it is clear that (H3) implies the �rst part of (H2). We are now ready to de�ne the
operator suited to the problem at hand. We still call it A: the main equation de�ning
A is (7) and the domain D(A) is restricted as follows:

D(A) =
{
f =

(
f1
f2

)
∈ L1(zb; 0)× L1(zb; 0): Af ∈ L1(zb; 0)× L1(zb; 0);

dfi
dz
(0) = 0 and fi(zb) = 0; i = 1; 2

}
;

(H4) �i

∣∣∣∣
∣∣∣∣V3h

∣∣∣∣
∣∣∣∣
L∞(zb ;0)

¡ 1 (i = 1; 2); �1V ′
3 ≤ �:

With these assumptions, standard arguments of semigroup theory can be used to
conclude that the Cauchy problem associated with the operator A has a solution, that
is, the problem

dU
dt
= AU (t); U (0) = U0

with the boundary conditions embodied in the de�nition of D(A). We denote the
solution operator S(s). In terms of the solution operators S1(s), resp. S2(s), associated,
respectively, to A1; A2, we have

S(s) =

(
S1(s) 0

0 S2(s)

)
:

Existence of S(s) is dealt with in the appendix. We point out that the problem solved
here is not exactly problem (5): it assumes homogeneous boundary conditions in con-
trast with (5) where the repletion of the system by sea bed sediments translates into
the condition v(s; zb)=N b( �x2(s); �y2(s)). For computational convenience, this condition
will be incorporated in the main equation as a forcing term and dropped from the
boundary conditions, so that the problem can be handled by the standard technique
of variation of constants formula. Concretely, we introduce the following change of
unknown function (leaving u unchanged):

ṽ(s; z) = v(s; z)− z2

z2b
�N
b
(s): (8)

It is immediate to check that ṽ satis�es homogenous boundary conditions at z= zb. On
the other hand, the main equation for v as well as the initial value are modi�ed as
follows:

@ṽ
@s
=
@
@z

(
h(z)

@ṽ
@z

)
− �2V3(z)@ṽ@z + R̃(s; z);

ṽ(0; z) = N0(x0; y0; z) + r̃(z); (9)



O. Arino et al. / Nonlinear Analysis: Real World Applications 1 (2000) 69–87 79

in which

R̃(s; z) =− z
2

z2b

d �N
b

ds
(s) + [2zh′(z) + 2h(z)− 2z�2V3(z)]

�N
b
(s)
z2b

and

r̃(z) =− z
2

z2b
�N
b
(0):

Eq. (9) is a nonhomogeneous variant of the equation determined by the operator A2,
so the solution can be expressed in terms of the semigroup S2(t) as follows:

ṽ(s; :) = S2(s)[N0(x0; y0; :) + r̃] +
∫ s

0
S2(s− �)R̃(�; :) d�:

Substituting the right-hand side of the above for ṽ in (8) yields the component v, thus
Eq. (5) can be solved in terms of the initial and boundary values of the phytoplankton
and the nutrient. It is possible, although rather tedious, to write down the expressions of
both u and v in terms of these data. We skip this to turn now to the main consequence
of this preparatory result, namely, the solution of Eq. (1)0.

3.1.2. Solving of Eq. (1)0
For any (’0; N0) such that the horizontal projection of the support of both compo-

nents is contained in a compact subset of the interior of D; we de�ne the maximal
time of observation as

T’0 ;N0 = sup{t ¿ 0: �1(s; x; y) ∈ D; ∀(x; y; z) ∈ support (’0); ∀s ∈ [0; t[;
�2(t; x; y) ∈ D;∀(x; y; z) ∈ support (N0);∀s ∈ [0; t[}:

Theorem 1. Under the assumptions (H1); (H2); (H3); and (H4); Eq. (1)0 has; for
each (’0; N0) ∈ L1(
) × L1(
); one and only one solution (’; N ): Each component
’(t; :); N (t; :) is nonnegative for all positive time if both components of the initial
value are nonnegative. Finally; if the horizontal projection of the support of both
components is contained in a compact region of the interior of D; then the support
of both ’(t; :) and N (t; :) remains in the interior of D at least as long as t ¡T’0 ;N0 .

Proof. We just have to put together the results obtained in Appendix A. (Proposition 6)
and formula (6) relating the functions (’; N ) and (u; v). It would be possible, but we
are not going to do it here, to give an expression of the solution re
ecting in concrete
terms the way initial and boundary values get into the formulae.

3.2. Nonlinear equation

Eq. (1) belongs to the class of the so-called semilinear partial di�erential equations,
with a nonlinear term which does not involve any derivative. The solving of such an
equation has two aspects: a local aspect, that is, ensuring existence for small time,
which holds under very mild regularity assumptions on the nonlinearity, and a global
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aspect, that is, ensuring existence on as long a time interval as desired. It is the
latter issue we address here. For this purpose it will be convenient to work in the
framework of square integrable functions L2(zb; 0); rather than L1(zb; 0), that is to say,
in a framework slightly more restrictive than necessary. Another point is that positivity
of the solutions is not easily demonstrated. So, as mentioned earlier, we consider a
family of perturbations of (1), namely, we denote (1)� for each �¿ 0 equation (1) in
which the function f(N ) is changed to

f�(N; ’) =
N’

ks + |N |+ �|’| : (10)

The strategy of proof of the existence of positive solutions of (1) is as follows: we
�rst show existence of positive solutions (assuming of course that the components of
the initial value be nonnegative) of (1)�, for each �¿ 0: as a consequence, we can
drop the absolute values in the expression of f�. We then show that one can extract
from the family of solutions a sequence which converges, as � goes to 0, to a solution
of (1) which, in the limit, is also nonnegative. We have to assume that

(H5) J0 ∈ L∞+ (0; T ):

The notation || · ||2 corresponds to the usual norm in L2(zb; 0).
To solve Eq. (1)� along the characteristic line emanating from the point (0; x0; y0),

we write it in integral form and we use Proposition 7 to conclude (see Appendix B).

Proposition 2. Under assumptions (H1); (H2); (H3); (H4) and (H5); we have that for
each (’0; N0) ∈ L2+(
) × L2+(
) with a compact support; Eq. (1)� has one and only
one solution; de�ned on the maximal time interval on which it remains with a compact
support. Moreover; the solution is nonnegative on its domain.

Theorem 3. Under assumptions (H1); (H3); (H4) and (H5); we have that for each
(’0; N0) ∈ L2+(
) × L2+(
) with a compact support; Eq. (1) has one and only one
solution; de�ned on the interval [0; T’0 ; N0 [. Moreover; the solution is nonnegative on
its domain.

Proof. Using Proposition 7 there exists ( �’(s; x0; y0; :); �N (s; x0; y0; :)) ∈ L2+(zb; 0)×L2+(zb; 0)
such that

( �’�; �N�)
�→0
* ( �’; �N );

in L2(zb; 0)× L2(zb; 0) weakly. One can see that ( �’; �N ) satis�es the integral equation

�’(s; x0; y0; :) = S1(s) �’(0) + c
∫ s

0
S1(s− �)

(
�’(�) �N (�)
ks + �N (�)

)
d�

�N (s; x0; y0; :) = a(s; x0; y0; :)−
∫ s

0
S2(s− �)J (�; z)

(
�’(�) �N (�)
ks + �N (�)

)
d�;
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where

a(s; x0; y0; z) = S2(s)[N0(x0; y0; :) + r̃] +
∫ s

0
S2(s− �)R̃(�; :) d�:

So ( �’; �N ) is a weak solution of equation

@ �’
@s
=
@
@z

(
h(z)

@ �’
@z

)
− �V3(z)@ �’@z − �(z) �’+ cJ (s; z)

�N �’
ks + �N

;

@ �N
@s
=
@
@z

(
h(z)

@ �N
@z

)
− �V3(z)@

�N
@z

− J (s; z)
�N �’

ks + �N
;

�’(0; z) = ’0(x0; y0; z); �N (0; z) = N0(x0; y0; z);

@ �’
@z
(s; 0) = 0; �N (s; 0) = �N

0
(s);

�’(s; zb) = 0; �N (s; zb) = �N
b
(s):

The solution of Eq. (1) is given by

’(t; x; y; z) = �’(t;�1(−t; x; y); z);

N (t; x; y; z) = �N (t;�2(−t; x; y); z): (11)

4. Conclusion

Formula (11) con�rms what was announced in the introduction: the solution is rep-
resented as a composition of two processes. One is the horizontal transport of the
nutrients and the phytoplankton, di�ering slightly from one species to the other, due
to di�erent viscosities. The other process is a combination of migration in the water
column and transformations involving both species which concur to the growth of the
phytoplankton. In this paper, we had two objectives: �rst, to describe in some detail
a model for the nutrient–phytoplankton system; second, to show existence of solutions
and, at least as importantly, to show the distinctive role of the horizontal transport and
di�usion and phytoplankton growth in the process. The next step is to derive possible
consequences regarding the study of the solutions and their qualitative features. Two
additional comments are in order: (1) If the initial values are independent of (x; y),
which in particular entails that the nutrient in the sea bed is constant, then the solution
remains independent of (x; y) for t ≥ 0. (2) Assume that �(−t; x; y) t→+∞→ A; where
A is a bounded compact subset of D and

dist( �’(t; x0; y0; z); �’(t;A; z))→ 0

as (x0; y0) approaches A; uniformly in t ≥ 0. Then,
dist(’(t; x; y; z); �’(t;A; z))→ 0 as t → +∞:



82 O. Arino et al. / Nonlinear Analysis: Real World Applications 1 (2000) 69–87

If we assume in addition that we know the dynamics of the solution along the charac-
teristics lines �’(t;A; :)→ J; where J is a subset of pro�les, for example if J={	}
then �’(t; a; :) → 	 for all a ∈ A as t → +∞. Thus we can obtain the dynamics of
the solution (as t → +∞)

dist(’(t; x; y; :);J)→ 0:

Appendix A

In this appendix, we prove Theorem 1. We �rst restate Theorem 1 in a more math-
ematical wording

Lemma 4. Suppose (H2) holds. Let f ∈ L1(zb; 0)×L1(zb; 0) such that Af ∈ L1(zb; 0)×
L1(zb; 0). Then; h(df=dz) ∈ W 1;1(zb; 0)×W 1;1(zb; 0). Therefore; df=dz has a limit at
z = 0.

Proof. Introducing the following notations g = h(df=dz); ki = �iV3=h (i = 1; 2); we
have that: (d=dz)g − kig ∈ L1(zb; 0) from which we obtain g ∈ L∞(zb; 0) × L∞(zb; 0);
and dg=dz ∈ L1(zb; 0) × L1(zb; 0); that is: h(df=dz) ∈ W 1;1(zb; 0) × W 1;1(zb; 0): This
implies that h(df=dz) is continuous at z = 0. Since h is decreasing, we conclude that
limz→0 h(z) exists. Thus, limz→0 df=dz exists.

The following assumption on h clears the problem at z = zb:

(H3)
1
h
∈ L1(zb; 0):

Lemma 5. Assume (H2) and (H3) hold. Let f ∈ L1(zb; 0)×L1(zb; 0); such that: Af ∈
L1(zb; 0)×L1(zb; 0): Then; f and h(df=dz) ∈ W 1;1(zb; 0)×W 1;1(zb; 0); and limz→zbf(z)
exists.

Proof. We already know that, under (H2); h(df=dz) ∈ W 1;1(zb; 0) ×W 1;1(zb; 0): This
implies in particular that h(df=dz) ∈ C0([zb; 0])× C0([zb; 0]); so

df
dz
=
1
h
h
df
dz

∈ L1(zb; 0)× L1(zb; 0):
So: f ∈ W 1;1(zb; 0)×W 1;1(zb; 0); which yields the desired consequence.

Proposition 6. Under assumptions (H2); (H3) and (H4) the operator A generates a
positive C0 semigroup of contractions in L1(zb; 0)× L1(zb; 0):

Proof. We have

D(A) =
{
f =

(
f1
f2

)
∈ L1(zb; 0)× L1(zb; 0): Af ∈ L1(zb; 0)× L1(zb; 0);

df1
dz
(0) = f2(0) = 0 andf1(zb) = f2(zb) = 0

}
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=D(A1)×D(A2)

with

D(A1) =
{
f ∈ L1(zb; 0): Af ∈ L1(zb; 0); df1dz (0) = f1(zb) = 0

}
;

D(A2) =
{
f ∈ L1(zb; 0): Af ∈ L1(zb; 0); df2dz (zb) = f2(0) = 0

}
:

In order to show that the operator A generates a positive C0 semigroup of contractions
in L1(zb; 0)×L1(zb; 0) it su�ces to show that A1 and A2 separately generate a positive
C0 semigroup of contractions in L1(zb; 0). We apply the Lumer–Phillips theorem. Using
a perturbation theorem [10], one can see that A1(resp: A2) generates a positive C0

semigroup S1(s) (resp: S2(s)) of contractions in L1(zb; 0) (see [1]).

Proof of Theorem 1. We have

D(A) =
{
f =

(
f1
f2

)
∈ L1(zb; 0)× L1(zb; 0): Af ∈ L1(zb; 0)× L1(zb; 0);

df1
dz
(0) = f2(0) = 0 and f1(zb) = f2(zb) = 0

}

=D(A1)×D(A2)

with

D(A1) =
{
f ∈ L1(zb; 0): Af ∈ L1(zb; 0); df1dz (0) = f1(zb) = 0

}
;

D(A2) =
{
f ∈ L1(zb; 0): Af ∈ L1(zb; 0); df2dz (zb) = f2(0) = 0

}
:

In order to show that operator A generates a positive C0 semigroup of contractions in
L1(zb; 0)×L1(zb; 0) it su�ces to show that A1 and A2 separately generate a positive C0
semigroup of contractions in L1(zb; 0). We apply the Lumer–Phillips theorem. Using
a perturbation theorem [10], one can see that A1(resp: A2) generates a positive C0

semigroup S1(s) (resp: S2(s)) of contractions in L1(zb; 0) (see [1]).

Appendix B

Here we will give the mathematical proof of some technical results used in Section 4.

Proposition 7. Given (x0; y0) ∈ D; (’0; N0) ∈ L2+(
)×L2+(
); such that the horizontal
projection of the support of ’0 and N0 is a compact subset of D; and

||’0||2 ≤ M1; ||N0||2 ≤ M1
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for some M1¿ 0; then there exists M2¿ 0 which depends on M1 only; such that
if (’�; N�) is a solution of (1)� and ( �’�; �N

�
) is the restriction of (’�; N�) to the

characteristic line emanating from the point (0; x0; y0); the following inequalities hold:∣∣∣∣ �’�(s)∣∣∣∣2 ≤ M2;∣∣∣∣∣∣ �N�(s)∣∣∣∣∣∣
2
≤ M2:

Proof. By integration of Eq. (1)� along the characteristic line emanating from the point
(0; x0; y0):∫ 0

zb

@ �’�

@t
�’� =

∫ 0

zb

@
@z

(
h(z)

@ �’�

@z

)
�’� −

∫ 0

zb

�1V3(z)
@ �’�

@z
�’� −

∫ 0

zb

�(z)( �’�)2

+c
∫ 0

zb

J (s; z)
�N�( �’�)2

ks + | �N�|+ �| �’�|

=−
∫ 0

zb

h(z)

(
@ �’�

@z

)2
+
∫ 0

zb

(�1
2
V ′
3 − �

)
( �’�)2

+c
∫ 0

zb

J (s; z)
�N�( �’�)2

ks + | �N�|+ �| �’�|
;

we have that∫ 0

zb

@ �’�

@s
�’� =

1
2
d
dt
|| �’�(s)||22

so

d
ds

|| �’�(s)||22 ≤ 2c||J0||∞|| �’�(s)||22;
which immediately yields

|| �’�(s)||2 ≤ M1exp(c||J0||∞T ):
We can write the solution

�N
�
(s; z) = a(s; x0; y0; z)−

∫ s

0
S2(s− �)J (�; z)

�N
�
�’�

ks + | �N�|+ �| �’�|
d�;

where

a(s; x0; y0; z) = S2(s)[N0(x0; y0; :) + r̃] +
∫ s

0
S2(s− �)R̃(�; :) d�;

|| �N�(s; :)||22 ≤ ||a(s; x0; y0; :)||22 +
||J0||
�

∫ s

0
|| �N�(�; :)||22 d�;
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which, using Gronwall‘s lemma, yields

|| �N�(s; :)||22 ≤ ||a(s; x0; y0; :)||22 +
||J0||
�

∫ s

0
||a(�; x0; y0; :)||22exp

(
(�− s) ||J0||

�

)
d�

≤ sup
0≤s≤T

||a(s; x0; y0; :)||22
(
1− exp

(
−T ||J0||

�

))
:

So

M2 = max

[
sup
0≤s≤T

||a(s; x0; y0; :)||22
(
1− exp

(
−T ||J0||

�

))
; M1exp(c||J0||∞T )

]
:

Positivity will now be proved using integral inequalities. We �rst show positivity of
solutions of the perturbed equation (for �¿ 0). Then, we will derive existence of a non
negative solution of the original equation as a limit of a convergent subsequence. We
multiply both sides of the �rst equation of (1)� along the characteristic line emanating
from the point (0; x0; y0), by ( �’�)− = max(0;− �’�) and integrate on [zb; 0]. Standard
arguments can be used to arrive at the following

d
dt
|( �’�)−|2L2(zb ;0) =−

∫ 0

zb

h

(
d( �’�)−

dz

)2
+
∫ 0

zb

(
�
2
@
@z
V i3 − �

)
(( �’�)−)2

+c
∫ 0

zb

J (s; z)
�N�(( �’�)−)2

ks + | �N�|+ �|( �’�)−|
:

Then, the above equality leads to the following di�erential inequality

d
dt
|( �’�)−|2L2 ≤ ||J0||∞|( �’�)−|2L2 :

This implies that

|( �’�)−(s)|2L2 ≤ |( �’�)−(0)|2L2 exp||J0||∞s:
we have, ( �’�)−(0) = 0, we obtain that

( �’�)−(s) = 0; ∀s ∈ [0; T ]
so

�’�(s) ≥ 0; ∀s ∈ [0; T ]:
We multiply both sides of the second equation of (1)� along the characteristic line
emanating from the point (0; x0; y0) by ( �N

�
)− =max(0;− �N

�
) and integrate on [zb; 0].

Standard arguments can be used to arrive at the following:

d
dt
|( �N�)−|2L2(zb ;0) =−

∫ 0

zb

h(z)

(
d( �N

�
)−

dz

)2
+
∫ 0

zb

(�2
2
V ′
3(z)

)
(( �N

�
)−)2

−
∫ 0

zb

J (s; z)
�’�(( �N

�
)−)2

ks + | �N�|+ �| �’�|
:
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Then

d
dt
|( �N�)−|2L2 ≤ 0:

This implies that

|( �N�)−(s)|2L2 ≤ |( �N�)−(0)|2L2 :

We have, ( �N
�
)− (0) = 0, we obtain that

( �N
�
)−(s) = 0; ∀s ∈ [0; T ]

so

�N
�
(s) ≥ 0; ∀s ∈ [0; T ]:

Proof of Proposition 2. Denoting u(s)= �’�(s; :) and v(s)= �N
�
(s; :), where ( �’�; �N

�
) is

a possible solution of Eq. (1)� along the characteristic line emanating from the point
(0; x0; y0), we have the following:

u(s) = S1(s)u(0) + c
∫ s

0
S1(s− �)

(
u(�)v(�)

ks + |u(�)|+ �|v(�)|
)
d�; (B.1)

v(t) = a(s; x0; y0; z)−
∫ s

0
S2(s− �)J (�; z)

(
u(�)v(�)

ks + |u(�)|+ �|v(�)|
)
d�: (B.2)

S1(t) and S2(t) are strongly continuous nonnegative semigroups of contractions on
L2(zb; 0). Given � ∈ [0; T ], let us consider the convex cone

� =
{
u; u : [0; �]→ L2(zb; 0)× L2(zb; 0); continuous and ||u(0)|| ≤ R} ;

� is in fact a closed subset of the space of continuous functions from [0; �] into
L2(zb; 0) × L2(zb; 0), endowed with the usual norm which we will denote ||:||. Given
(u0; v0) in L2(zb; 0) × L2(zb; 0), we consider the map, denoted by G, de�ned by the
right-hand sides of (12) and (13) on the set �. Clearly, for each v ∈ �, we have
G(�) ∈ �. On the other hand, it is not di�cult to see that, for any pair �1; �2 of
elements in �, we have

||G(�2)(t)− G(�1)(t)|| ≤ Cexp(�t) sup
0≤s≤t

||�2(s)− �1(s)||

from which we deduce by induction

||Gk(�2)(t)− Gk(�1)(t)|| ≤ Ck tk−1

(k − 1)!exp(�t) sup0≤s≤t
||�2(s)− �1(s)||:

This inequality shows that there exists k∗ such that, for each k ≥ k∗, Gk is a strict
contraction from � into itself. From this, we conclude that G has a unique �xed point.
This being true for every � ∈ [0; T ], we obtain existence and uniqueness of solution of
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(12) and (13), on [0; T ]. The solution of (1)� is given by

’�(t; x; y; z) = �’�(t;�1(−t; x; y); z);

N �(t; x; y; z) = �N
�
(t;�2(−t; x; y); z):
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