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1. PRESENTATION

We consider equations such as:

dx

&= Ltx) (L)

L(t,¢) being defined on [to,+m) x C([-r,O],IJU , linear in ¢ and

asymptotically autonomous:

i.e. lim L(t,¢) = L_(¢) . (L)
t+oo

As usual, x_ will denote the function defined on [-r,0] by:

t

xt(e) = x(t+89), -Tr <9 <0.

Our general problem is to find asymptotic formulae for the solutions

of (L). Let us start with some examples:

% = p(t) . CX(t) - X(t"l)), (1)

with a growth condition on p(t), such as:
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p in Lz(t0,+w) or 1lim sup |p(s)| <1
S+
The asymptotic constancy of the solution of (1) has been proved by
many authors: ([11],[4],[7]).

Here, the asymptotic equation is: dx/dt = 0

%%'= a-x(t-rt)). (2)
Numerous equations can be reduced to this compact form. It is therefore
important to look for asymptotic behaviour of its solutions. With r

in Lp(to,+w), r(t) » 0, t > », the first results are due to

K.L. Cooke ([5]). Here, the asymptotic equation is: dx/dt = a - x(t),
and, if r is in Ll(t0,+m), then: K.L. Cooke proved that the solu-
tions of (2) behave asymptotically in the same way that the solutions

of its asymptotic equation do.

If x is a solution of (2), there exists C such that:

x(t) - C et = O(Eat)
dx _
3t = (A +a(t))x(t) + b(t)x(t-1) (3)
dx
g = (A+A®) - x(t) + B(t) + x(t-T) (4)

{(under a vectorial form, where A 1is a diagonal matrix). Under its
vectorial form, this equation has been proposed by J.R. Haddock and
R.J. Sacker ([8]) as a model in a study aiming at extending results

by P. Hartman and A. Wintner [9] for ordinary differential equations.
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A(t) and B(t) are perturbative terms, for example: A,B in
L2(t0,+w). In [8], Haddock and Sacker proved an asymptotic result for
the scalar case and stated a conjecture for the vectorial case.

At the conference Equadiff 82 [1] we presented a general method
which encompasses these examples, and notably we developed the Haddock
and Sacker conjecture.

Here, we would like to touch on another aspect of our work. We

note that, even if the asymptotic behaviour of the systems under con-

sideration does not the one of the asymptotic equations,

nevertheless the flo

;ically degenerate: the information
about the limiting beh ah56iﬁtion depends only on a finite
number of parameters.

This leads us to the following problem: in what way could the

asymptotic behaviour be described with an ordinary differential system,

conveniently associated to (L)?

2. PRELIMINARIES
We start with a simple observation: considering the system (L), we
can associate to (L) a number of ordinary systems. We have only to

choose a continuous map i : R > C([—r,O],IJH , and define:

R CRIIGDE (L(i)

But obviously not all of these equations will be of interest in view

of the asymptotic behaviour. More precisely, there is no relation in

general between (L) and CL(i)). We note however the following:
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PROPOSITION 1. Let U(t,s) denote the resolvent of (L), and suppose

that:
fu(t,s)ll < 1,

and let i be such that: [ill < 1. Then: wu(i)(t,s) being the re-

solvent of L(i), we have:
[u(i) (t,s)] <1, t>s.

REMARK 1. To prove this result, we observe that the solutions of
G{i)) can be obtained as limits of sequences of solutions of (L), in
such a way that if X, is a datum for (L(ii) all the approximations

YN verify:

[yl < Ix,| -

To simplify, choose: i(x) = the constant x, denote by: Lo(t,x) =

LCt,i(x)), and, by u(t,s) the resolvent of (LO).

From the stability of (Lo) we can obtain some results for (L).

Precisely, using u(t,s), we can compare (L) to perturbations such as

E-Lex) + ) ¢

It £)

PROPOSITION 2. ({1],[2]). Suppose o > 0 1is such that:

2 eZcxr
T (lim sup ”L(t,-)") « lim sup llu(t,s)ll - - < 1.
t >+ t<s
t ;+oo
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Then: for any f such that: If(t)l = O(e-at), the systems (Lg)
and (L) are Ll—asymptotically equivalent, i.e.: for every solution
x of (Lf) there exists a solution y of (L) such that:

4 0o

[ Ix(®) -y(2)ldt < +o
o

3. THE MAIN RESULT

Up-to-now we have not answered the question stated at the end of 1I.
In fact, this question was solved, in a completely different approach,
by Ryabov [10] who introduced the notions of ''special solutions'" and
showed their existence and "completeness'" ([10],[7]) in certain
systems (L). Later on, we will give more details about that. Let us
say that the interest of such results in the search for asymptotic
behaviour has been notably underlined by R.D. Driver in [6].

There is no question of ordinary differential equations in these
author's views, but we will see that it is not difficult to pass from
the frame of '"special solutions" to the one of "asymptotically equiv-
alent" ordinary differential systems.

We now state the result under this last form:
THEOREM. Assume
(Ll) :IL(t, )l < K, te R;

(Lz): Keree <1

(from (LZ) it follows that there is a unique u in (0, 1/r) such

that: p = K- eur).
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Then there exists an ordinary differential system:

dx

& = t.x®), Q

the solutions of which are solutions of (L), () verifying (LS):
fe(t, )l <.

Moreover, the system (R&) is, within Iﬂl—isomorphisms,
uniquely determined by the conditions (Ll), (L2) and (LS)'

Finally, if Y(t) 1is a fundamental system of solutions of (%)
(with to==0), then for every solution x of (L) there exists a
unique c¢ in Igl, such that: x(t) = Y(t) -Cc+-o(1)).

To prove the theorem, we only have to come back to the original

result by Ryabov.

We first recall what Ryabov calls a ''special solution'':

DEFINITION ([6]). A '"special solution' is a solution of (L), defined
on R, growing at most exponentially, with an exponent not greater

than 1/r.

Ryabov then proved:

LEMMA ([10],[6]). Assume (Ll), (Lz) and (L Then, for each

3)'
(to,yo) in R xR" , there exists a unique special solution passing

through Yo at to. The set of the special solutions is an n-

dimensional space.
Each special solution y(t) satisfies an estimate:

ule-t |
Iy (el < HyOH- e , teR.



33

REMARK 2. The first part of this lemma means that such a system of
solutions is complete.
All we have to do in order to prove the theorem is:

(i) observe that a complete family of special solutions 1is
associated to an ordinary equation in R" H
(ii) that there is uniqueness within isomorphism;

(iii) prove the asymptotic formula (end of THM).

We will prove (i), skip (ii) and go very fast on (iii). To prove (i),

let x be a special solution. It can be expressed as:

t
x(t) = x(t,) + jt L(s,x)ds . (5)
o

Because of the uniqueness property stated in the lemma, we can see that,
for each ¢ in [-r,0], s in R, x(s+6) 1is uniquely determined in

terms of x(s), so that x(s) » x(s+6) defines a map G(s,8).

Because of the lemma, we have:

IG(s,0) I < T,

Using G, (5) can be written as:
t
x(t) = x(t ) + fro L(s,G(s,+) » x(s))ds .

Let: ¢(s,x) = L(s,G(s,-) -x) . We then have: dx/dt = QCt,x(t)),

which yields the first part of the theorem. Moreover:
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fa(s, )l < K- 't = u; so, we get (LS)' The last part of the theorem
has been proved by R.D. Driver [6] using "special solutions."

We transform the equation using the resolvent Y(t,s) of (&)
(in fact, we use: Y(t) = Y(t,0) : x(t) = Y(t) » z(t)).

Using the Gronwall-type inequality ([1],[3]) we can see that:
(d/dt)z is in Ll(t0,+<»), so that z has a limit at + «, and for
each ¢ in ]fl, there exists a solution 2z (and so a solution x)

such that: z(t) >+ c, t > + ©,

4. CONCLUDING REMARKS
Our theorem is a perturbative result: for 7r=0, (L) is an o.d.e.
in R". For r >0 small (see (LZ))’ there is still an o.d.e. sub-
system of (L) —an o.d.e. in Ig], that contains the information on
asymptotic behaviour. Why now do we consider a formulation in terms
of o.d.e.'s? In what way could this concept be more interesting than
the one of special solutions? The answer to these questions can only
be partial. 1In ([2]), we combined the o.d.e. formulation with re-
sults on asymptotic integration of o.d.e's to get asymptotic formulae
for functional differential systems.

Another interesting feature is that (&) provides us with a
natural simple adjoint equation in (Rp)* , which in fact can be used
to describe the limiting behaviour of the solutions of (L). Pre-

cisely, there exists a fundamental solution Y* of (2*) such that:

c = 1lim <Y*(t),x(t)> (where c¢,x are as in the theorem).
T+

On the other hand, the notion of a "subsystem'" is still

"theoretical," it needs much more work to be really useful, and



notably the following question can be set: Is it possible to get such

subsystems without the intermediary of special solutions?
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