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INTRODUCTION 

IN THIS paper we will consider the retarded differential system (abbreviated as RDS): 

$X(f) = f(x(t - 4) (0.1) 

where we assume that f is a smooth function from IR2 into IR’, and 

0 -1 
(H,) f(O) = 0; of = 1 o . 

[ 1 
The object of our investigations is to obtain existence of periodic solutions when r is a small 

positive real number. 
For r close to 0, the system (0.1) is a perturbation of an ordinary differential system. 
On the other hand, using the variable y(r) = x(rr) instead of x, the RDS (0.1) can be read as 

follows: 

$Y(l) = V-(y(t - 1)). (0.2) 

We observe that for a T-periodic solution (T > 0) x(t) of (0.1) the corresponding periodic 
solution y(t) of (0.2) has a period T/r which is close to +oo when r is close to 0. It is a bifur- 
cating phenomenon at infinity. Therefore, Hopf bifurcation theory does not apply. 

The purpose of this work is to construct a perturbation method to get existence of periodic 
solutions of the system (0.1) in the case where r is small enough. 

Since, for r small enough, the system is a perturbation of an ordinary differential system, we 
transform it into a perturbed parametric ordinary differential system and we construct a fixed 
point problem. We underline that our technic is essentially based on some stability property of 
the origin of (0.1) when r = 0. Precisely we will assume the origin of (0.1) is 3-asymptotically 
stable for r = 0 [5]. 

23 
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In Section 1, we recall the concept of h-asymptotic stability and Hopf bifurcation developed 
in [2, 51. 

In Section 2, we present our perturbation method and we show that the RDS (0.1) has at least 
one period solution. 

1. PRELIMINARIES 

We recall the framework for h-asymptotic stability and Hopf bifurcation [2, 4, 51. 
Consider the system: 

I 

$1 = Q(P)XI - P(P)-% + P(PV XI 9 x2) 

$2 = @u)xz - BWx, + Qk XI 3 ~2) 

where 

such that 

G(P), P(P) E Ck’Yl-P, PL R) 

P, Q E C?+‘(]-/I, ,E[ x B’(a), Ii?) with k an integer, k L 3, 

m, 60) 

Introducing polar 

we have 

a(0) = 0, P(O) = 1 and $0) # 0 

= Q(P, (40) = 0 and DAL 090) = oxQ(iu, (40) = 0. 
coordinates: 

x, = p cos 0, x2 = p sin e 

- = CY(P)P + P*(p, p, e) cos e + Q*(p, p, e) sin e dt 

de 
P dt = P(P)P + Q*(P, P, 0) cos 8 - P*(P, p, 0) sin 8 

(1.1) 

(1 .a 

where 
P*(p, p, e) = P(p, p cos 0, p sin e) 

Q*b P, 0) = Q(P, P ~0s 8, P sin 0) 

w.h P, 0) = mu) + a*(~, P, 0) ~0s 0 - p*b4 P, 4 sin wp ifp#O 

W(P, 0, e) = P(P). 

For every p. E [0, a[ and 8, E IR, the orbit of (1.1) passing through (po, 0,) will be represented 
by means of the noncontinuable solution p(8, ,u, Bo, po) of the problem: 

dp 
- = w4 P, 8) 
de 

p(e,, ~0 = p. 

(1.3) 
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where 

WP, P, 0) = 
CUP + P*(P, p, 0) cos 8 + Q*(P, P, 8) sin 0 

wb P, e) 
(1.4) 

When the function p(,~, 8, p,, , 0,) has been determined, the complete knowledge of the solutions 
of (1.2) will be obtained by integration of the following equations: 

i 

de 
dt = we, ~0.4 0, po, e,h ei 

(1.5) 

(04 P, 0) E I-P, PI x [o, 4 x R. 

Since CY(O) = 0, it is easily seen by (1.3) and (1.4) that if d E [0, a[ and ,u are sufficiently small 
for any p E l-p, p[ and c E [0, a[ the solution of (1.5) exists in [0,2n]. This solution will be 
denoted by p(~(, 8, c). 

Definition 1.1 [5]. The function V(jf, c) = p(p, 2n, c) - c is called a displacement function 
for (1.1). 

Remark 1.1. Since CR is Ck, we have: 
k 

p(p, 0, c) = c CJ,(p, 0)c’ + @(,u, 8, c); where 0 is of order >k 
i=l 

(i.e. a(,~, 8, c) = o(ck)) 

Ui,Q,areC?kforl~i~kandU,(,u,O)= 1, 

U,(p,O) = .** = u,(p, 0) = @(p, 0, c) = 0. 

For ,D = 0, the system (1.1) can be written in the form: 

! $x1 = -x2 + X(x,, x,) 

-gx* = x1 + Y(x,,x,) 

(1.6) 

where: 
X(x, 9 x2) = Jw, x1 9 $1 and Y(x, , x,) = Q&T ~1, XI). 

Definition 1.2 [5]. Let h be an integer; h E (2, . . . , k). The solution x, = x2 = 0 of (1.6) is said 
to be h-asymptotically stable (resp. h-completely unstable) if: 

(i) for every r, [ E e[B’(a), I?) of order greater than h; the solution x, = x2 = 0 of the system 

;x, = -x2 + X,(x,, x2) + *. . + X,(x,, x2) + e,, x2) 

$x2 = Xl + yz(x,,x,) + ... + Yh(X,rX2) + i(x,,x,) 

is asymptotically stable [resp. completely unstable]; 
(ii) property (i) is not satisfied when h is replaced by any integer m E (2, . . . , h - 1). 

(1.7) 
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THEOREM 1.1 [5]. Let h be an integer, 2 I h 5 k. The following propositions are equivalent: 
(1) the solution x, = x, = 0 of (1.6) is h-asymptotically stable [resp. h-completely unstable]; 
(2) one has 

a9 
(0,O) 0 for 1 i h 1 and 

ahv 
z = 5 5 - 2 (090) < 0 [resp. > 01. 

In addition if either proposition (1) or (2) holds, h is odd. 

THEOREM 1.2 [5]. There exist E near 0, E > 0 and a function p in Ck-‘([O, E[, R) with ~(0) = 
(dp/dc)(O) = 0 and sup(]~(c)], c E [O, E[] = E < p such that for any c E [O, E[, P E I-E, E[ the 
orbit of (1.1) passing through (0, c) is closed if and only if p = p(c). 

Remark 1.2 [5]. Theorem 1.2 is the C?+’ version of IR’ of the local Hopf bifurcation theorem. 

LEMMA 1.1. If the origin of (1.6) is 3-asymptotically stable then the amplitude of the bifurcating 
periodic solution of (1.1) [for ,u close to P = 0] is of order 6. Furthermore the bifurcation is 
supercritical if (da/dp)(O) > 0. 

Proof. If the origin of (1.6) is 3-asymptotically stable then we have: 

!gCO,O) = $(O,O) = 0 and 
a3v 
$ (090) < 0, 

where V(p, c) is the displacement 
c + p(c) satifies: 

p(0) = $(O) = 0 

function of (1.1). Moreover the bifurcating function: 

and S(O) = ~[~(0,0)/~(0,0)] 

with P(p, c) = (V(,u, c))/c if c # 0 
(1.1) and we have 

P(,u, 0) = U,(P, 27~) - 1; U,(,D, 27~) is given by remark 

Then 

U,(p, 2rr) = exp(,rr daEidP). 

E(O, 0) = 2+(o) > 0. 

Also 

2(O) > 0. 

Furthermore, from the local Hopf bifurcation theorem [theorem 1.21, P(C) is (k - I)-times con- 
tinuously differentiable. So: 

2 

p(c) = p(0) + g (0) * c + ; .s (0) . c2 + o(c2), 

then: 

p(c) = ; 2 (0) * c2 and c = WC) 
d2p(0)/d2c ’ 
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This shows that the amplitude of the bifurcating periodic solution of (1.1) [for p close to p = 0] 
is of the order v$. Since (d2p/dc2)(0) > 0, from [2], we deduce that the bifurcation occurs for 
p>o. n 

2. MAIN RESULT 

In this section we develop our existence result. We proceed in the following way. We trans- 
form the system (0.1) into a perturbed parametric ordinary differential system and we construct 
a fixed point problem in the neighborhood of the bifurcating solutions of the ODS. 

PROPOSITION 2.1. Under (Hi), (0.1) can be written in the form: 

:X(f) = &,x(t)) + H(x,) 

where: 
g(r, X) = V + mw- ‘f(x) 

and H(4) is defined as the difference: 

H(d) = J-($(-r)) - g(r, 4(O)). 

Moreover, let T > 0 and R > 0 be fixed. Suppose 

4 = x,, for a solution of (0.1) such that 

]lx,]] 5 R and some time t, 

(2.1) 

(2.2) 

(2.3) 

(i) 3r 5 t I T, then: H(c$) = o(r2) (uniformly with respect to T and R). 

(ii) If, on the other hand, 0 I t I 3r, then: H(4) = 0(r3’2) (once more, uniformly with 
respect to T and R). 

Before proving proposition 2.1, we look for a while at the ordinary differential system 

$Y = &,Y) 

where g(r, y) is defined by formula (2.2). 
From now on, we will assume that: 
(H,) for r = 0, the origin y = 0 of (2.4) is 3-asymptotically stable. 

PROPOSITION 2.2. Under the assumptions (Hi) and (H2) the system (2.4) has a family of periodic 
solutions parametrized by r, for r close to 0, of amplitude of order v?and of period close to 271. 

Proof. g is defined from R x IT?’ into R2 and satisfies: 
(i) g(r, 0) = 0, V r e R*, 

(ii) D,g(r, 0) = [I - rDf(O)]-‘D?(O). 
Notice that o,g(r, 0) has a complex pair of conjugate eigenvalues a(r) f ill(r) with (Y(T) = 

r/(1 + r2) and P(r) = l/(1 + r’). So ~(0) = 0; p(O) = 1 and (da/dp)(O) = 1. 
Using local Hopf bifurcation theorem, we have the existence of a family of periodic solutions 

parametrized by r, bifurcating from r = 0. Moreover, the lemma 1.1 gives us the second part 
of the proposition. n 
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We denote by: y(r) = (y,(r), 0) the initial data of the bifurcating periodic solutions of the 
ODS (2.4) and from proposition 2.2 we see that Ily(r)jl 5 Cfi; x(+) the solution of (0.1) with 
4 as an initial data; x* the solution of (2.4) such that x*(O) = 4(O); T* the first return time of 
x* such that x,(T*) > 0 and x2( T*) = 0; 

LEMMA 2.1. There exists a positive real number r,, = re(C, T) such that 

lIx(+)(t)ll 5 CF2 

for any r < r, and $I E 63(y(r)). 

Proof. Here, we denote by x(t) the solution x(4)(t) for some 4 E @(y(r)). The RDS (0.1) can 
be written in the form: 

$x(t) = Of(O) * x(t - r) + L(x(t - r)) 

where 

IIux>ll 5 M* Ml2 for llxll 5.1. 

We also assume that M is chosen so that 

IIDf(x)[I 5 A4 for llxll 5 1. 

(2.5) 

Using the inner product in IR’, we get 

i $ 11x(t)l12 = (x(r), Of(O) * x0 - r)> + (x(t), GW - r))> 

= (x(t), Of(O) * (x0 - r) - x(t))> + (x(t), Ux(t - rH>. 
Thus 

Ilwll 5 llxwII + 
i 

‘llx(s - r) - x(s)II ds + 
5 

‘/(L(x(s - r))(( ds. (2.6) 
0 0 

Starting from a point in @(y(r)) we would like to prove that the solution will never exceed the 
order of v% We will proceed by contradiction. 

Because r#~ is in @(y(r)) we have: 

lb11 5 06 for some constant C. 

Assuming that a solution may become large, it implies that at some point it exceeds the value 
205 

Denote by i, r I i I T the first time at which it takes this value: 

Ilx(~ll = 2~6 and IlX(t)ll 5 2Cfi for t 5 L 

Using inequality (2.6), we get: 

Ilx(0ll 5 Ilx(O)II + rllx(.s - r) - x(s)II cl.9 + ‘llx(s - r) - x(.s)ll d.s + ‘/L(x(s - r))ll ds. 
0 s r 0 
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We can assume that r is small enough for 2Cv’? I 1. We have the following estimates: 

Ilx(O)II 5 CG 

I ~rlix(s - r) - x(s)11 ds 5 2cr3’2 
-0 

Finally: 

so 

2Cfi I CV? + ~CI-~‘~ + (1 + 4C2)M - T - r, 

C being independent of r, we see that for r small enough this inequality cannot be satisfied. 
Precisely, we can find a number r, > 0, r, = ro(C, T), such that: for r < r, the inequality is 

not satisfied. 
Therefore, we get: Ilx(t)ll zz 2Cfifor --r 5 t I T, and r I r,. n 

Proof of proposition 2.1. Note that for any t E [3r, T], the solution x(t) of (0.1) is two times 
continuously differentiable. 

Writing the Taylor development of x(t - r) and f(x(t - r)) in the neighborhood of t and x(t) 
respectively for f E [3r, T], we obtain: 

x(t - r) = x(t) - r-$x(t) 

Then: 

f(x(t - r)) = f(x(t)) - rDf(xO)) * $x(t). 

$x(t) = [I + rDf(x(t))]-’ * f(x(t)). 

Note that f(x(t - r)) may be written as: 

f(x(t - r)) = gO.9 x(t)) + Wx,) 

g(r, x) is defined by (2.2) and H(x,) is given by (2.3). 
Since x(r) is a two times continuously differentiable function, we can develop x(t - I-): 

2 2 

x(t - r) = x(t) - r$x(l) + 5 $x(t) + o(r2) 

o(r2) is small uniformly in x when sup Ilx(t)ll < M, for each it4 L 0. Also we have: 
-rsrsr 

f(x(t - r)) =f(x(t)) - rDf(x(r))ftx(t - r)) + r2v?f(x)2 * $x(r) 

+ ; D’f (X(f)) * [ 1 -&) 

2 

+ o(r2). 
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This implies that: 

Then: 

Substituting the above expression forf(x(t - r)) in (2.3) for 4 - x, we obtain: 

H(x,) = [I + rDf(x(t))]-’ r(Df(x(r)))2$X(f) + $lf(x(t)) Ax(t) 2 + o(r2) 
[ L > I* 

For r small enough we have: 

[I + @f(x)] - ’ = I - rDf(x) + /J(Df(x)y + . . . 

r3 
- -y ~fWP2fW)) $x(t) + W2) 

if sup Ilx(f)]l < A4 then H(x,) = o(r2), where o(r2) is small uniformly in x. 
-rStSO 

Now, let t be in the interval [0,31-l and x(t) = x(4)(t) for some 4 E @Q(r)). We have: 

H(x,) = f(x(t - r)) - g(r, x(t)) 

where g(r, x) is defined by formula (2.2). 
But we can write g(r, x(t)) in the form: 

g(r, x(t)) = J-(x(t)) + O(r3’2). 
Then 

H(x,) = f(x(t - r)) - j-(X(f)) + O(r3’2) 

IIJ%)ll 5 IIfW - r)) - muNIl + w3’2). 
Since f is a smooth function, we deduce that: 

IIH(x,)II 5 M/lx@ - r) - x(t)11 + O(r3’2). 

Using lemma 2.1 we obtain: /~(x,>ll 5 C( T)r3’2 where C(T) is a positive constant independent 
ofr. w 

We will give some comparison results between x* and x(4). 
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LEMMA 2.2. For any @I E @Q(r)) we have 

Ix*(t) - x#J)(t)ll = o(r2). 

Proof. The RDS (0.1) can be written as: 

$x(t) = g(r, x(t)) + fox,). 

Then we have: 

$ [x(4) - x*1(t) = &, x(+)(t)) - sir, x*(t)) + m%(4)). 

Using the inner product in IR2, we get: 

; $ Ilx(@) - x*l12 5 ~llmJ> - x* II + ~(x,WllxW - x* II 9 

from which it follows that 

D’Ilx(+) - x*ll 5 Mllxcb) - x*II + IIMxt(dJ))II. 

Here DC denotes the derivative from the right. 
Using the Gronwall lemma and in view of x(4)(0) = x*(O), we obtain: 

IlxWW - x*li(O 5 
i 
re""-“IIH(x,(~))ll d.s. 

0 

so 

1' e""-"'IIH(xs($))ll ds 5 ,~~e”(‘-s)ll~~x~~~))ll d.s + 1: e”“-“‘II~~x,~~~~ll d.s. 
.O 

From proposition 2.1, we have: 

and 

Thus: 

.i 
r e”(‘-“)IIH(x,(+))ll d.s 5 

‘r 
e”(r-s)O(r3’2) d.s I Cr”’ 

0 I .O 

'e""-"'IIH(x,(+))ll d.s 5 

11 

I 

e"('-s)o(r2) ds = o(r2). 
r ,r 

/lx@) - x*II = o(r2). n 

LEMMA 2.3. There are two positive real numbers b (independent of r) and T’ such that: 

IT* - T”l < b . r3’2 and x2W7-#) = 0. 

Proof. We construct T’ in an interval [T, , G], near T *, T, and T, are two real numbers such 
that x2(4)( T,) [respectively x2(0)( T,)] is positive [respectively negative]. 

Since Ilx(4)(t) - x*(r)]] = o(r2), uniformly in any bounded set in t, we look for T, and T2 
such that x*(T,) 2 Cr2 and x(T2) 5 -Cr’. The velocity of rotation of x* around 0 is determined 
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by the linear part of the equation: 

$x(r) = D&r, 0) *-et) + 4x(t)) 

the solution x(t) of the linear equation associated to (2.7) is given by: 

x(t) = eacr)’ 
[ 

cos P(r)r sin P(f)t -sin P(r)t cos /3(r)r 1 * x(0). 
If we transform (2.8) into polar coordinate, the solution will be: 

t 

p(t) = e”(‘)‘p(0) 

e(t) = P(r)t. 
We see that: 

e(T*) = 277 

set T, = T* - E and T, = T* + E where E is a small positive real number, we have: 

B(T,)r2n+i; 8(T,) I 27~ - ; 

and 

P(K) 2 C,fi; P(G) 2 C,vX 

where C, and C, are positive constant. 
For E > 0 sufficiently small, we obtain: 

x;(T,) 1 CY;$ and x;(T,) 1 C\i;;. 

For the retarded system, we ‘have: 

x,(c#~)(T,) 2 C\i;$ - KOr2 and x2(r$)(Tr) I C&j + KOr2 

where K, is a positive constant which is independent of I-. We can choose E such that: 

4K, r2 
br3’2 

&‘m= . 
Thus: 

IT’ - T*[ < br3’2. H 

LEMMA 2.4. There exists a real constant a0 > 0 which is independent of r such that 

Ijx*(T*) -- x*(T#)lj < aor’. 

Proof. 

h*(T*) - x*(T’)ll 5 s:ysTe $x*(r) - IT* - T’l. 
I/ /I 

(2.7) 

(2.8) 

From proposition 2.2, it follows that the amplitude of x* is of the order of v’?. Then there exists 
a real constant 0’ such that r~_~~~~ 7” kd/dt)x*U)ll 5 a”fi 
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Thus we have 
JJx*(T*) - x*(7+)11 5 a0r2. n 

LEMMA 2.5. For any t E [T’ - r, TN] and any $J in @(y(r)), 

11x(d)(t) - x(~K?lI 5 Cr3” 

where C is a positive constant independent of r. 

Proof. In the interval [T* - r, T*] the solution ~(4) is continuously differentiable, so that: 

II-W)(t) - x(4i)V*)lI 5 r T,_;;lj5 TX $x(4)(t) . 
II II 

Since: I/x*(t) - x(4>(t)JI = o(r2) [ see lemma 2.21 and Ilx*(t)ll s C * \r;l for some constant 
C L 0, we have 

I II 
Ax@)(t) 5 cfi. 

T* _;:?s TN dt 
Thus: 

11x(9)(t) - x(9WQlI 5 Cr3’2. n 

PROPOSITION 2.3. For any 4 E @(y(r)), z(d) E @(y(r)), where z(4) is the restriction of x(4) to 
the interval [T’ - r, TN]. 

Proof. We first show that l(x(~$)(T#) - y(r)\\ d Cr3’2. 
In fact we have: 

IIy(r) - x(ti)(P)ll I: IIN-) - x*(T*)ll + Ilx*(T*) - x*(T’)II + lIx*(T#) - x(4)(Oll. 

From [l, theorem 2.11, we can see that: 

II_W - x*~*)Il 5 II_W - QWII - K,r2, for some K, E IRT. 

On the other hand, we obtain I(x*(T*) - x*(P)\] and I(x*(P) - x(+)(P’)ll by lemmas 2.2 and 
2.4. Consequently we have: 

II y(r) - x(~W’)ll 5 II y(r) - #@)/I - K,r2 + Cr2 + o(r2). 

This implies that II y(r) - x(q~)(T’Q(l I Cr3’2. We will see now that, for any t E [T’ - r, T’], 
Ilx(@)U) - _WII 5 Cr3’2. So, let t be an element of [T’ - r, T’], we observe that: 

IIN9 - x(+)U)ll 5 lI_W - WUVI + ILWW? - x(4)U)ll. 
Now, in view of lemma 2.5, we have: 

IlxC~W) - x(4,)Wll 5 Cr3’2. 
Then, from the above estimate of IIy(r) - x(+)(T#)(l we deduce that: 

Ilx(4)U) - _Wll 5 Cr3’2 for any t E [T’ - r, T’]. 

This shows that ~(4) E @(y(r)). W 
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THEOREM 2.1. Under the assumptions (H,) and (H,), the RDS (0.1) has at least one periodic 
solution. 

Proof. The proof of the theorem follows from the above proposition and lemmas 2.2, 2.3 
and 2.4. 

In fact we define the Poincare operator: 

6: WW)) -+ W-r, 01, R2) 

where ~(4) is the restriction of ~(4) to the interval [7’# - r, TN]. Proposition 2.3 shows that 6 
is defined from @(y(r)), (which is a convex bounded set) into itself and that 6 is continuous and 
compact. So using the second Schauder fixed point theorem we conclude that 6 has at least one 
fixed point which corresponds to a periodic solution of the RDS (0.1). n 
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