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INTRODUCTION

In THIs paper we will consider the retarded differential system (abbreviated as RDS):

d
a—tx(f) = fxtt — r) 0.1

where we assume that f is a smooth function from R? into R?, and

0 -1
(Hy) S© =0;  DfO) = L 0]'

The object of our investigations is to obtain existence of periodic solutions when r is a small
positive real number.

For r close to 0, the system (0.1) is a perturbation of an ordinary differential system.

On the other hand, using the variable y(¢) = x(tr) instead of x, the RDS (0.1) can be read as
follows:

d
ay(t) =rf(y - ). 0.2)

We observe that for a 7-periodic solution (T > 0) x(¢) of (0.1) the corresponding periodic
solution y(¢) of (0.2) has a period 7/r which is close to +e when r is close to 0. It is a bifur-
cating phenomenon at infinity. Therefore, Hopf bifurcation theory does not apply.

The purpose of this work is to construct a perturbation method to get existence of periodic
solutions of the system (0.1) in the case where r is small enough.

Since, for r small enough, the system is a perturbation of an ordinary differential system, we
transform it into a perturbed parametric ordinary differential system and we construct a fixed
point problem. We underline that our technic is essentially based on some stability property of
the origin of (0.1) when r = 0. Precisely we will assume the origin of (0.1) is 3-asymptotically
stable for r = 0 [5].
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In Section 1, we recall the concept of ~-asymptotic stability and Hopf bifurcation developed
in [2, 5].

In Section 2, we present our perturbation method and we show that the RDS (0.1) has at least
one period solution.

I. PRELIMINARIES

We recall the framework for A-asymptotic stability and Hopf bifurcation [2, 4, 5].
Consider the system:

d
axl = a(u)x, — B(u)x, + P(u, x,, X3)
q (1.1)
TR a()x, — Blwx, + Q(u, xy, X3)
where
a(w), Bluy € €104, af, R)
P,QeC*'(0—a, Al x B¥a),R)  with k an integer, k = 3,
such that

a(0) =0, BO) =1 and d—O‘(O) #0
du

P(lu’ 0, 0) = Q(,u’ Os 0) =0 and DxP(ﬂ’ 0, O) = DXQ(:U’ O, O) = 0.

Introducing polar coordinates:

X, = pcosé, X, =psiné
we have
%’? = a(u)p + P*(u, p, 8) cos 6 + Q*(u, p, 0) sin 6
(1.2)
pj—f = B(wp + Q*(u, p, 6) cos § — P*(u, p, 6) sin 6
where

P*(u, p, 0) = P(u, pcos 8, psin §)
O*(u, p, 6) = Q(u, pcos 8, p sin 6)

[W(u,p, 6) = B(u) + (Q*(u, p, ) cos 8 — P*(u,p,0)sin@)/p  ifp#0
W(u,0,8) = B(u).

For every p, € [0, af and 8, € R, the orbit of (1.1) passing through (p,, 6,) will be represented
by means of the noncontinuable solution p(8, u, 6,, p,) of the problem:

dp
= = Ry, p, 0
a0 (u,p, 9) (13)

p(6o, 1) = po
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where

a()p + P*(u, p, 0) cos 6 + Q*(u, p, ) sin 6
W(u,p, 6) '

When the function p(u, 8, py, 8,) has been determined, the complete knowledge of the solutions
of (1.2) will be obtained by integration of the following equations:

®(u, p, 0) = (1.4)

de
'a; = W[#’ p(,u, 09 Pos 00)! 0] (1.5)
(u, p, O €l-a, al x [0, a[ x R.

Since a(0) = 0, it is easily seen by (1.3) and (1.4) that if @ € [0, a[ and u are sufficiently small
for any u € ]-4, a[ and c € [0, af the solution of (1.5) exists in [0, 2x]. This solution will be
denoted by p(u, 8, ¢).

Definition 1.1 [5]. The function V(u, ¢) = p(u, 2n, ¢) — ¢ is called a displacement function
for (1.1).

Remark 1.1. Since ® is @*, we have:

k
p(u, 0,¢) = Y Ui(u, O’ + d(u, 6, ¢); where @ is of order >k

i=1
(i.e. ®(u, 0, 0) = o(c*)
U, ®are C* for 1 <i=< kand U(u,0) =1,
Uy(u,0) = -+ = Up(u, 0) = ®(u,0,¢) = 0.

For u = 0, the system (1.1) can be written in the form:

at‘xl - "'Xz + X(Xl,xZ)

(1.6)
d
a;xz =x; + Y(x;, x5)

where:
X(x;, x5) = PO, x;, x3) and Y(x;, x3) = Q0, x;, x5).

Definition 1.2 [5]. Let h be an integer; h € {2, ..., k}. The solution x; = x, = 0 of (1.6) is said
to be hA-asymptotically stable (resp. A-completely unstable) if:
(i) for every 7, { € C[B*(a), R) of order greater than 4; the solution x, = x, = 0 of the system

axl = =Xy + Xoxy, x3) + -0+ Xp(xy, X3) + Xy, X3)

(1.7

d
axz = x; + Yalxy, %) + -+ Yylxy, x3) + Qx5 x3)

is asymptotically stable [resp. completely unstable];
(ii) property (i) is not satisfied when #4 is replaced by any integer me {2, ..., h — 1}.
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THEOREM 1.1 [5]. Let & be an integer, 2 < h < k. The following propositions are equivalent:
(1) the solution x; = x, = 0 of (1.6) is h-asymptotically stable [resp. A-completely unstable];
(2) one has

a' "V
(O O)=0forl<i<h-1 and a—C,,(O,O)<0 [resp. >0].
In addition if either proposition (1) or (2) holds, 4 is odd.

THEOREM 1.2 [5]. There exist £ near 0, & > 0 and a function g in C*~!([0, ¢[, R) with u(0) =
(du/de)(0) = 0 and supf|u(c)l, c € [0, e[} = & < & such that for any c € [0, ¢[, 1 € ]-&, &] the
orbit of (1.1) passing through (0, ¢) is closed if and only if u = u(c).

Remark 1.2 [5]. Theorem 1.2 is the C**! version of R? of the local Hopf bifurcation theorem.

LemMa 1.1. If the origin of (1.6) is 3-asymptotically stable then the amplitude of the bifurcating
periodic solution of (1.1) [for u close to u = 0] is of order Vu. Furthermore the bifurcation is
supercritical if (da/du)(0) > 0.
Proof. If the origin of (1.6) is 3-asymptotically stable then we have:
v v v
-—(0,0 0,0)=0 0,0)<0,
ac(,) az( ) and a3( )

where V(u,c) is the displacement function of (1.1). Moreover the bifurcating function:
¢ — u(c) satifies:

d

with V(u,c) = (V(u, c))/c if ¢ #0 V(u,0) = U(u,2n) — 1; Uy, 2n) is given by remark
(1.1) and we have

Cdu d’u 1{ o’V
pO) =0 =0 and -5 50 = [a (U 0)/ ©, 0)]

d /d
U,(u,2n) = exp<2n _"g{%_)_ﬁ)
Then
il—/(0 0) = 27r—(0) > 0.
Also

2
d (O)>0

Furthermore, from the local Hopf bifurcation theorem [theorem 1.2}, u(¢) is (k — 1)-times con-

tinuously differentiable. So:

1
2

1 d%u _ ’ 2u(c)
u(e) = 3 3 2(O) and c= wdzu(O)/dzc'

2
@ = 10 + L@ c+2-TE ) + o),
dc dc

then:
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This shows that the amplitude of the bifurcating periodic solution of (1.1) [for u close to u = 0]
is of the order Vuu. Since (d2u/dc?)(0) > 0, from [2], we deduce that the bifurcation occurs for
u>0 N :

2. MAIN RESULT

In this section we develop our existence result. We proceed in the following way. We trans-
form the system (0.1) into a perturbed parametric ordinary differential system and we construct
a fixed point problem in the neighborhood of the bifurcating solutions of the ODS.

ProposITioN 2.1. Under (H;), (0.1) can be written in the form:

ad;x(t) = g(r, x(t)) + H(x,) 2.1
where:
g(r,x) = I + rDf()] ' f(x) (2.2)
and H(¢) is defined as the difference:
H(¢) = f(o(-r) — g(r, $(0)). (2.3

Moreover, let T > 0 and R > 0 be fixed. Suppose
¢ = x,, for a solution of (0.1) such that
xoll = R and some time ¢,

() 3r < t < T, then: H(¢) = o(r*) (uniformly with respect to 7 and R).
(i) If, on the other hand, 0 < t < 3r, then: H(¢) = O(r*'?) (once more, uniformly with
respect to T and R).

Before proving proposition 2.1, we look for a while at the ordinary differential system

d
—y = g(r, 2.4
a’ g(r,y) (2.4)
where g(r, y) is defined by formula (2.2).

From now on, we will assume that:

(H,) for r = 0, the origin y = 0 of (2.4) is 3-asymptotically stable.

ProrposiTioN 2.2. Under the assumptions (H,) and (H,) the system (2.4) has a family of periodic
solutions parametrized by r, for r close to 0, of amplitude of order Vr and of period close to 27.

Proof. g is defined from R x R? into R? and satisfies:

i) g(r,0) =0,vreR*

(ii) D,g(r,0) = [/ — rDf(0)]"'Df(0).

Notice that D, g(r, 0) has a complex pair of conjugate eigenvalues a(r) £ iB(r) with a(r) =
r/(1 + r* and B(r) = 1/(1 + r?). So «(0) = 0; B(0) = 1 and (da/du)(0) = 1.

Using local Hopf bifurcation theorem, we have the existence of a family of periodic solutions
parametrized by r, bifurcating from r = 0. Moreover, the lemma 1.1 gives us the second part
of the proposition. W
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We denote by: y(r) = (y,(r), 0) the initial data of the bifurcating periodic solutions of the
ODS (2.4) and from proposition 2.2 we see that || y(r)|| = CVr; x(¢) the solutior: of (0.1) with
¢ as an initial data; x* the solution of (2.4) such that x*(0) = ¢(0); T* the first return time of
x* such that x;(T*) > 0 and x,(T*) = 0;

B(y(M) = ¢ € C([-r, 01, R} / lo(s) — y(Il = Cr¥?).

Lemma 2.1. There exists a positive real number ry = ro(C. T) such that
Ix@)oll = cr'?
for any r < ry, and ¢ € ®(y(r)).

Proof. Here, we denote by x(¢) the solution x(¢)(¢) for some ¢ € B(y(r)). The RDS (0.1) can
be written in the form:

%x(t) =DfO) - x(t —r) + L(x(t —r) 2.5

where
ILE)| = M- x> for x| =1.

We also assume that M is chosen so that
IDfFo)l =M for |ix]| < 1.

Using the inner product in R?, we get

%;%Hx(t)ll2 = (x(t), Df(0) - x(t — 1)) + {x(t), L(x(t — N))

= {x(1), D) - (x(t — r) — x(£))) + {x(t), L(x(tr — ).
Thus

t t
Ix()ll = IxOll + g Ixts = r) = x(s)ll ds + g ILEets — rll ds. (2.6)
0 0
Starting from a point in &(y(r)) we would like to prove that the solution will never exceed the

order of vr. We will proceed by contradiction.
Because ¢ is in ®(y(r)) we have:

¢l = cVr  for some constant C.

Assuming that a solution may become large, it implies that at some point it exceeds the value

2CVr.
Denote by 7, r < 7 < T the first time at which it takes this value:

Ix(H) = 2cVr  and X)) <2CVr  fort=<r.
Using inequality (2.6), we get:

r f f
o)l = I + j Ix(s — 1) — x(s)] ds + S (s — ) — x)] ds + S ILxts = )l ds.
0 r 0
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We can assume that r is small enough for 2CVr < 1. We have the following estimates:

Ix@)ll < Cvr

lixts = ) — x(s)l ds = 202
0
i T
lx(s — r) — x(s)|| ds = g sup |[DfGO)|l - rds < M-T-r.

rixl=s1

ey Oy

Y,

Finally:
i [
g IL(x(s — ) ds < Mj lx(s — P> ds < 4MC>Tr.
J0 0

So
20Vr = CVr +2Cr*"% + (1 + 4CHM - T r,

29

C being independent of r, we see that for r small enough this inequality cannot be satisfied.
Precisely, we can find a number r, > 0, rq = ro(C, T), such that: for r < r, the inequality is

not satisfied.
Therefore, we get: ||x(¢)|| = 2CVrfor -r<t=<T,andr<r,. W

Proof of proposition 2.1. Note that for any ¢ € [3r, T], the solution x(¢) of (0.1) is two times

continuously differentiable.

Writing the Taylor development of x(¢r — r) and f(x(¢t — r)) in the neighborhood of ¢ and x(z)

respectively for r € [3r, T'], we obtain:

d
x(t — r) = x(t) - rax(t)

d
St = n) = fx(@)) — rDf(x(1)) - a;X(t)-
Then:

d
0= (I + rDf O] - f(x(2)).

Note that f(x( — r)) may be written as:

Sx(@ = r) = glr,x(1)) + H(x,)
g(r, x) is defined by (2.2) and H(x,) is given by (2.3).

Since x(r) is a two times continuously differentiable function, we can develop x(¢t — r):

Xt -1 = xt0) - rExiey + ra t) + o(r?)
B dr 2 a2” 4
o(r?) is small uniformly in x when sup [x(7)| < M, for each M = 0. Also we have:

-rstsT

St — D) = f(x(t)) = rDfF(x()f(x(t — ) + r*[Df(x)* %X(t)

+—er2 Y i 2
5 S(x(1)) dtX() + o(r’).
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This implies that:

2
d
SO =) = U+ rDf () ™" - [f(x(t)) + %(Df(x(t)))zaxa)

2 d 2
= D*f(x(1)) - [ame + O(rz)].
Then:
d
St =) = glr,x(t)) + [I + rDf(x(¢ ))]‘l[r(Df (x(1)))? aX(t )

+ ~—D2f(x(t))( x(t)) + o(rZ)J.
Substituting the above expression for f(x(¢t — r)) in (2.3) for ¢ — x, we obtain:
d 2
H(x,) = [I + rDf(x(t)]” [r(Df )y ——X(t) + —Df (X(t))< x(t )) + O(rz)]-

For r small enough we have:

(I + rDfo)~! =1 - rDf(x) + rz(Df(x))Z + .-

2 3 3d
H(x,) = r(Df(x(t)))’ —X(f) + = 2f(x(t))< (t)> - %(Df(x(f)))a-;x(l)

_r 2 i 2
3 Df(x(t)D f(x(1)) T x(t) + o(r?)

if sup [lx(¢)| < M then H(x,) = o(r?), where o(r?) is small uniformly in x.
-r<t=0

Now, let ¢ be in the interval [0, 3r] and x(¢) = x(¢)(z) for some ¢ € B(y(r)). We have:
H(x,) = f(x(t — r) — g(r, x(t))

where g(r, x) is defined by formula (2.2).
But we can write g(r, x(¢)) in the form:

g(r, x(1)) = f(x(1)) + O(r*"?).
Then
H(x,) = f(x(t = n) — f(x(1)) + Or*?)

IHEx) < | fxt = 1) = FOo) + O*?).
Since fis a smooth function, we deduce that:
1HG)| = Mix(t - 1) - x()l + 0.
Using lemma 2.1 we obtain: |H(x,)| = C(T)r*> where C(T) is a positive constant independent

ofr. W

We will give some comparison results between x* and x(¢).
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LemMma 2.2. For any ¢ € ®&(y(r)) we have
lx*(2) = ()OI = o(r?).

Proof. The RDS (0.1) can be written as:

d
5 x(t) = g(r, x(t)) + H(x,).

Then we have:
d
@ [x(9) — x*}(2) = g(r, x(¢)(2)) — g(r, x*(1)) + H(x,(9)).

Using the inner product in R?, we get:
1d

XY lx(¢) — x*||I> = Mllx(¢) — x*| + H(x,(o)lIx(¢) — x*|,

from which it follows that
D*|x(¢) — x*|| = Mlx(¢) — x*|| + |Hx (oM.

Here D* denotes the derivative from the right.
Using the Gronwall lemma and in view of x(¢)(0) = x*(0), we obtain:

r

@)@ - x*l@) = § M09 E(x (o)) ds.
0
So

"

{ eM I Hx (o)l ds < \ eMI N Hix(o)) ds + ( eM I H(x (o)l ds.

JO Jo r

From proposition 2.1, we have:

g " Hix o) ds = \ M0 ds < Cr*2
0 Jo
and

| erertremontes < | oo as = o

r Jr

Thus:
lx(¢) — x*|| = o(r). W

LemMA 2.3. There are two positive real numbers b (independent of r) and T* such that:
[T* - T <b-r¥* and  x(eXT" = 0.
Proof. We construct T* in an interval [T;, T;], near T*, T, and T, are two real numbers such
that x,(¢)(T}) [respectively x,(¢)(T3)] is positive [respectively negative].

Since [|x(¢)(7) — x*(¢)|| = o(r?), uniformly in any bounded set in ¢, we look for 7, and T,
such that x*(7;) = Cr? and x(T;) < —Cr?. The velocity of rotation of x* around 0 is determined
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by the linear part of the equation:
d
a—IX(t) = D, g(r, 0) - x(t) + o(x(1)) 2.7

the solution x(¢) of the linear equation associated to (2.7) is given by:
cos B(ryt  sinB(r)t| ©)

—sin B(r)r  cos B(r)t ’

If we transform (2.8) into polar coordinate, the solution will be:

{p(t) = ¢*p(0)
(1) = B(r)e.

x(t) = e“")’[ (2.8)

We see that:
T* = 2n

set Ty = T* — eand 7, = T* + ¢ where ¢ is a small positive real number, we have:
£ £
9(7})22ﬂ+5; 0(7’,)527:—5

and
p(T) = CVr;  p(Ty) = Gy,

where C, and C, are positive constant.
For ¢ > 0 sufficiently small, we obtain:

XX(T) = cf% and  xXTp) = cf%.
For the retarded system, we have:
X@NT) = OV — Kor®  and x0T < CoVT 5 + Kor?

where K, is a positive constant which is independent of . We can choose ¢ such that:

4K, r?
>

= pr¥?

Thus:
|IT" - T* < br’?. =
LemMa 2.4, There exists a real constant a° > 0 which is independent of r such that

|x*(T*) -- x*(TH|| < a°r>.

Proof.

L] - 17+ - 1.

dr
From proposition 2.2, it follows that the amplitude of x* is of the order of V7. Then there exists

a real constant a° such that  sup  |[(d/dt)x*(¢)|| = 2°Vr.
TM-r<stsT'

lx*(T*) — x(T"| = sup

T'-r<isT'
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Thus we have
lx*(T* — x*(THl < <. m

Lemma 2.5. For any f € [T* — r, T*] and any ¢ in &(¥(r)),
x(@)t) — x(e)TH| = cr’”?

where C is a positive constant independent of r.

Proof. In the interval {T* — r, T*] the solution x(¢) is continuously differentiable, so that:

d
| FEO0)

Ix@)r) — x(@}THll < r _ sup
T'—r=st=sT
Since: [x*(t) — x(¢)(®)| = o(r?) [see lemma 2.2] and |x*(t)| = C- Vr, for some constant
C = 0, we have

sup %x«b)(l) < CVr.

T'-r=<t<T'

Thus:
Ix@)t) - x@XT)l = cr*2. m

ProrosiTioN 2.3. For any ¢ € ®(¥(r)), z(¢) € B(¥(r)), where z(¢) is the restriction of x(¢) to
the interval [T* — r, T*].

Proof. We first show that ||x(e}(T*) — y(nll = cr*72.
In fact we have:
[y(r) = (XTHI = ly() = x*(TH + 1T = xX(TH] + [ (T = x(e)THI.
From [1, theorem 2.1], we can see that:
Iy = x(THI = ) - ¢ - K,r*,  for some K, € R.

On the other hand, we obtain |[x*(T*) — x*(T")| and ||x*(T*) — x(6)}(T*)| by lemmas 2.2 and
2.4. Consequently we have:

Iy = x(eXTHI < lly(r) — o0l — K,r* + Cr* + o(r?).

This implies that || y(r) — x(e)(T*)|| = Cr*’2. We will see now that, for any t € [T* — r, T*],
x(e)(t) — y(P)|| = Cr*’2. So, let ¢ be an element of [T — r, T*], we observe that:

Iy(r) = ()N = [ y(r) ~ (ONTHI + lIx(eoNT*) — x(e))].
Now, in view of lemma 2.5, we have:
Ix@)T*) — x(@))] = Cr*’2.
Then, from the above estimate of || y(r) — x(e}(T"|| we deduce that:
lx(o)r) — y(nll = €r**  foranyte[T* - r, T".
This shows that z(¢) € ®(¥(r)). A
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THEOREM 2.1. Under the assumptions (H,) and (H,), the RDS (0.1) has at least one periodic
solution.

Proof. The proof of the theorem follows from the above proposition and lemmas 2.2, 2.3
and 2.4.
In fact we define the Poincaré operator:

®: B(P) ~ C([~r, 0], R}
¢ — z2(d)

where z(®) is the restriction of x(¢) to the interval [T* — r, T*]. Proposition 2.3 shows that ®
is defined from ®(y(r)), (which is a convex bounded set) into itself and that @ is continuous and
compact. So using the second Schauder fixed point theorem we conclude that @ has at least one
fixed point which corresponds to a periodic solution of the RDS (0.1). B
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