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Abstract-We investigate the qualitative behaviour of the models of cell production 
systems, in the form of systems of nonlinear delay differential equations. Considered 
are three general models of a system involving the subpopulations of stem cells, pre- 
cursor cells and mature cells, with different configurations of regulation feedbacks. The 
models correspond basically to the blood cell production process: however, other ap- 
plications are possible. First, the simplified version (describable by ordinary differential 
equations) is considered. Fairly complete characterization of the trajectories is possible 
in this case, using the Lyapunov functions and phase plane techniques. Next, for the 
general models, the stability of equations linearized around the equilibria is investigated. 
Certain results can be obtained here, using both exact methods and numerical proce- 
dures based on an original lemma on the zeros of exponential polynomials. Then global 
properties (boundedness, attractivity. etc.) are examined for the nonlinear. delay case 
using a range of methods: Lyapunov functionals, Razumikhin functions and direct es- 
timates on solutions. Certain special cases of our models reduce to previous literature 
models of blood production. Results of our analysis enable to exclude these configu- 
rations of regulation feedbacks which yield model behaviour not compatible with bi- 
ological and medical observations. Techniques developed in this paper are applicable 
to a wide range of possible models of cell production systems. 

1. INTRODUCTION 

In this paper, we are going to present elements of a mathematical theory of cell production 
systems. We will be mainly preoccupied with the analysis of mathematical models in the 
form of systems of nonlinear difference-differential equations. However. we will derive 
the models based on their biological background and discuss the biological relevance of 
the results obtained. Our principal purpose will be to demonstrate in what way the model 
performance depends on the configuration of regulation feedbacks. 

Cell production systems, as understood in this paper, are self-renewing cell populations 
which maintain the continuous supply of differentiated (functional) cells to various parts 
of a living organism. The dynamics of cell production systems attracted the attention of 
biologists and mathematicians a long time ago in the context of blood cell production (cf. 
Lajtha et al.[l]). Despite differences depending on the type of cells considered, certain 
common elements can be found in all the known cell production systems. 

First, there exists a subpopulation of most primitive cells, called the stem cells, which 
is truly self-renewing. This means that stem cell divisions can produce both stem cells 
and cells of higher maturity, which will be called the precursor cells. The precursor cells. 
in turn, produce cells with an even more increased degree of maturity. After a certain 
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number of maturation (differentiation) stages, the mature (differentiated) cells are pro- 
duced. They usually do not have the ability to divide, and after fulfilling their specific 
tasks, are removed from the organism. 

The above description applies, for example, to the blood production systems in animals 
and humans (see Wichmann[Z] and the references therein) but also to the epidermis cell 
production (see Potten et a1.[3]) and, possibly, to other systems. 

In normal conditions. the cell production system should maintain a constant supply of 
differentiated mature cells. In the emergency cases when for some reasons the organism 
suffered from the loss of certain mature cells (like the loss of erythrocytes in a haemor- 
rhage) the system should react, providing for an appropriate period of time an increased 
supply of cells. These two postulates imply that the system has at least one regulation 
feedback, detecting the perturbations in the number of mature cells and accordingly ad- 
justing the production rate of the stem and precursor cells. We will call it the long-range 
feedback. 

It is logical to suppose that there exists at least one more regulation feedback. Indeed, 
the long-range feedback would have a tendency towards “draining” the stem cell pop- 
ulation to compensate for the loss. Then, if all the stem cells were committed towards 
maturation, the whole system would possibly collapse, since only the stem cells are truly 
self-renewing. 

Therefore, another feedback should “cut off’ the supply of precursor cells, if the 
number of stem cells decreases, preventing the system from extinction. This will be called 
a short-range feedback. 

Based on ideas similar to these presented above, numerous mathematical models of 
cell production systems were constructed, mainly for various lines of the blood forming 
system in man and in experimental animals. The models vary from simple metaphores of 
real systems, described by a single equation and analyzed mathematically, to very com- 
plex, computer simulated structures. The simple models usually include only one feed- 
back. Thus, for example, Mackey’s model[4] describes the effects of a short-range feed- 
back of the stem cell cycle, while Wazewska and Lasota’s model[5] includes the long- 
range feedback only (see also discussion). The comprehensive computer models usually 
introduce additional feedbacks, corresponding to interactions between the stem and pre- 
cursor cells, precursor and mature cells, etc. (see Wichmann[2] and Aarnaes[61, for ex- 
ample). These models reproduce details of cell production dynamics, under particular 
types of stresses, in a variety of experimental conditions. 

The effort we undertake in this paper is directed towards understanding the influence 
of the configuration of the regulation feedbacks on the system performance. We delib- 
erately consider a simplified situation involving the long- and short-range feedback only. 

Doing so, we are able to characterize in a rigorous way the system dynamics. Our 
assumptions are qualitative only. This adds generality to the considerations and allows 
us to treat some previous models as special cases of our “generalized models.” 

We do not attempt to provide a complete literature review of the mathematical models 
of cell production systems. Instead, we refer the reader to an excellent review paper by 
Wichmann[7] who discusses models of blood cell production systems that constitute the 
vast majority of systems analyzed mathematically (see also a book by Wichmann[Zl). 
Simple qualitative analysis of regulation functions for the blood stem cells differentiation 
was provided by Wichmann and Loeffler[8]. 

The structural model of the cell production system, which is a framework for three 
models of regulation feedback to be considered, is based on a model of red-blood-cell 
system introduced in Kimmel and Arino[9]. It is based on the following assumptions (cf. 
Fig. 1.1). 

(1) Stem cell proliferation dynamics is represented by a cell cycle model consisting of 
two phases: active and passive. A stem cell leaving mitosis enters the passive phase, then 
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Fig. I. I. Structural model of a cell production system. Pt t). N( 0. C( 11 and R( 1) are the number of active stem 
cells. passive stem cells. precursor cells and mature cells, respectively. a(t) is the exit rate from the passive 
stem cell compartment: 7’ is the residence time in the active stem cell compartment; d(r) is the fraction of 

differentiating stem cells. H and A are the transit time and amplification coefficient of the precursor cell com- 
partment. p is the exit rate From the mature cell compartment. 

it may either transform into a more mature precursor cell or enter the active phase (and 
then divide and enter the passive phase again). It is assumed that the cell residence time 
in the passive phase has the exponential distribution with parameter cr (the reciprocal of 
the mean residence time in this phase). Such an hypothesis is consistent with the Smith- 
Martin[lO] model of the cell cycle. The probability of stem cell differentiation (transfor- 
mation) is denoted by ti. 

The residence time in the active phase is equal to T. As in biological terminology (see 
Mitchison[l I]), we understand that our “active phase” is S + G1 + M, where S stands 
for the DNA synthesis. Gr for the premitotic phase and M for the cell division (mitosis). 
Our “passive phase” is assumed to be Go + G,, where Go is the resting (quiescent or 
“storage”) phase, while G, is the initial growth phase. 

(2) Regulated factors are d-probability of stem cell differentiation and cl-reciprocal of 
the mean residence time in the passive phase. 

(3) Each stem cell. once differentiated, produces after time H an average number of 
A mature (completely differentiated) cells. Quantities A and H represent all the stages of 
the precursor cells maturation, division, etc. 

(4) Mature cell life length is a random variable with exponential distribution with ex- 
pected value I/p. This is a good approximation for, e.g., the red-blood-cell system (cf. 
Kimmel and Wazewska-Czyzewska[ 12, 131). 

Model structure implied by assumptions (l)-(4) is depicted in Figure 1.1. The equation 
for the stem cell number in Go + G, [N(t)] takes the following form (cf. Kimmel and 
Arino[9] where a similar equation is derived step by step; also cf. Kimmel[l4, 151 for 
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general methods of modeling the cell cycle kinetics): 

$0) = - cr(t)N(t) + 2[1 - d(r - z-)]cX(t - T)N(t - z-). (1.1) 

The equation for the number [R(t)] of mature cells is 

&) = - BR(t) + r(t), (1.2) 

where r(t) is the rate of cell flow into the mature cell compartment. Assumption (3) implies 
that 

r(t) = A d(t - H)a(r - H)N(t - H), (1.3) 

so that 

d(r) = -PR(t) + A cr(t - H)d(t - H)N(t - H). (1.4) 

We may also compute the number p(t) of cells present at time t in the active phase of 
the stem cell cycle: 

P(t) = j-L T [ 1 - d(-r)]a(r)iV(~) dT. 

Equations (1.1) and (1.4) provide a complete description of the cell production system 
dynamics, if the regulated factors a(t) and d(t) are specified. 

In our paper, we will consider three versions of the regulation feedbacks (model 1, 2 
and 3; Section 2). They correspond to various biological assumptions. We will try to 
answer basic questions concerning their qualitative behaviour. It is not easy, since the 
models are described by systems of two nonlinear difference-differential equations, with 
the two (generally different) delays T and H. We begin, in Section 3, by studying the 
special case of T = H = 0, i.e. the models reduced to systems of ordinary differential 
equations. The results of this section are fairly complete and allow us to characterize the 
model dynamics (also, to some extent, for the case of small delays T and H). 

Which of these results can be extended to the general case of “large” T and H? We 
study this question in two sections. In Section 4 we present stability results for the li- 
nearized equations using both analytic methods and numerical studies. Section 5 contains 
boundedness and attractivity results for the general nonlinear equations. The most POW- 
erful tool for stability investigation of our models is provided by Lyapunov or quasi- 
Lyapunov functionals. For the delay systems, the analysis is very difficult and involved, 
while the results are only partial, However, even such results provide us with intuitions, 
important for understanding the cell production systems. Apart from biological interpre- 
tations, the equations considered in this paper are interesting from the purely mathematical 
viewpoint, since systems of difference-differential equations with more than one delay 
are still not very well understood. Interesting (sometimes more detailed) results can be 
obtained for special cases of model 1 (Section 6). Section 7 is a discussion containing a 
review of biological relevance of our models, as well as a summary of results. 

2. MODELS I,2 AND 3: DEFINITIONS, ASSUMPTIONS AND POSITIVITY OF 
SOLUTIONS 

We consider three versions of the regulating feedbacks. They correspund to various 
biological assumptions. 
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Model 1. The fraction [d(r)] of differentiating stem cells is an increasing function of 
the number of passive (Go + G I ) stem cells: 

d(r) = g(N(r)). 

The rate of the outflow from Go + G, stem cell compartment [a(t)] is a decreasing function 
of the number of mature cells: 

a(t) = h(R(t)). 

Intuitively, the mature cell number is influencing the production rate of stem cells, while 
the contents of the “storage” Go + GI compartment controls the proportion of differ- 
entiating stem cells. For technical reasons, we assume the following: 

h E C’(R+); h(0) = h* > 0, h(x) = 0; h’(U) < 0. If > 0, (hi) 

g E C’@B 1; g(0) = 0, g(x) = 1, g’(u) > 0, 11 > 0. kl) 

Now the system (1.1) (1.4) takes the form of 

N(t) = -h(R(t))N(r) + 2[1 - g(N(r - T))lh(R(r - T))N(r - T), (NI) 

i?(r) = -pR(r) + Ag(N(r - H))h(R(r - H))N(r - H). (RI) 

Model 1 is an extension of the model by Wazewska and Lasota[S]. Model 1 has two 
equilibria: trivial (N*, R*) = (0, 0) and nontrivial (N, Z?), such that 

N = g-‘(t). 

f3ri = (AIZ)&‘h(f?). 
tell 

Model 2. In this variant, both a(r) and d(r) depend on the mature cell number: 

40 = g(RW, 

a(r) = h(R(r)). 

with g and h being decreasing functions. The assumption that both feedbacks here are 
designed to “exploit” the stem cell population will cause system instability. Again, we 
assume 

h E C’(FJ_); h(0) = h* > 0; h(r) = 0; h’(u) < 0, II > 0, 

g E C’(R- ); g(0) = 1. g(x) = 0; g’(u) < 0, If > 0. 

(hz) 

(gz) 

The system equations are 

fi(r) = -h(R(r)) N(r) + 2[1 - g(R(r - T))]h(R(r - T))N(r - T), 

k(r) = -pR(r) + Ag(R(r - H))h(R(r - H))N(r - H). 

(Nz) 

(Rz) 

This model has also two equilibria: trivial (N*, R*) = (0, 0) and nontrivial (i”j, I?): 

R = g-‘(i), 
i%’ = 2f3f?[Ah(ii)]-‘. 

(e2) 
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Model 3. This is, in a sense, a reversal of model 1. The long-range feedback controls 
the differentiating stem cell fraction, while the “defensive” one, the exit rate from Go + 
G,: 

d(t) = g(R(r)), 

a(t) = h(N(t)), 

where both g and h are decreasing. This model is analogous to a much more comprehensive 
computer model by Loeffler and Wichmann[ 161. The system can be represented as follows: 

h’(f) = - h(N(t))N(t) t 2[1 - g(R(t - T))]h(N(t - T))N(t - 7), 

k(t) = -PR(t) + Ag(R(t - H))h(N(t - H))N(t - H), 

where 

g E C?(R,). g > 0, g’ < 0. g(0) = 1, g(x) = 0, (g3) 

h E C’([w+), h > 0, h’ < 0, h(s) = 0. (173) 

It is more convenient to introduce the function Q(N) = N/t(N), so that the system equa- 
tions have the form 

N(t) = -@(N(f)) + 2[1 - g(R(t - T)WW’(t - 01, (N3) 

&I = -PR(t) + Ag(R(t - H))@(N(t - H)). (R3) 

Q(N) is not monotonous and can have quite a complicated form. We will assume the 
following: 

Q’(N) z=- 0, N < N,,; W(N) < 0, N > No; <p(z) = 0. (Q3) 

Obviously, O(O) = 0. Under (Q3), Q(N) has a unique maximum at N = No. This system, 
(NJ), (R,), has a trivial equilibrium (N*, R*) = (0, 0) and can have 0, 1 or 2 nontrivial 
equilibria: 

(1) @(No) < 2f3g-‘(;)/A (no nontrivial equilibrium), 
(2) @(No) = 2@g-‘(#A [single nontrivial equilibrium: (N,, R)], where R = g-‘(j), 
(3) @(No) > 2pg-‘(Q/A [two nontrivial equilibria: (Ni, l?) and (Nz, 1?)]. where the Ni 

are the roots of the equation Q(N) - 2@-‘(&/A = 0 (i$ < No < I%). 
Though Models 1, 2 and 3 represent three simple and intuitively plausible versions of 

regulation feedbacks, they are by no means the only ones possible. Even in the framework 
of two regulated factors, cx and d, we can consider much more generally: a = h(N, P, 
R) and d = g(N, P, R). We will address this problem in Discussion. 

Under assumptions introduced above, all the equations considered, have unique so- 
lutions on R + , given that continuous initial data R(c __H, 01, N(c--H. 01 are specified (see 
Hale[l7]). However, we are interested only in non-negative solutions: 

Proposition 2.1. Under Hypotheses (gj), (hi), i = 1, 2, 3, the solutions of Eqs. (N;), 
(ROY i = 1, 2, 3 (respectively) satisfy the following properties: 

(1) If R(t) 2 0, N(t) 2 0, t E [-H, 01, then R(t) 2 0, N(t) zz 0, for t > 0. 
(2) Moreover, if N # 0 in [ - T, 01, then N(t) > 0, f z T; R(t) > 0, t > H. 
(3) If N = 0 in [-T, 01, then R(r) = R(H - T) e-pc’-(H-7)), t z H - T. 
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Proof. We write down the “variation of constants” formula for the general system 
I), (1.4): 

N(t) = N(0) e-J%) dr + 2 0’ [ 1 - d(~ - T)]oL(T - T)N(T - Z’)e -J:+) ds dr , 
I 

f 
R(f) = R(0) e-@ + A CY(T - H)~(T - H)N(T - H) e-cr-i)@ di. 

(1 

These equations have non-negative solution since a, d, 1 - d I 0 [see Hypotheses (gl), 
(III); (gz), (hz) and (g3), (hs) for models 1, 2 and 3, respectively]. 

For part (2) of the lemma, it is enough to note the following estimates: 

N(t) 2 2 min a(s>(l - d(s)) eerh* 
I 

0 

N(s) ds, t 2 I-, 

sE[-TT.r-T] -T 

0 

R(t) 2 A e-@ min a(s) _T 
I 

d(s)N(s) ds, t 2 H, 
sE[-H.t-H] 

and use the assumptions on functions k and g. 
The last part is obtained by iooking at the system (1. l), (1.4) and using the uniqueness 

of solutions. N = 0 solves (1.1) for any R and then, after time H - T, Eq. (1.4) reduces 
to R = -PR. !J 

Remark. Part (3) of the lemma illustrates the critical role of the stem cell population. 
If, namely, at some moment, say t = - T, all the stem cells are destroyed, then V(t) = 
0, t E [-T, 0] (cf. Fig. 1.1). This, by Proposition 2.1, causes complete extinction of the 
system. 

3. ORDINARY (NO DELAY) CASE 

In this section, we will present the analysis of our models for the case T = H = 0, 
when they are described by ordinary differential equations. Biologically. T = 0 means 
that the duration of the S + Gz + M phase of the stem cells cycle is short compared to 
that of Go + Gr . This simplification is not unreasonable, since usually Go and Gr are the 
longest cell cycle phases (see Mitchison[ll]). Also, we may treat V(t) as the total number 
of stem cells and assume that their generation time is exponentially distributed. 

The second assumption, H = 0, is equivalent to the absence of the intermediate pre- 
cursor cell compartment. Consequently, we should have A = 1. Hokvever, from the 
mathematical viewpoint, it is convenient to retain parameter A, because it is present in 
the general model. 

Even if for given cell production system the above assumptions cannot be considered 
completely relevant, the ordinary case will provide intuitions about the type of behaviour 
to be expected in the general case. Also, in the vicinity of equilibria, the stability properties 
are unchanged for “small” delays T and H. 

Model 1. The simplified version of Eqs. (N,), (R,) is now 

i9 = [l - 2g(N(t))llv(t)h(R(t)), (3.1) 

k = -PR + AN(t)g(N(tj)h(R(t)) (3.2) 

Analysis of the linearized equations proves that the trivial equilibrium is unstable (saddle 
point), while the nontrivial equilibrium (fi, d) is a stable (asymptotically) focal point. The 
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structure of the trajectories near (??, d) depends on systems parameters. Here we will 
analyse one of the two possible cases. The other case is analogous and corresponds to 
very similar behaviour. 

Define ali = Zg’(H)h(R), azl = A($ + J?g’(i?CT))h(l?), and az2 = p - &Alv/h’(Z?). We 
assume the following: 

Hypothesis 3.1. a,? > alI. 

Now it is possible to prove that the trajectories (5, n) of the linearized version of system 
(3.1). (3.2) behave as depicted in Fig. 3.l.a. 

Also, lim,_, [r\(t)E(r)l = az,k2 - a, ,), except for the two trajectories located at the 
n axis. 

To analyse the nonlinear version, let us define two functions: E:R+ --, W- . 4RIhtR)) 
= R and G:W& - W_, h(N) = E(AP-’ Ng(iV)). 

We see that G(O) = 0, G(x) = 3~. $’ > 0, +(fV) = R. Also, 4’(N) = a2liazz. 

Proposition 3. I. Denote, for the system (3.1), (3.2). by Xi(t) = [Ni(t). Rdt)l the 
solution with trajectory corresponding to branch i (i = 1, 2, 3, 4) of Fig. 3.1.b and by 
XA(t), XB(f) and X,(r) a solution with trajectory inside region A, B and C of this figure 
(respectively). Then, under Hypothesis 3.1, all the solutions, except for X4(f). satisfy X(x) 
= (fl, d). i.e. (I‘j, R) is asymptotically stable with domain of attraction (0, ~1 X [O, x). 
Furthermore. 

(1) XI(-X) = (rj, xl; X,(t) = [i% R,(t)]! t E R; l&(t) < 0. 
(2) Xz(tz) = (N, 0). X;(t) = IN, R?(t)], Rz(f) > 0, t 2 t2; for some t2 E 2. 
(3) X,(-x) = (0, 0); N,(r), R3(t) > 0, t E W. 
(4) X+(t) = [O, R4(0) epp7, t E W. 
(A) N,a(t) > 0, f E R; there exists tA E W such that R,(t) < 0, t < rrl and d,(t) > 0, 

t > f,-, and RA(fA) = +(NA(fA)). 
(B) &J(t) > 0, &r(t) > 0, f E 58. 
(C) N,(t) < 0, t E w. 

Remark. It does not seem easy to investigate the behaviour of X,(t) as t + --r. For 
instance, it would require additional hypotheses on h and g to prove that all the trajectories 
in region C cross the line N = 4(R). Thus this part of Fig. 3.1.b displays only one of the 
possible variants. 

Proof. Let us note that if N > 0, then fi < 0 iff N > N. Thus N(r) ---, :V. t -+= x. if 
N(t) > 0. Therefore, we may look at limit equation R = -PR + (ANIZ)h(R). and R(t) 
+ d, t + x follows. This proves that the region of attraction of ($, d) is (0. X) X [O, 
x). Behaviour of Xi, X1 and X4 is obvious. We have generally sgn(R) = sgn(ti(N) - R) 
[and sgn(l\j) = sgn(b - g(N))]. Also, XA(t) must cross the line R = UN) at least once 
(cf. the linearized version) say at t = rA. 

This explains the behaviour of XA(r), r < I,_,. XA(f) cannot cross the line R = I(N) 
after Td. Indeed, suppose that RA(f’) = $(N,(t’)). r’ > fAr and t’ is first such moment. 
Then R,4(r’)/NA(r’) > 0. since ~lr’ > 0. But on the other side RA(f’) = 0. which is a 
contradiction. Trajectories in region B cannot cross R = 4(N) (since they cannot cross 
the trajectories of A), which explains their geometry. Existence of X3(r) as a boundary 
between A and B is implied by the geometry of trajectories in A and B and by the fact 
that (0, 0) is a saddle point. Properties of X&t) are obvious. 0 
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Fig. 3.1. Phase portraits of the trajectories of Model 1 (ordinary case). (a) Equations linearized around the 
nontrivial equilibrium. (b) The nonlinear equation system. Details in the text. 
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Model 2. The simplified version of Eqs. (N2) and (RZ) is 

il’ = h(R)IV(l - Z&?(R)), (3.3) 

ri = -/3R f Ag(R)h(R)N. (3.4) 

Analysis of the linearized equations proves that (0, 0) is stable, while (N, I?) is unstable 
(saddle point: eigenvalues: X, < 0 < x2). In the vicinity of (N, ri), trajectories behave as 
in the Fig. 3.2.a. 

As for the global behaviour, the most important role is played by four solutions ap- 
proaching (fi, fi) at +x, denoted by 1, 2, 3 and 4 in the Fig. 3.2.b. We omit the detailed 
description of the results which follows the same lines as in Proposition 3.1 and simply 
point out, as shown by Fig. 3.2.b, that the solutions either tend to (0, 0) or to (+x, + ~1. 

This behaviour hardly corresponds to any model of normal cell production. In an in- 
direct way, this demonstrates that some kind of defensive, short-range feedback, which 
is missing in Model 2. is essential for stable performance of a cell production system. 

Model 3. Equations (N3) and (R3) simplify to the form of 

No = @(N(O)[l - %(R(O)l, (3.6) 

I+> = -PR(t) + A@(N(t))g(R(r)). (3.7) 

Analysis of the linearized equations proves that the trivial equilibrium is (asymptotically) 
stable. The first nontrivial equilibrium (N, , ri) is an unstable saddle point (trajectories, 
as depicted in Fig. 3.3.a), while the other equilibrium (N2, f?) is a stable focus. 

For the case of only one nontrivial equilibrium (No, d), one of the eigenvalues is AI 
= 0 (while X2 < O), and nothing can be easily predicted for the nonlinear system. We will 
treat this case as marginal, noting that it is generated by a very special choice of parameters 
not likely to occur in any biological system. Therefore, we will concentrate on the two- 
equilibrium case. 

Our results will concern the behaviour of system (3.6), (3.7) under additional 
assumption. 

Hypothesis 3.2. W(u) + p > 0, 11 5 0. 

Proposition 3.3. Under Hypothesis (3.2) all the solutions of the system (3.6), (3.7), 
starting from initial data [N(O), R(O)]; N(O), R(0) I 0, tend to one of the three equilibria: 
(0, 01, (NI, RI or (Nz, A). 

Proof. It is enough to demonstrate that there exists a Lyapunov function V(N, R) 
bounded from below on [0, x)’ and such that c, the derivative of V down the solution of 
(3.6), (3.7) is non-negative and cancels only at (0, 0), (N,, d) and (Nz, I?). Then the 
assertion follows by Lemma 11 .l in [18]. 

We consider V(N, R) of the form 

UN, R) = y - A F + ” A[PN + Q(N)] - $ 1” Q(s) ds. 
2 

(3.8) 
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Fig. 3.2. Phase portraits of the trajectories of Model 2 (ordinary case). (a) Equations linearized around the 

nontrivial equilibrium. (b) The nonlinear equation system. Details in the text. 
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The derivative of V down the solutions of (3.61 and (3.7) is 

v = _ A@(N) 
-y- Cl - Zg(R)I(R - R)@ + W(N)1 

_ PR _ AF)2 5 0. ( (3.9) 

It has all the necessary properties. More detailed results can be proved under additional 
hypothesis. 

Hypothesis 3.3. 

Proposition 3.4. Denote for the system (3.6), (3.7) the subsets of solutions, depicted 
in Fig. 3.3.a, in a way analogous to that used in Proposition 3.1. Suppose that Hypotheses 
3.2 and 3.3 hold. Then 

(1) 
(2) 
(3) 

(4) 
(A) 

(B) 

(0 

X,(-x) = (0, x); X’(X) = (N’, I?); H,(t) > 0, d,(t) c 0, t E R. 
X2( -cc) = (fi,, Z?); X2(m) = (0, 0); Nz(t) < 0, Rz(t) C d, t E Iw. 
X3(tJ) = (N,, 0), N3 E [N’, NJ, for some t3 E R; X3(=) = (N’, ri); fQ3(t) < 0, 
R3(t) > 0, t z t3. 

X4(-=) = (N,, d); X,(x) = (N2, 8). 
x,( -=) = (0, =); x,(m) = (0, O).; fvA(t) > 0, &(t) < 0, RA(t) > d, t < tA, k(t) 
< 0, RA(t) < d, t > tA; for SOme fA E b!. 

X,(m) = (0, 0); Xs(te,) = (Ns, O), ‘i3s < N3, fidt) c 0, Rdt) > 0, t 2 tB,, for 
some tel E R. Define function +:rW+ + [w, , I&(N) = r-‘[A@(N)@], where y(R) 
= R/.g(R) (see Fig. 3.3.a). There exists tsz > tg, such that Rdtd = $(Ndtd 
and Rdt) > 0, t E [tB,, tsz). 
Xc(*) = (I$, I?). 

Remark. Figure 3.3.a depicts the trajectories of Model 3 in the ordinary case. How- 
ever, some details in this figure correspond to only one of the possible trajectory con- 
figurations. For instance, trajectory 2 could cross the line R = G(N). The same is true 
for trajectories from regions A and B. Trajectories in region C could spiral around (~?;Tz, 
d,. 

Proof. Let us note that 

sgn(N) = sgn(R - R), (3.10) 

sgn(R) = sgn(Jr(N) - R). (3.11) 

From the linearized version (see Fig. 3.2.a) it follows that X,(S) = (l?;r,, d) and N’(t) -=c 
h’,, R’(t) > f? for t large. Then, by (3.10) and (3.11), we see that N,(t) < r\i,, R’(f) > d 
for t E R. Therefore [by (3.10) and (3.1 l), again], 

N,(t) L RI 2 0, R’(t) t R’ 5 x as r + -x. 
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Fig. 3.3. Phase portraits of the trajectories of Model 3 (ordinary case). (a) Trajectories under Hypotheses 3.2 
and 3.3. (b) Possible trajectories without Hypothesis 3.3. Details in the text. 

It must be then X,(-r) = (0, x). Proof of (2) is similar. Also, in an analogous way, it 
can be proved that X3(=) = (N,, Z?) and that R3(f) < I?, k3(r) > 0 for I greater than some 
r3. 

We wil! prove that Rj(t3) = 0. Indeed, consider the derivative dRldN in the region G 
= [Nj,, &I x [O, RI: 

dR A P(E - RI (A/2)@(N) - PZ? A @(ti - R) 
dN= -5 + @(N)[I - 2g(R)] + @(N)[l - 2g(R)]< -? + (P(N)[l - 2g(R)] 

I -c3. 



1282 OWDEARINO~II~ MMAREICKIMYEL 

Thus-Hypothesis 3.3 implies 1 dRldN 1 > f?/(N, - N,) in G. Therefore, X3(t3) = (NJ, 
0), N, % fi2 and (3) is proved. Remaining assertions follow by analogous 
considerations. 0 

Remarks. Dropping Hypothesis 3.3 with Hypothesis 3.2 holding, can affect the tra- 
jectory 3 and the trajectories in regions B and C. The qualitative picture might be then 
similar to that depicted in Fig. 3.3.b. 

Dropping Hypothesis 3.2 is more unpredictable, since then the function defined in 
formula (3.8) ceases being a Lyapunov function for (N3) and (R3), and so Proposition 3.3 
is not true. Thus it is not possible to exclude limit cycles around (11;‘?, R). There can be 
no cycles neither around (N, , d), since it is a saddle point, nor around (0, 0) because of 
the positivity preservation. 

Model 3 has a property that seems quite natural for the cell production systems. Forced 
into a certain region of initial data (regions A and B of Fig. 3.3.a), the system slides towards 
extinction. Therefore, Model 3 may be more relevant than the globally stable Model 1. 

4. GENERAL (DELAY) CASE: LINEARIZED EQUATIONS AND NUMERICAL 
RESULTS 

In this section, we will investigate the local stability properties of the equilibria of our 
three models. Wherever possible, we will give analytic results. In the case of nontrivial 
equilibria, however, the eigenvalue problems are so complex that it is necessary to resort 
to numerical studies. 

Model 1. The system (N,), (RI) linearized around the trivial equilibrium (0,O) assumes 
the form of 

t(t) = -h*[(t) + 2h*[(t - T), 

i(t) = -@l(t). 

The characteristic equation associated to these equations is (cf., e.g. Hale[l7]) 

(4.1) 

(4.2) 

(A + @)(A + h* - 2h* e-“) = 0. 

The root X0 = -p is negative. For the equation 6(X) = A + h* - 2h* e-‘* = 0, we 
notice that 6(O) < 0, 6(z) = x and 6’(X) = 1 + 2h*T emAT > 0, so that 6 has exactly one 
positive real root. 

Therefore (see Bellman and Cooke[ 19]), the trivial equilibrium is unstable for arbitrary 
values of the parameters. Linearization around (Inj, Z?) yields a system of two linear dif- 
ference-differential equations with two delays, of the type considered in Appendix A (see 
the remark to Proposition A. 1.) Unable to investigate it analytically, we applied Propo- 
sition A. I to a version of the Model 1 with parameter values corresponding to data of the 
human erythropoietic system (see Arino and Kimmel[ZO] for details). Generally speaking, 
for given values of T, H, N, fi, p and h(R), we varied the values of h’(d) and g’(N). 

In these coordinates, we obtained an asymptotic stability region, depicted in Fig. 4.1. 
The interpretation is simple: As long as the “sensitivities” h’(R) and g’(6’) of the feed- 
backs are not too high, the system returns to the equilibrium (&‘, d). If the system is 
“oversensitive” the equilibrium destabilizes. We will return to this problem in Discussion. 

Let us only note that the instability of (N, f?) is due to the existence of nonzero delays 
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Fig. ?.I. The domain of sensitivities g’(.c) and It’(E) of the regulation feedbacks of klodel I tuith two delays). 
for which the nontrivial equilibrium is asymptotically stable, Other parameters as in the model of human 
erythropoiesis. 

T and H [in the ordinary case (??, ri) is always asymptotically stable]. In Section 6 we 
will investigate the case of 7’ = 0. H > 0. and show that the case H large enough results 
in stable oscillations. 

Model 2. Linearization of (N2), (RX) around (0. 0) yields 

&) = -h*[(t). 

t(t) = Ah*[(t - H ‘1 - hi(t). 

, so that the (0, 0) equilibrium is asymp- Only two eigenvalues exist and both are negative 
totically stable. 

Linearization around (1%‘. ri) yields the characteristic equation: 

h’(R) 
/3 + /7(f?)(l - e-*‘) - Ar\j 7 

( - 

+ h(f?)P(I - e-““) - .4g’(R)[h(R)]‘N eeAn(l - 7 e-“7) = 0. 

But H(0) < 0, H(A) - x as A + r. Thus there exists at least one positive eigenvalue and 
(??, d) is unstable. These results are identical to those for the nondelay case. 

Model 3. Linearization of system (A’?). (RX) around (0, 0) yields 

60) = -@‘(O)[(t), 

i(t) = A@'(O)&t - H) - Pq(r). 

The roots of the characteristic equation are both negative [A, = -Q’(O), h2 = - p], which 
implies the asymptotic stability of (0. 0). For the nontrivial equilibria (&‘;. R), the char- 
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Hj(X,P) = A’ + h{oli(P)(l - eeAT) + p(l i- Y e-9) 

+ ~l@)p{(l - eekr) + ~(1 - 2 e-9 e-9, 

where y = -2&‘(E) > 0 and ai@) = @#i(P)). 

(4.3) 

For (Ni, d), it is enough to note that H(0) < 0 and H(h) + x as A ---* x to conclude 
that H(A) has always a positive root. Thus (N, , f?) is unstable. 

Analogous result does not hold for (fil, ri). We are able, however, to analyze the 
situation when the simple nontrivial equilibrium (No, &), existing for p = PO = AQ(N,)/ 
2Z? splits into (&?i, l?) and (Nz, R) for l3 < PO. Thus we consider zeros of the exponential 
polynomial H(X) = Hi(A, p) (corresponding to (rj,, R), i = 1, 21 in a small interval (PO 
- e, Pal. 

Proposition 4.1. Denote by c(p) the root of 5 = - PH tan([), 5 E (n/2, n). 

(1) If y =C - co_~(~~~~))[~‘(~~)/H’~~ f 11, then there exists E > 0 such that for l3 E (&, 
- E, PO), (Nz, d) is asymptotically stable. 

(2) If y 2 - COS(~(P~))[~‘(P~)IH’~~ + 11, then there exists E > 0 such that for p E (PO 
- E, PO). (l”crz, ri) is unstable. 

Sketch of the proof. If y L - cos(~(po))[~2(po)/H’~~ + 11, then H2(A, PO) has at least 
one root with positive real part (Hale[l7], Theorem A.S), so that H2(A, p) has such a root 
for p close to PO. 

If the opposite is true, then N-(A, PO) has a root A0 = 0 and the remaining roots with 
negative real parts. It is enough then to prove that A0 = ho(P)[Ao(Po) = 0] is an increasing 
function of l3 in a vicinity of PO. This can be done by looking at JHz/aA and aHJ@ in the 
vinicity of p = PO and ho = 0. 0 

A 
h’$) i72 

h*- h(R2) 

O.B- 

0.4- 

Lower bound of the values Of h’&) such thal’$‘6i2)>0 

!aii,~2ir 

1 I I 
0.4 0.8 1.2 

Fig. 4.2. The domain of sensitivities g’(d) and h’(N2) of the regulation feedbacks of Model 3 (with two delays) 
for which the nontrivial equilibrium (iir2, d) is asymptotically stable. Other parameters as in the model of human 
erythropoiesis. 
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To investigate the stability of (iv?, d) in a situation less restricted than that of Prop- 
osition 4.1, we performed numerical studies based on Proposition A. 1 for the parameter 
values corresponding to the human erythropoiesis model (see this section, Model I). 
Results are depicted in Fig. 4.2. The interpretation is similar to that of Model 1. 

Concluding, the equilibria (0,O) and (N, , d) have the same properties as in the ordinary 
case. However, in the presence of delays, the nontrivial equilibrium (r\jz, d) looses sta- 
bility if the regulation feedbacks are too sensitive. 

5. GENERAL (DELAY) CASE: BOUNDEDNESS AND ATTRACTIVITY FOR 
NONLINEAR EQUATIONS 

In this section, we are interested in checking which global properties of the nonlinear 
systems (Ni), (Ri), i = 1, 2, 3 that are true for the ordinary case, are preserved in the 
(delay) case. 

Based on the ordinary case, we would expect (perhaps under additional assumptions) 
to be able to prove boundedness of solutions of Models 1 and 3. Also, for Model 1, the 
nontrivial equilibrium should be globally asymptotically stable. Moreover. we could hope 
to estimate the regions of attraction for the stable equilibria of Models 2 and 3. 

Most of the results are obtained, using Lyapunov and quasi-Lyapunov functionals. 
combined with additional estimates on solutions. 

Model 1. We will introduce additional assumption. 

Hypothesis 5.1. supl,z-o [l - g(lc)]lr < 2. 

It can be imagined that in the real cell production system, JO becomes equal to 1 for 
the argument large enough. In this context, Hypothesis 5.1 does not seem unreasonable. 

To prove boundedness of solutions and global attractivity of (i”j, d), we will proceed 
through a series of interconnected lemmas. Remember that we are interested in non- 
negative solutions only. 

We adopt standard notation used in the theory of difference-differential equations (see 
Hale[ 171). If X(t) is a continuous n-vector function on [to - H, x) (to 2 -xc), then X,(.). 
t 2 to will denote the element of C([ - H, 01, Wn) (the Banach space of the bounded 
continuous functions from [-H, 0] into IJ!“) defined by XJT) = X(t + c), r E [-H, 01. 

First, we introduce a functional on the space C([ - T, 01, R3’) which will play a role 
similar to the Lyapunov functionals (see Hale[l7], Chap. 5): 

wcp, 4) = do) + 2 f- ’ [l - g((p(s))lqG)h(*r(s)) ds. (5.1) 
-T 

As usual, we define the derivative of W along the solutions of the system as DW(cp, 4) 
= (d’ldt) W(N,, R,)(,= ,,, where (N, R) is the solution of the system starting from (cp, +) 
at time t = 0. 

Lemma 5.1. DW(cp, 6) = 11 - 2g(cp(O))l~(O)h(~(O)). 

Hence, for q, + 2 0, DW(cp, $)(fi - q(O)) 2 0 

Proof. Standard. 

Remark. Looking at Fig. 1.1, we note that W( N,, R,) is equal to N(t) + 2P(t), where 
P(t) is the active stem cell number. Since each of the active stem cells produces two 
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passive stem cells, this expression has the meaning of a “potential” stored in the stem 
population. In physical systems, Lyapunov functionals are frequently interpreted as ener- 
gies; we see that W has a similar interpretation. 

We will now prove in several steps the boundedness of the solutions. 
For function x defined on R + , we will denote 

7 = lim sup x(r), x = lim inf -u(t). 
+.+=C ,-+r 

Lemma 5.2. Suppose that N is bounded. Then R is bounded, and the following es- 
timates hold: 

(5.2) 

Proof. From the boundedness of N, it follows that for each 0, 0 > 1, there exists te, 
such that for t 2 te, 

d(t) 5 - @R(r) + Ah*QNg(q). 

By using the “variation of constants” formula for the inequality, we obtain 

- _ 

R(t) I R(te) e-@(‘-ra) -+ Ah*e’F’N) (1 _ e-p(r-te)), 

Passing to the lim sup in both sides, it gives 

R 5 (Ah*IP)BNg(N), for each 13 > 1, 

so that E 5 (Ah*Ip)Ng(N). 
To prove the second inequality, we proceed in an analogous way. cl 

Lemma 5.3. Suppose that N(t) 2 fi, t z to [resp. N(t) I &? and N(t) $ 0, t 2 to]. 

Then N(t) tends to rj as t tends to the infinity. 

Proof. From Lemma 5.1, the inequality N(t) 2 N, implies that W( N,, R,) is nonin- 
creasing in t 2 to; since W(N,, R,) 2 N(t) 1 0, it implies that N is bounded. Thus from 
Lemma 5.2, R is bounded too. 

Showing that N(t) tends to l\j is equivalent, in the case N 2 N, to showing that D W(N,, 
R,) tends to zero as r tends to the infinity. But W(N,, R,) tends to a limit and DW(N,, 
R,) is uniformly continuous in t because of the boundedness of N and R. Thus the assertion 
follows. The case N(r) 5 N is proved in the same way. 0 

Lemma 5.4. Suppose that N(r) is oscillating around fi [i.e. N(r) = N, for arbitrarily 
large t’s]. Then 

(5.3) 

where C, defined as C = SUP~,=~ 2h*u [I - g(lc)], is finite by Hypothesis 5.1. 
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PI-cw/: Sots that C is an upper bound of the derivative of .V. We will look at ,V after 
the first point tr, at \L hich ,V(t,,) = ,t. 

Fix r. r 2 f. and .Y(r) > ,q. Denote by rI the la\t point at which ,V(t,) = ,%’ before 1. 
Thus A’(S) > ,q. tI < s < r. \V(,V,, R,) is nonincreasing in s. for s E [t,, t]: thus we have 

.V(t) 5 M,‘(,V,. R,) 5 W(,Yr,. R,,) 5 1%’ + CT. 

For the other inequality. fix t 2 to. such that iv(f) < N. Denote by tl the last point in 
lvhich iV(r) = P? before t. 

Thus /V(s) < 1%‘. t2 < s < t: W(N,. R,) is nondecreasing in s in the interval [t2. t]. Thus 
we have W( ,l’,,. R,,) 5 CV(N,. R,). But W(jV,. R,) I ,V(t) + 3h”T sup,_,,,,,N(.s). We 
can estimate sup,- ,z>5r N(x) u,ith respect to N(r). From (IV,). we have sup,- IS,7cr N(s) 
5 e”*7 N(r). Using this fact and also that i\c’ 5 W(1V,,. R,:). the assertion follows. 2 

We can state all these results in a proposition. 

Propositiotl 5. I . Under Hypothesis 5.1. let (A’. R) be a non-negative solution. with 
IV(t) f 0. - T 5 t 5 0: then 

(a) N(r) and R(t) are bounded on [O. +x). with ultimate bounds independent from the 
data given by formulae (5.2) and (5.3). 

(b) If A’(t) does not tend to &‘. as f tends to infinity. then it oscillates around &‘. 

Proof. (a) follows directly from Lemmas 5 .1-5.3: (b) follows from Lemma 5.3. 

In the remaining part of this section, we will consider the global attractivity and stability 
of the nonzero critical point (&‘, R). We will only consider the case of non-negative so- 
lutions, with N(t) eventually positive (cf. Lemma 1. I .). 

To simplify the statements. we will introduce the following definitions: 

k(fl) = 2[ I - g(rr)]o. 

1, ‘ * = sup / h’(u) 1. 
r,zo 

k” = sup k(lI), 
!I 20 

/Y* = sup / k’(u) 1. 
I, 20 

THEOREM 5. I. Suppose that the following conditions hold: 

(Al?i/2P)h’* < I. (5.4) 

[ 

ph’*A 

‘T/l* k’* + p _ h,*(AN,2) (I + +I;‘*, < I. I (5.5) 

Then (IQ, f?) is a global attractor for the solutions [i.e. N(t) * iv, X(t) * R. t - +x1. 

Proof. We will show that (with notations introduced before Lemma 5.2) x = iv, and 
then we will use the following inequality: 

i?--Rs 
Ail”@ - - 

- I - Iz’*AN/S~ 
[g(N)N - R(N)IV] to obtain ?? = E. -- (5.6) 
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To prove (5.6), we notice the following inequalities: 

These can be obtained by the method of Lemma 5 .Z. Substracting these inequalities side 
by side and using assumption (5.4) gives the desired result. 

We prove now that N = IV. First, notice that if h’(t) is eventually greater than :‘? 
(resp. less than iv), then N(r); &’ (cf. lemma 5.3). Suppose now that h’(r) is oscillating 
around N. There exists a sequence (t,, ),,E~, t,, - +x. such that N(t,,) - S. N(r,,) > &‘. 
To each t,, , we can associate t!, the last point before t,, at which N( t?,) = i\;-. The sequence 
( t! LE% tends also to the infinity. For each 11. N(r) > &‘, t! 5 f s f,,; thus. from Lemma 
4.2. W(N,, R,) is nonincreasing in t in the interval [tl’,. r,,]. The gives the inequality 

k(iV(s + t,,))h(R(s + t,,)) ds I il; + j-” QN(.s + t))))X-(R(s + t!,) ds. -7 

Taking lim inf at the left side and lim sup at the right side, and noting that 
lim inf N(f,,) = x, we obtain the inequality: 
?I-+= 

iv + TM(R) 5 A + Tli/@), (5.7) - 

where k = inf,v,,,,,c /(([I); z = sups_,,_.v k(r/) In exactly the same way using a sequence 

Substracting side by side these inequalities. it gives 

l(h( R - 

(t,,),rE~~such that N(t,,) - N, we obtain - 

N + TX-h(R) 2 i\j + T&/lfR). - 

-- 
4N)il’ - ,q(.Y)N] . -_ 1 

(5.8) 

where this last step follows from (5.6). From g(n) II = II - iA( it follo\vs that ( (didrr) 
[MU] ) s I + S/C’* and thus we obtain 

-1 _ N 5 ‘FT},* k’” + 

- [ 

p,z’*A 

- 
p - h’“(ANI2) 

Under the condition (5.5), this gives E = N. 3 = R follows from (5.6). a 
Let us note that assumptions of Theorem 5.1 are equivalent to certain requirements 

imposed on the sensitivities of regulation feedbacks (compare the numerical studies for 
linearized version). It is possible to demonstrate that under the assumptions of Theorem 
5.1, the equilibrium (I\i, I?) is not only a global attractor but also it is stable. (cf. Theorem 
4.2 in [ZO]). 

Model 2. We state, without a proof. an estimate under suitable assumptions of the 
domain of attraction of the trivial equilibrium (0. 0). The proof is a direct application of 
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the Lyapunov method (cf. Theorem 5.3.1 in [17]) with \‘(E, n) = ((0) 
ds as a Lyapunov functional restricted to a convenient invariant set. 

Proposition 5.1. Suppose that 

max (I - g(lr))lrf/r) 5 h(R)Q. 
IlS,,5K 

Choose k > 0 such that 

(3.9) 

(5. IO) 

Then the set G = I({. n) E C([ - H. 01. [O. f?] x [O. !V]) is positively invariant w.r. to 
(VI) and CR?), and each solution of (IV,) and (R2) which enters G tends to (0. 0) at +r. 

M&cl 3. We will begin with the boundedness of solutions. 

Pi-oposition 5.3. Solutions of (NT) and (R3) are bounded. for t E W_ 

Proof. We will use a Lyapunov-type functional on C*([ - H. 01: WC ): 

21 - cdq(s))lWsN ds. (5.11) 

The derivative DU([. n) down the solutions of (N3, R3) is equal to 

m-45, d = [I - 2g(T(~))l@‘(S(t)). (5.12) 

Let us note that under assumption (@), two obvious properties hold: 

sup R(t) = C < x. 
120 

(5.13) 

Now choose a solution and suppose that N(t) + x as t --+ 3~. Then it is possible to choose 
a sequence t,, - x such that N(t,,) t x. Since the derivative of IV is bounded, it is also 
possible to associate with (r,,) another sequence (t:,) such that t,, - t,‘, - x, 

N(r) 2 N(r,,)/:!. f E Lr:,, t,,l, (5.15) 

Mt:,) = N(t,,)/Z. (5.16) 

Thus for t E [ti, + H, t,l], we will have 

R(f) 5 e-p(r-critn’) C + (A/P) ~7; ),z O(u). 
> 8 n 

Therefore, it is possible to find a number n > 0 independent of n such that for n large 
enough R(t) < g-‘(t), t E [t; + n, t,]. By virtue of (5.12) this implies D(N,, R,) 5 0. t 
E LtL + a, t,l what yields UN,,,, R,,,) 5 U(N,,,,,,, R,;,_,,). From this (using (5.1 I)) one 
can deduce 

N( t,,) 5 fvtr;, + a) + C”, 
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by (5.14). 

while by (5.16). 

iV( I,,) 5 A’( t;,, T CfC’ f C”. 

iV(f,,) 5 N(f,,)12 + UC’ + C" 

which implies 

N(r,,) 5 I(trC’ + C”). 

This is a contradiction. 0 

introducing a Lyapunov functional V([. r)) = c(O) + 1’1, @(e(s)) ds and using the 
technique of Proposition 5.2. we obtain an estimate of the domain of attraction of (0. 0). 

Propositiort 5.4. Choose d and 1%’ such that 

2[1 - g(z?)l r h(&lh(O), (5.17) 

A@(&‘)Il3 5 l?. (5.18) 

Then G = Ct]--N. 0]: [O. d] x [O. &‘I is positively invariant w.r. to (‘V7) and (RJ). 
Moreover. each solution of (IV>) and (RJ) which enters G tends to (0, 0) at ++. 

6. TWO SPECIAL MODELS RELATED TO MODEL I 

In this section we will consider two interesting models of cell production systems. The 
first one is a version of Model I, with only one delay (H) present. It exhibits more complex 
behaviour than the model without delays. while being easier to analyze than the general 
two-delay version. Also, it can be viewed as a generalization of certain previous cell 
production models. 

The second model is a version of Model I with the defensive feedback missing [i.e. 
d(t) = f]. This version allows for a continum of equilibria, each of them attracting solutions 
from a certain subspace. It can serve as a model of a “defective” cell production system. 

In 1976 Wazewska and Lasota[S] presented a model of the erythropoietic (red-blood- 
cell) system, in the form of one difference-differential equation: 

if(t) = - CM(~) + e-““-H’, (6.1) 

where [r(t) is the red cell number at t. Model (6. I) does not account for system extinction, 
since it has no trivial equilibrium. Solutions are always bounded: for some parameters 
the nontrivial equilibrium is globally asymptotically stable: for other parameters oscil- 
lations occur. 

Equation (R,) is very similar to (6.1). In the case T = 0 the analogy is quite complete: 
Equation (/Vi) reduces to (3. I), and as we already know, N(r)-+ I?j no matter what happens 
to R(t). Thus the asymptotic behaviour of R(r) is the same as in the “limiting” equation: 

d(r) = -PR(t) + (ANji2) h(R(t - NJ). (6.2) 
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Lasota-Wazewska’s equation is a spzcial cas2 of(6.2). This is also the case for two models 

by Mackey[-l. ‘I]. From theorem 5.1. we obtain a sufficient condition for the global 

asymptotic stability of (6.2): 

(M/‘p)/P < I. ’ (6.3) 

On the other side. th2 linearized version analy,sis gives local asymptotic stability iff 

/ h’(R) / < 3(Cl’ + pvfy (HAN-‘. 

where CI E (n/9_. T) satisfies n = - @4 tanttr) (see Bellman and Cooke[lY], Theorem 
13.8). If H- x. then this condition takes the form 

/ /I’(!?, 1 < lP/Ai\j. 

which reduces to (6.3) if /z’(R) = /r’*. i.e. when the slop2 of h is maximum at R. For such 
cases and H large, condition (6.3) is the best possible. Contrary to the general case. vve 

were able to prove a criterion depending on H. 

Proposition 6. I. Suppose that 

(&\;‘!7_)H/l’“[P + (AN/Z)Ir’*] < p. 

Then (6.2) is globally- asymptotically stable. 

Proof. Denoting .I’ = R - I?, f(X) = -pX + (,-l!\;i!Z)h~(X). h,(X) = h(X + d) - 
h(R) and performing some manipulations, we can rewrite (6.3) as 

or briefly as X(t) = - f(X(r)) + PH(X,), where PH is defined on C([-214, 01. W). P,(O) 
= 0 and 1 P”(X) / 5 / PH 1 1 ,I’ /, where 1 PH 1 can be estimated as 

1 PH 1 = (A&‘/2)Hh’*[P + (A:\;‘/Z)h’“). 

Suppose I PH 1 < f3. First, we prove the stability. Take a data X,,. / X0 / < p and X(tr) > 
0. Since f’(X) 2 p, vve have X(r,) 5 ( - p + I PH I ) p < 0. As t, > 0, this is a contradiction. 

To prove the attractivity, let us take a sequence f,, --f x such that 2 X(t,,) - lim sup,_.= 
~Ys I ) I;;~,lo;~2t;at X(t,,) - 0. From the equality .Y(t,,) + f(X( t,,)) = 

H ,,, 

lim sup I f(X(t,)) I = lim sup I P(X(r,)) I . 
?I--.~ n-= 

which implies 

p lim sup ] X(r,,) I 5 I PH I lim sup I X,., 1 
,I - -x I, - -x 

and 

p lim sup ] X(r) 1 5 I Pt,) lim sup j X(t) j 
, - -x , 4 T. 

But this yields lim SU~,_.~ I ,t’(t) I = 0. 
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For the original Lasota-Wazewska’s equation (6. I), Proposition 6.1 implies the asymp- 
totic stability if H < u/(u + 1). This condition is identical to that given in [5]. 

When roots of the characteristic equation of(6.2) have a positive real part. we see that 
the conditions given by Kaplan and Yorke[ZZ] are verified. Thus (6.2) has a closed annulus 
in the phase plane (R. R), which is globally attractive in the set of slowly oscillating 
solutions. Analogous property for the general system (N, 1, (R,) with two delays would 
be difficult to prove, although simulations suggest oscillations when the asymptotic sta- 
bility is lost. 

6.2. Model I Gth d = 4 

In this case, Eqs. (&‘,I and (RI) assume the form 

b’(t) = - h(R(t)) N(t) + h(R(t - 7)) N(t - 7-1, (6.4) 

f?(r) = - BR(t) + (AI2)1z(R(t - H)) N(t - H). (6.5) 

First, observation is that the functional V: C([ - H. 01, @+) defined as 

(6.6) 

stays constant along the solutions of the system V(N,, R,) = V(NO, Ro), t 2 0. Indeed, 
it is enough to integrate (6.4). side by side, on the interval [0, t]. 

Consider now a solution of (6.4). (6.5) with initial data (cp, $) = (N,,, Ro) and suppose 
that [V(t), R(t)1 -+ (N,, Rx). The equilibrium (N,, R,) depends on initial data, since 
(6.4) is satisfied by any pair of constant functions. Using (6.5) and the invariance of V(.), 
we obtain 

Nx = V(cp, +)/[I + Th(Rx)I, (6.7) 

and R, is the unique solution of 

R, = [AV(cp, $)/2] {k(Rd[l + 7NfWI). (6.8) 

Biologically, V(N,, R,) = N(t) + 2P(t) (see Section I), i.e. it is equal to the number of 
stem cells in the passive phase plus twice the number of stem cells in the active phase. 
Thus V(N,, R,) = V(cp, $) can be treated as a “potential” number of stem cells. 

Let us consider a situation in which both N(t) and R(r) undergo a stepwise charge. 
This corresponds to the extinction of a part of stem and mature population. In the frame- 
work of our model this can be presented as follows: Suppose that for t E [-lo - H, 0) 
the system was evolving accorhing 
solutions by [)2(t), r(t)], t E [-to - 
(6.5). for t 2 0. with initial data 

to (6.4) and (6.5). Let us denote the corresponding 
H, 0). We consider then, solutions to system (6.4). 

[(F(T), NT)1 = 
i 

[n(7), r(T)], ‘i E [-H, 0), 

[N(O), R(O)l, 7 = 0, 
(6.9) 

where [N(O), R(O)] is generally not equal to [n(O-), r(O-)I. It is possible to compute 
explicitly the difference V(N,, R,) - V(n(o-,, ro-,) for t E 10, Tl [by solving (6.4), (6.5) 
on [0, T] with data (6.9) and substituting into (6.6)]. The result is 

V(N,. R,) - V(n,,,-,. rl,,--)) = N(O) - MO--) 
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for t E [O. T] and thus for t e 0. This proves that only extinction of stem ceils can affect 
the system equilibrium in this model. 

If /V(O) - II = 0. then the equilibrium remains the same. no matter what R(0) is. 
After this discussion. let us address the question of attractivity of equilibrium (.V,. 

RX), for solutions with C’(q, $) given. 
Suppose that V(q. $) = C and t z H. Then. by integrating (6.5) side by side on [t - 

T, t] and noting that L’( IV, _ H, R, _ r,) = C. we obtain 

R(r) - R(r - 7) = - p j-‘, R(s) ds + $ [C - iV(f - H)]. 

Solving this for N(r - H) and substituting into (6.5) we obtain 

&f) = - Pf?(t) = (+P~:, R(s) ds - R(r) + R(t - T) Ir(R(r - H)). (6.10) 
) 

If [N(f). R(t)] is a solution of (6.4) and (6.5) on [O. x). with V(g. &) = C. then R(r) satisfies 
(6. IO) on [H, xl. 

We are able now to state the following result. 

Propositiorz 6.7. Suppose that condition 

Il*(l + @7-) + PR= 
h(R,) 

max 
I, 2,) 

/I(E) - h(Rx) 

I/ - R, 
< A-p (6. I I) 

is satisfied for some k < I. Then all the non-negative solutions of (6.1) and (6.5). w,ith 
V(q, ti) = C, tend to (N,. RX) as t-+x. 

Proof. Denote t 

Now r(t) satisfies 

i-(f) = - [p 

+ r(t 

= R - fi, -0.) = Iz(r + R,) if r 2 - R, and :(I) = /I* if r < - R,. 

c :(r(t - H))lr(t) - P 
I 

,L,. r(s) ds :(rCt - HII 

R, z(r(t - HI) - z(0) 
- T)r(r(r - H)) + r(f - HI 0 p 

h(Rx) r(t-HH) ’ 
(6.12) 

It is enough to prove that r = 0 is globally asymptotically stable. We will use a Razumikhin 
function method (Hale[ 171, Theorem 5.4.2). 

The Razumikhin function V, satisfying assumptions of this theorem. can be chosen as 
V(r) = r’/Z [with the auxiliary functions [l(r) = i’(r) = r’il]. Another function. p(s). can 
be chosen as p(s) = $s, for (I > I. Now we have to prove that the derivative VT.1 of 
V(.), down the solutions of (6.12), satisfies 

G(r(0)) 5 - w( 1 r(O) 1 ) (6.13) 

(for some W: [O. x) + [O. x) continuous. nondecreasing) if only r is chosen so that 

W(0)) < p( V(r(B))). 0 E [ - fi, 01. (6.1-t) 

In our case. (6.14) is equivalent to 

j r(8) 1 < q / r(O) I. c1 E L-H. 01. (6.15) 
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It holds that G(r(O)) = - r(O)i(O). After substituting for i(O) the right-hand side terms of 
(6.12) and using inequalities (6.11) and (6.15) we obtain 

G+(O)) < - pc I - qk) [r(O)]‘. 

Choosing (I > 1 such that qk < 1, we can define IV(S) = (1 - qk)s’ so that inequality 
(6.13) is satisfied. 0 

It is possible now to characterize the behaviour of solutions of this system if hypothesis 
(6.11) is satisfied. In “normal” conditions, system maintains an equilibrium. After a step- 
wise change in both R and N, the system returns to a new, generally different equilibrium. 

If we assume that the stepwise change was caused by extinction of part of the stem 
and/or mature cells, we see by inspection of (6. I) and (6.8) that both R, and N, decrease. 
The amplitude of this decay. which is measure of the system performance deterioration. 
depends only on the extent to which the stem cell population was damaged. 

7. DISCUSSION 

The three models presented and analyzed in this paper provide interesting information 
on the hypothetical regulation mechanisms in multistage cell production systems. The 
basic observation is that models looking equally reasonable and being able to satisfy similar 
steady state properties can differ strikingly with respect to stability properties. 

Before proceeding to details, let us address a fundamental issue. Recently, Wich- 
mann[7] in a very comprehensive review article analyzed various concepts of mathe- 
matical models of blood cell production system. The postulates he states for models of 
this kind include (among others) the reproducibility of experimental data under various 
experimental conditions, possibility of reproducing the data in many compartments si- 
multaneously and possibility of using the models to design new experiments. The approach 
of this paper is different. We look at a cell production system as at a dynamical system, 
trying to understand its behaviour as a function of assumptions in a possibly general way. 
Our models are simplified and so not exactly comparable to their complicated originals. 
However, since the models incorporate certain first principles of cell growth regulation 
in various configurations, their analysis can anticipate true system’s behaviour in exper- 
iments that were never performed and that sometimes are not possible to perform. 

The regulation functions of our models have quite a general form, so that they can be 
adjusted to various specific situations. For instant e, the special case of Model 1 considered 
in Section 6.1 is a generalization of models presented in Refs. [4]. [211 and [5]. However, 
there are some structural limitations that we would like to discuss here. 

It seems that what we call a long-range feedback [which is sensitive to the number (RI 

of mature cells] is in fact composed (at least in the blood cell systems) of two parts. One 
of them controls the production of the precursor cells, based on the mature cell number 
(R); the other regulates the production of the stem cells, based on the precursor cell 
number (C) (see Loeffler and Wichmann[l6], Wheldon[23], Aarnaes[6]). In our models, 
where the precursor cell populations is represented in a very simplified way. consideration 
of such a feedback would be difficult. 

It can be imagined that all the regulated factors (0~ and d, in our models) can depend 
on the level of cells in more than one compartment [for instance a = h(iV. P, RI, d = 

g(N, P, R). In fact. Loeffler and Wichmann[ 161 postulate d = g(N + P, Cl (in our notation) 
in their very well-documented model of the red blood ceil system. However. such general 
dependencies would be very difficult to analyze, even in the ordinary (nondelay) cases 
of our models. (Also, it was suggested by NeCas and Neuwirt[lJ, 251 that the stem cell 
self-control feedback depends on the number of cel!s in the S phase). 
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Finally, it is possible (see Mackey and Dormer[26]) that the process of cell maturation 
is more continuous than discrete. Then our (and most of the authors‘) subdivision of the 
cell system into disjoint compartments would be disputable. 

In this paper, the strategy of model analysis was to consider first the simplified version 
describable by ordinary differential equations. Then an attempt was made to examine 
which of the simplified model properties are valid for the general case. A variety of 
methods were used to achieve this purpose. We should mention here the Lyapunov func- 
tions (Proposition 3.3), Lyapunov functionals (Propositions 5.2 and 5.3). quasi-Lyapunov 
functionals (Proposition 5.3 and Theorem 5. I) and Razumikhin function (Proposition 6.2). 
These tools were used to prove attractivity of equilibria and boundedness of solutions. 
However, in almost each case, the application of Lyapunov or Razumikhin method had 
to be preceded by a painful preparatory analysis. It is extremely interesting that the quasi- 
Lyapunov functions used in Theorem 5. I and Propositions 5.2. 5.3 and 5.1 are related to 
a “potential” number of the stem cells (see the discussion in Section 6.2). 

In the ordinary case, most of the analysis was possible to carry out by means of tra- 
ditional phase plane techniques. However. even in this case. the general form of the 
feedback functions increased the difficulties. 

Also, for the purpose of numerical stability investigations of the linearized delay equa- 
tions, it was necessary to prove an original result on the location of zeros of the exponential 
polynomials (Proposition A.1). This result is applicable to a wide class of models of cell 
production systems. 

We will now review the results on the dynamical properties of the three models. 

Model I. In the ordinary (no delay) case, the nontrivial equilibrium of this model 
attracts all non-negative solutions, except for those vvith N(O) = 0 (corresponding to the 
total extinction of the stem cell population: see Proposition 3. I). In the general (two delay) 
case, the global attractivity (and stability) still holds. if the regulation functions are not 
too steep (see Proposition 3.1 and the numerical analysis of Section 4). 

For the parameter values correspondin g to the human blood cell system, numerical 
simulations (see Kimmel and Arino[9]) indicate that instability of the equilibrium results 
in stable oscillations with period of about 30 days. 

This is similar to the period (16-17 days) of reticulocyte number oscillations in the 
auto-immuno hemolytic anemia (Mackey[Zl]) and to the period (17-28 days) of the neu- 
trophil number oscillations in cyclic neutropenia (MackeyI41). In fact, the one-delay ver- 
sion of Model 1 (Section 6.1) is a generalization of both Mackey’s models, as well as of 
the pioneer model of Wazewska and Lasota[S] (see also Wazewskal271). For the one-delay 
Model I, the existence of stable oscillations can be proved based on results by Kaplan 
and Yorke[22] (see also Chow[28]); moreover, for this version, improved stability results 
are available (Proposition 6.1). Also, the general possibility of inducing oscillations by 
the means of “steepening” the regulation functions was indicated by Wichmann[7]. Model 
I was intended originally (Kimmel and Arino[9], Arino and Kimmel[20]) to generalize the 
models of Refs. [Zl] and [5] by incorporating the stem cell kinetics and short-range feed- 
back. However, the dynamical effects observed do not seem to differ significantly from 
those reported in [2l] and [j]. Specifically,. the model fails to reproduce system decay 
when the perturbation is large enough. 

Especially controversial is the version of Model I with d = 4 (Section 6.2). i.e. without 
regulation of the differentiating fraction of stem cells. Theory indicates that the conse- 
quence of this assumption is the possibility of existence of a continuum of equilibria. 
attracting solutions with initial conditions in various subspaces (Proposition 6.2). It is 
demonstrated in Section 6.2 that the system can change its equilibrium only if the per- 
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rurbation affects directly the stem cell number. Then the celi system recovers. but never 
attains the previous production rate. According to Loeffler and Wichmann[l6]. who dis- 
cussed similar questions, there is no experimental evidence supporting such possibility. 

In our opinion, however, this model deserved discussion on the basis of its interesting 
dynamical properties. 

Model 2. The main purpose of considering this model was to demonstrate that the 
absence of a short-range (defensive) feedback of the stem cell population destabilizes the 
system. This is clear from the simplified (no delay) case, in which practically all the 
trajectories either tend to the origin (N = R = 0) or escape to infinity (Proposition 3.2). 
Also, in the two-delay case, the nontrivial equilibrium is unstable (Section 1). while the 
trivial equilibrium is asymptotically stable with domain of attraction estimated in Prop- 
osition 5.2. 

Model 3. This version seems to exhibit the most complex and interesting behaviour. 
In the simplified (no delay) case, all the solutions are attracted by one of the three existing 
equilibria (Proposition 3.3). One of the two nontrivial equilibria is unstable. while the 
other nontrivial equilibrium and the trivial equilibrium are asymptotically stable. Biolog- 
ically it means that under some perturbations the system returns to the “normal” (non- 
trivial equilibrium), but if the number of mature and/or stem cells decreases below certain 
level, the system becomes extinct. This is exactly the effect predicted by a computer 
model (of red blood cell system) by Loeffler and Wichmann[l6] (see their Fig. 6 and 
reference to Reincke[35]). 

Similar family of responses was observed by Wazewska (unpublished experimental 
data) after inducing severe blood loss in rabbits. 

In the general (two-delay) case, the model behaviour may change substantially, but 
certain essential features are saved. 

All the solutions are bounded (Proposition 5.3). One of the nontrivial equilibria is un- 
stable (see Section 4). The other one is stable at least when both nontrivial equilibria are 
close to each other (Proposition 4.1) and when the regulation feedbacks are not too steep 
(see Fig. 4.2). Attractivity domain of the stable trivial equilibrium is estimated in Prop- 
osition 5.4. 

The above comparison indicates clearly that Model 3 or certain combinations of Model 
I and 3 describe correctly the basic features of normal cell production systems. Abnor- 
malities in system feedback configuration result in “pathological” behaviour: unlimited 
growth, system extinction (Model 2) or permanent decrease in system output (Model 1 
with d = f). 

Relevant experimental evidence concerning the cell production systems (in the sense 
used in this paper) was, until very recently, limited to the blood cell systems. Without 
any attempt to cover the subject, we can quote papers by Iscove[30], Lord[31], NeEas 
and Neuwirt[24,2.5] and many others. However, recent papers by Potten er a1.[3], Clausen 
et a/.[321 and others indicate that similar structures and feedbacks are active in the mouse 
epidermis cells systems. The same seems to be true for the human epidermis cells in 
culture (Staiano-Coico et af.[33] and Kimmel et a1.[34]). Therefore, it seems justified to 
explore the properties of mathematical models related to these important processes. 

REFERENCES 

I. L. G. Lajtha. R. Oliver and C. N. Gurney. Model of a bone-marrow stem-cell population. Bri. J. Haernc~!ol. 
8, 442460 (1961). 



\lodcls of cell production systems 1297 

C. S. Potten. H. E. Wichmann. ht. Loeffler. K. Dobrk and D. Major. Evidence for discrete cell kinetic 
subpopulations in mouse epidermis based on mathematical analysis. Cc// Ti.vsrrr Kincf. 15. 305-329 (1982). 
\1. Msckey. Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood 31, 941- 
2% (1978). 
51. Wazewska-Czyzewska and A. Lasota. Mathematical problems of the dynamics of the red-blood cell 
system (in Polish). ,IlllrrrncrrvXci S!osoi\,ctntr 6, 23-10 ( 19761. 
E. Aarnaes. A mathematical model of the control of red blood cell production. In Biomarhemarics and Cell 
Kinetics (Edited by A. J. Valleron and P. D. M. Macdonald) pp. 309-322. Elsevier, New York (1979). 
H. E. Wichmann, Computer modeling of erythropoiesis. In Current Conceprs in Erythropoiesis (Edited by 
D. R. Dunn) pp. 100-135. Wiley, New York (1983). 
H. E. Wichmann and IM. Loeffler, A solution to the controversy on stem cell regulation. Blood Cells 8, 
461-465 (1982). 
M. Kimmel and 0. Arino, Complex proliferative systems. Formal description and qualitative analysis. Sysr. 
Sci. 9, no. l-2, (to be published). 
J. A. Smith and L. Martin, Do cell cycle? Proc. Nafl. Acad. Sci. USA 70, 1263-1267 (1973). 
J. M. Mitchison, The Biology of rhe Cell Cycle. Cambridge University Press, Cambridge, MA (1971). 
M. Kimmel and IM. Wazewska-Czyzewska, Analysis of different variants of erythrocyte survival using digital 
computers. Acra Haematol. Polonica 10, 1-5 (1979). 
M. Kimmel and M. Wazewska-Czyzewska, Stochastic approach to the process of red cell destruction. Appl. 
Math. 17, 217-225 (1982). 
M. Kimmel, Cellular population dynamics I, II. Math. Biosci. 48, 21 l-224, 225-239 (1980). 
M. Kimmel, General theory of cell cycle dynamics based on branching processes in varying environment. 
In Biomarhemarics and Cell Kinetics (Edited by M. Rotenberg) pp. 357-375. North-Holland, Amsterdam 
(1981). 
M. Loeffler and H. E. Wichmann, A comprehensive mathematical model of stem cell proliferation which 
reproduces most of the published experimental results. Cell Tissue Kinet. 13, 543-561 (1980). 
J. Hale, Theory of Funcrional Differential Equafions. Springer-Verlag. Berlin (1977). 
S. Hartman, Ordinary Differential Equations. Wiley, New York (1964) 
R. Bellman and K. Cooke, D~~erelfc,c~-Di~en~;~~~ Eyrrtrriuns. Academic, New York (1963). 
0. Arino and M. Kimmel. A model of competing feedbacks of the erythropoietic system with respect to 
system stability. Unpublished manuscript. _ 
M. C. Mackev. Periodic auto-immune hemolvtic anemia: An induced dvnamical disease. Bull. Mcrtir. Biol. 
-ll, 829-831 ti979). 
J. L. Kaplan and J. A. Yorke. On the non-linear differential delay equation .r’(r) = -ft.r(!), .~(t - I)). J. 
D;ff: Ey. 23. 293-314 ( 1977). 
T. E. Wheldon. Mathematical models of oscillatory blood cell production. ,Mtrth. Biosci. 21. 289-305 (1975). 
E. Necas and J. Neuwirt. Proliferation rate of haemopoietic stem cells after damage by several cytostatic 
agents. Cell Tissrre Kiner. 9, 479-187 (1976). 
E. Necias and J. Neuwirt. Effect of hydroxyurea and vinblastine on the proliferation of the pluripotential 
stem cells. !Veop/nsmrr 21, 29-40 (1977). 
M. C. iMackey and P. Dormer. Continuous maturation of proliferating erythroid precursors. Ceil Tisstre 
Kiner. 15, 381-392 (1982). 
M. Wazewska-Czyzewska. Metoda badania kinetyki erytronu (A method of erythron kinetics investigation, 
in Polish). Przeglud Merodycx! AM VI’ Krakorvie, X, Suppl. (1976). 
Sh.-N. Chow. Existence of periodic solutions of autonomous functional differential equations. J. D$f. Eq. 
15, 350-378 (1974). 
A. Sikora and M. Kociecki. Numerical evaluation of roots of quasi-polynomials. Technical report of the 
Institute of Automation of the Warsaw Technical University, Warsaw (1979). 
N. N. Iscove. The role of erythropoietin in regulation of population size and cell cycling of early and late 
erythroid precursors in mouse bone marrow. Cell Tisstre Kiner. 10, 323-334 (1977). 
B. I. Lord. The relationship of Go to the cell cycle of haemopoietic spleen colony-forming cells. Cell Tissue 
Kinet. 14, 425-43 I (I98 I). 
0. P. F. Clausen. E. Aarnaes. B. Kirkhus, S. Pedersen, E. Thorud and L. Bolund, Sub-populations of 
slowly cycling cells in S and G: phase in mouse epidermis. Cell Tissue Kinet. 17, 35 l-365 (1984). 
L. Staiano-Coico. P. J. Higgins. Z. Darzynkiewicz, M. Kimmel, A. B. Gottlieb. I. Pagan-Charry. M. R. 
iMadden. J. L. Finkelstein and J. M. Hefton. Human keratinocyte culture. Identification and staging of 
epidermal cell subpopulations. J. Clin Inr,esr. 77, 396-404 (1986). 
IM. Kimmel, Z. Darzynkiewicz. and L. Staiano-Coico. Stathmokinetic analysis of human epidermal cells in 
vitro. Cell Tisstre Kinet. 19, (in press). 
U. Reincke. D. Brookof, H. Burlington and E. P. Cronkite, Forced differentiation of CFUs by iron 55 
erythrocytocide. Blood Cells 3, 351 (1979). 

3. 

4. 

1 

6. 

7. 

8. 

9. 

10. 
Il. 
12. 

13. 

14. 
15. 

16. 

17. 
18. 
19. 
20 

21. 

2’. 

23. 
2-l. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35 

APPENDIX 

We provide a result on the zeros of exponential polynomia!s. which was used for the numerical 

investigation of asymptotic stability (Section 1). Although it has a technical character. it can be of 

interest since it enables analysis of a broad class of systems similar to those considered in this 

paper. 
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Proposition ,4.1. Given is the following exponential polynomial: 

H(h) = MA. e”) = A’ eh’rTH) + A[a, ehCTrH’ + p, eAr + y, eAH + S,] 

+ a0 eh’T-N’ f PO ehT t y0 eiH + 6”. 

where T and H are positive integers, a;, pi, yi, 6 E 8%. 
Suppose that o. + PO + y0 + so # 0, then a necessary and sufficient condition for all the zeros 

of h(X, e”) to have negative real parts is that 
(a) In the interval [O, 2k17r/(T + H)], the function F(y) = Re H(jy), y E W,j = VT, has exactly 

2kl + 1 zeros and 
(b) The condition F’(yo) G(y,) < 0, where G(y) = Im H(jy) is satisfied for the zeros VU in the 

interval (0, 2k,nl(T + H)], where k, is equal to max(&,, kh). where k,, and k; are the smallest 
integers for which it holds: 

with 

AA = 
2(k + I)i,r 

T+H ~Ia,I+/p,l+Ir,I+16,l~+~I~“I+IPolfIYol’l~~~o. 

A; = 2(!;‘++$ (2 + (T + H) 1 ai 1 + 71 p, 1 + H) ye 1 1 

+ I a1 I + I PI I + I YI I + I w ((7’ + H) + I PO I T + I YU I H 
T+H 

Bk = 4k%‘i(T + H)‘. 

SuPPose that a0 + PO + ~II + 6” = 0; then h(A, e”j is unstable 

Remark. The lemma applies to all the systems of form 

j,(t) = atlyi(t) + a,zydt) + b,,y,(r - co,) + b,:ydt - w,), 

jz(t) = nz,y,(t) + azlyz(t) + bl,y,(t - w?) + bz2yl(t - CO:). 

if only WI/WZ is a rational number. In our system T/H should be rational, which can of course be 
safely assumed. 

Proof. For our polynomial, the functions F(y) and G(y) take the form of 

F(Y) = - y2 coS[y(T + H)] - y{al sin[y(T + H)] + PI sin(yT) + yl sin(yH)} 

+ a0 cos[y(T + HII + PO cos(yT) + y. cos(yH) + so, (Al) 

G(Y) = - y2 sin[y:T + HII + y{al cos[y(T + H)] + p1 cos(yT) + yl cos(yH) + S,} 

+ a0 sin[y(T + H)] + PO sin(yT) + y. sin(yH). (A.2) 

We will also need F’(y): 

F’(y) = y’(T + H) sin(y(T + H)) - y(2 cos(y(T + H)) + a,(T + H) cos(y(T -L H)) 

+ p,Tcos(yT) + y,H cos(yH)} 

- [al + ao(T + H)] sin(y(T + H)) - (PI + P”T)sin(yT) - (VI + y,,H)sin(yH). (A.3) 

We will be using the method described in Bellman and Cooke[l9]. Theorems 13.3 and 13.7. The 



method requires that we verify if a certain function V’ r-“’ (defined in [ 191. Theorem 13.3) satisfies 

the condition 

for every y in ?, and some real E. It is easily checked that in our case IV”“-“It:) = - cos(A7 - 

H)). and thus if we take E = 0. the condition is verified. 

Inspection of Theorems 13.3 and 13.7 of [I91 gives in our case the following necessary and 

sufficient conditions for stability of MA. e”): 

(I 1 The function F(J) has exactly -It 7’ + H)X + 2 real zeros in each interval [-XT. XT;]. beginning 

from some X. 

(2) For each such zero JQ, of F, it holds that 

Consider first the degenerate case, i.e. a,, + p,, + y ,, + 6,, = 0. We see that F(O) = 0. Thus. since 

F is an even function. it has an odd number of zeros in each symmetrical interval: this means that 

condition I. cannot be satisfied. Hence /r(h. e”) is unstable. 

Now assume that a,, + p,, + y,, + 6,, f 0. 

Let us start with the .vr!jJcic~jrt corditiwr. 

We introduce the following hypotheses: 

(3) F(y) has esactly one zero in each of the following intervals: 

where k is greater or equal to k,, and F has no other zeros in the interval [2X-n/( T + If), 2(k + 
l)n/(T + H)]. 
(4) G(y) is negative in I’;, positive in I$, for k 2 k,. 
(5) F’(y) > 0 in I:, F’(y) < 0 0 in Ii, for k 2 k, . 
First, we will prove that conditions (3)-(5) imply conditions (1) and (2), under the hypotheses (a) 

and (b) of the proposition. 

Since F is even, F(0) # 0 and G is odd, it is sufficient when looking at 1 to prove that F has 

exactly 2(T i H)k + 1 zeros in (0, 2kn], for all k large enough, and looking at (2), to prove that 

F’(yd G(yo) < 0, for the zeros in (0, 2kr]. 

f~~~c?f’oJ’ I. We write the interval (0. XT] as the union of (0. X, T;/( T + H)] and of the intervals 

[2/H/( T + H). 2(/ + I In7 7’ + H)]. k, 5 I 5 X( T + H) - I. Using hypothesis (a) of the proposition 

and condition (3), we count exactly 

2x, + I f 2[X(T + H) - X, j = 2X(T + H) + I 

zeros in the interval 10. XT;]. 

P,-ooJ’oJ’2. it is a direct consequence of conditions (1) and (5). The next step is to prove that 

O)-(5) are true under the conditions of the proposition. The proof will be based on the fact that 

the terms involving the factor _v’ in F, G. F’ dominate the remaining terms for y large enough. But 

because of the presence of cos J( 7 + H). the domination u ill only take place in intervals in which 

cos ,v( T + H) is far from zero. On the other hand, we will find a zero in intervals at the extremities 

of vvhich cos _v( 7 + H) takes opposite and far from zero values. 

Let us take X 2 X,,: note that the value of --x2 cos x( T 

than BL/v’~) on the left (resp. right) end of I:. 

i H) is less than - BLIL’j (resp. greater 

while AL is the uppsr bound for the absolute value 
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of the sum of the remaining terms of F(y). The same estimates are true for 1:. Moreover, in the 
set 

2x-H Z(k + lb 
T+H' l-+H 1 

\ (p ” p) 

I 2 3 

We have 1 y’ cos y(T + H) 1 2 BJV?. 
To conclude, F has at least one zero in each of the intervals I, and 1: and has no zero in 

2kH 2(k + 1)n 

T+H’ T+H I 
\ (I: u I:), k 2 k,-,. 

A similar argument applied to G shows that G(y) < 0 in 1: and G(y) > 0 in I$, k 1 X-0, which is 
(4). 

To complete the verification of (3), we have only to prove (5). 
Looking at F’ [formula (A.3)], we see that it is a combination of the same functions which appear 

in G, with other coefftcients. Dividing F’ by T + H, we can define a new Ai and BL as before. 
Thus from the preceding proof, it follows that the condition Bk > 2%‘z, k z k; (for some new 

constant kh), ensures that F’ will stay positive in Zf and negative in 1:. That completes the proof 
of (3)-(j). 

We pass to the necessary condition: Suppose that (a) does not hold. Then since F(y) is even, 
we see that it has less than 4k(T + H) + 2 zeros in the interval [ - Zkr, 2k.sr] for each k greater 
than some value. This in turn implies the instability of h(A, e”) by condition (1). Similarly, if (b) 
does not hold, then h(X, e”) is unstable by condition 2. 0 

Proposition A.1 provides a numerical method for checking the stability near the critical point 
(N, R) by undertaking the numerical search of the zeros of F(y). Numerical computations were 
carried out partly using this method and partly a method introduced by Sikora and Kociecki[291. 
This last method was modified and programmed by Miroslaw Sarnik, graduate student in the In- 
stitute of Automation of the Silesian Technical University in Gliwice, Poland. 


