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1. INTRODUCTION

The present paper was motivated by the following result of Gyori and˝
the second author:

w xTHEOREM A 4, Theorem 2 . Consider the scalar linear delay differential
equation

x t s c q c t x t y x t y t q d t x t y s , 1.1Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .˙ ˜
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w .where c g R, t , s G 0 are constants and c, d: 0, ` ª R are continuous˜
functions. Suppose that

ct - 1, 1.2Ž .˜
c t ª 0 as t ª `, 1.3Ž . Ž .

and

`

d t dt - `. 1.4Ž . Ž .H
0

Ž . Ž . Ž .Then Eq. 1.1 has asymptotic equilibrium; i.e., statements i and ii below
hold.

Ž . Ž .i E¨ery solution of 1.1 tends to a constant at infinity.
Ž . Ž . Ž .ii For e¨ery j g R, Eq. 1.1 has a solution x such that x t ª j as

t ª `.

Results of this type can be used to establish asymptotic formulae for the
Ž w x.solutions of delay differential equations see 4 .

Ž .In Theorem A, Eq. 1.1 is considered as a perturbation of the au-
tonomous equation

x t s c x t y x t y t . 1.5Ž . Ž . Ž . Ž .Ž .˙ ˜

Note that every constant function is a solution of the latter equation. The
Ž . Ž .role of Assumption 1.2 is to guarantee that any solution of 1.5 tends to

a constant as t ª `. Indeed, a simple analysis of the characteristic
equation

l s c 1 y eylt 1.6Ž . Ž .˜

Ž . Ž .for Eq. 1.5 shows that Assumption 1.2 is equivalent to the fact that
Ž . Ž .l s 0 is a simple root of 1.6 and any other root of 1.6 has negative real0

part which, by known results from the theory of linear autonomous
Ž w x.functional differential equations see, e.g., 6, 7 , implies that the solutions

Ž .of 1.5 are asymptotically constant.
In this paper, among others, we prove the following generalization of

Theorem A to systems of delay differential equations:

THEOREM B. Consider the system

k l
˜x t s C q C t x t y v y x t y t q D t x t y s ,Ž . Ž . Ž . Ž . Ž .Ž .˙ Ž .Ž .Ý Ýi i i i j j

is1 js1

1.7Ž .
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˜where v , t , i s 1, . . . , k, and s , j s 1, . . . , l are nonnegatï e constants, C ,i i j i
Ž .i s 1, . . . , k, are constant n = n matrices, C t , 0 F t - `, i s 1, . . . , k, andi

Ž .D t , 0 F t - `, j s 1, . . . , l, are continuous n = n matrix functions. Sup-j
pose that e¨ery solution of the autonomous system

k
˜x t s C x t y v y x t y t 1.8Ž . Ž . Ž . Ž .Ž .˙ Ý i i i

is1

Ž .is asymptotically constant tends to a constant ¨ector at infinity . If

C t ª 0 as t ª `, i s 1, . . . , k , 1.9Ž . Ž .i

and
`

D t dt - `, j s 1, . . . , l , 1.10Ž . Ž .H j
0

Ž .then System 1.7 has asymptotic equilibrium, i.e.,

Ž . Ž .i E¨ery solution of 1.7 tends to a constant ¨ector at infinity.
Ž . n Ž . Ž .ii For e¨ery j g R , Eq. 1.7 has a solution x such that x t ª j as

t ª `.

Ž wRemark. It follows from the results of Atkinson and Haddock see 2,
x. Ž .Theorem 3.1 that every solution of Eq. 1.8 is asymptotically constant if

k ˜< < � 4 < <rÝ C - 1, where r s max v , . . . , v , t , . . . , t and ? is the matrixis1 i 1 k 1 k
norm induced by the norm used in R n.

In fact, we prove a more general result concerning linear and possibly
nonlinear perturbations of linear autonomous functional differential equa-
tions having infinitely many equilibria. Our main results, formulated in
Section 2, give sufficient conditions under which the solutions of the
perturbed system tend to the equilibria of the unperturbed equation at
infinity.

We remark that the generalization of Theorem A to systems of delay
differential equations is nontrivial which is mainly due to the following two
facts:

w x1. One of the main steps of the proof of Theorem A in 4 is to show
that the solutions of the ‘‘balanced’’ equation

x t s c q c t x t y t y t 1.11Ž . Ž . Ž . Ž . Ž .Ž . Ž .˙ ˜

are uniformly stable and asymptotically constant. The proof presented in
w x Ž w x. Ž .4 see 4, Lemma 7 strongly uses the scalar nature of Eq. 1.11 and the

Ž .fact that in Eq. 1.11 there is only one delay.
Ž . w x2. The proof of statement ii of Theorem A in 4 is accomplished by

Ž .showing that Eq. 1.11 has a solution with a nonzero limit at infinity.
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Ž .Evidently, for scalar linear equations this is equivalent to statement ii .
However, for systems or nonlinear equations this is not true. In this case,
for every constant vector j , we have to show the existence of a solution x
of the terminal ¨alue problem

x t ª j as t ª `. 1.12Ž . Ž .

ŽFor other results on the terminal value problem and asymptotic constancy
w xfor functional differential equations, see 1]3, 5, 8, 9 and the references

.therein. Therefore, the proof of Theorem B requires different arguments.
The proof of the asymptotic constancy and uniform stability of the solu-

Ž .tions of the ‘‘balanced equation’’ cf. Theorem 1 below is based on the
abstract variation-of-constants formula and the decomposition theory of

Ž w x.linear autonomous functional differential equations see 6, Chap. 7 . The
Ž .solution of the terminal value problem 1.12 is found as a fixed point of an

appropriate integral operator which can be obtained from the decomposi-
tion in the variation-of-constants formula.

2. MAIN RESULTS

< < n Žw x n.Let ? denote any norm in R . Given r G 0, let C s C yr, 0 , R be
w x nthe Banach space of continuous functions from yr, 0 into R with the

5 5 < Ž . <supremum norm, f s sup f u for f g C.yr F u F 0
Consider the linear autonomous functional differential equation

x t s L x , 2.1Ž . Ž . Ž .˙ t

where L: C ª R n is linear and continuous and x g C is defined byt
Ž . Ž . w xx u s x t q u for u g yr, 0 .t

Ž .We deal with perturbations of Eq. 2.1 of the form

y t s L y q M t , y , 2.2Ž . Ž . Ž . Ž .˙ t t

and

z t s L z q M t , z q f t , z . 2.3Ž . Ž . Ž . Ž . Ž .˙ t t t

Ž . Ž . w . nIn Eqs. 2.2 and 2.3 , M: 0, ` = C ª R is continuous, for each t G 0,
Ž . nM t, ? : C ª R is linear and such that

5 5M t , f F m t f , t G 0, f g C , 2.4Ž . Ž . Ž .

w .where m is a nonnegative continuous function on 0, ` . The nonlinearity
w . nf : 0, ` = C ª R is assumed to be continuous and Lipschitzian with
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respect to its second variable, i.e.,

5 5f t , f y f t , f F g t f y f , t G 0, f , f g C , 2.5Ž . Ž . Ž . Ž .1 2 1 2 1 2

w .where g is nonnegative and continuous on 0, ` .
Ž . Ž .Under the above assumptions, for every s G 0, f g C, Eqs. 2.1 ] 2.3

Ž .have a unique solution with initial value f at s , denoted by x s , f ,
Ž . Ž . Ž w x.y s , f , and z s , f , respectively, see 6, Theorem 2.2.3 .

Let
n <E s j g R L f s 0 ,� 4Ž .j

where f is the corresponding constant function in C defined byj

w xf u s j for u g yr , 0 .Ž .j

Throughout the paper, we assume the following assumption:

Ž . Ž .H Equation 2.1 has infinitely many equilibria and every solution
Ž .of 2.1 approaches some equilibrium point as t ª `.

From the theory of linear autonomous functional differential equations
Ž w x. Ž .see 6, Chap. 7; 7, Chap. 7 , it follows that assumption H is satisfied if
and only if any root of the characteristic equation

det D l s 0, D l s lI y L el?I I is the unit matrix ,Ž . Ž . Ž . Ž .

different from l s 0, has negative real part and the ascent of the0
Ž y1 .characteristic root l s 0 the order of l as a pole of D equals one.0 0

Our aim in this paper is to find conditions on M and f under which the
Ž . Ž . Ž .solutions of Eqs. 2.2 and 2.3 tend to the equilibria of Eq. 2.1 as t ª `.

Our main results are formulated in the following two theorems. The first
Ž .theorem deals with the linear perturbation 2.2 . It shows that the above

Ž . Ž . Žconclusion is true if Eqs. 2.1 and 2.2 have the same equilibria see
Ž . .Assumption 2.6 below and m vanishes at infinity.

Ž .THEOREM 1. Let assumption H hold. Suppose that

M t , f s 0 for e¨ery j g E, 2.6Ž .Ž .j

and

m t ª 0 as t ª `. 2.7Ž . Ž .

Then the following statements are ¨alid.

Ž . Ž .i E¨ery solution of Eq. 2.2 tends to some j g E at infinity.
Ž . Ž .ii The zero solution of Eq. 2.2 is uniformly stable.
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Ž .For the nonlinear perturbation 2.3 , we prove

THEOREM 2. In addition to the assumptions of Theorem 1, assume that

`

f t , 0 dt - `, 2.8Ž . Ž .H
0

and

`

g t dt - `. 2.9Ž . Ž .H
0

Then the following statements are ¨alid.

Ž . Ž .i E¨ery solution of Eq. 2.3 tends to some j g E at infinity.
Ž . Ž . Ž .ii For e¨ery j g E, Eq. 2.3 has a solution z such that z t ª j as

t ª `.

Ž .In the case of System 1.7 , the above symbols are listed below,

k
˜L f s C f yv y f yt ,Ž . Ž . Ž .Ž .Ý i i i

is1

E s R n ,
k

yl v ylti i˜D l s lI y C e q e ,Ž . Ž .Ý i
is1

k

M t , f s C t f yv y f yt ,Ž . Ž . Ž . Ž .Ž .Ý i i i
is1

k

m t s 2 C t ,Ž . Ž .Ý i
is1

l

f t , f s D t f ys ,Ž . Ž . Ž .Ý j j
js1

l

g t s D t .Ž . Ž .Ý j
js1

Thus, Theorem B in the Introduction is an immediate consequence of
Theorem 2.
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3. PROOFS OF THE THEOREMS

Proof of Theorem 1. Let s G 0, f g C be arbitrary. By the variation-
Ž w x. Ž . Ž .of-constants formula cf. 6, Chap. 6 , the solution y s y s , f of Eq. 2.2

can be written in the form

t
y s T t y s f q T t y t X M t , y dt , t G s , 3.1Ž . Ž . Ž . Ž .Ht 0 t

s

Ž . Ž .where T t : C ª C is the solution operator for Eq. 2.1 given by

T t f s x 0, f , t G 0, f g C ,Ž . Ž .t

w xand X is the n = n matrix function defined on yr, 0 by0

0 for yr F u - 0,X u sŽ .0 ½ I for u s 0.

The state space C can be decomposed into a direct sum, C s P [ Q,
where P is the generalized eigenspace corresponding to the characteristic

Ž .value l s 0 of Eq. 2.1 and Q is the complementary subspace which is0
Ž . Ž w x.invariant under the family of operators T t , t G 0 cf. 6, Chap. 7 . That

is, any f g C can be written uniquely as

f s f P q f Q , 3.2Ž .

where f P g P and f Q g Q denote the projections of f onto subspaces P
and Q, respectively.

Ž . Ž .By assumption H , P consists of the equilibria of 2.1 , i.e.,

<P s f j g E . 3.3Ž .� 4j

Ž . Ž . w xThus, T t on P may be defined for all values t g y`, ` . In 6, Chap. 7
Ž .it is shown that the assumption on the characteristic values of Eq. 2.1

implies that there exist constants K ) 0, a ) 0 such that

P 5 5T t f F K f , y` - t - `, f g C ,Ž .
PT t X F K , y` - t - `,Ž . 0

3.4Ž .
Q ya t 5 5T t f F Ke f , t G 0, f g C ,Ž .
Q ya tT t X F Ke , t G 0.Ž . 0
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Ž .If we make the decomposition 3.2 in the variation-of-constants formula
Ž . Ž w x.3.1 , we obtain an equivalent system cf. 6, Theorem 7.6.1 ,

tP P Py s T t y s f q T t y t X M t , y dt , 3.5aŽ . Ž . Ž . Ž .Ht 0 t
s

tQ Q Qy s T t y s f q T t y t X M t , y dt , 3.5bŽ . Ž . Ž . Ž .Ht 0 t
s

y s y P q yQ , t G s . 3.5cŽ .t t t

Ž . Ž .By virtue of 3.2 and the linearity of M t , ? we have

M t , y s M t , y P q yQ s M t , y P q M t , yQ .Ž . Ž . Ž . Ž .t t t t t

Ž . Ž . Ž P .But, in view of 2.6 and 3.3 , M t , y s 0. Hencet

M t , y s M t , yQ , t G s . 3.6Ž . Ž .Ž .t t

Ž .Consequently, System 3.5 is equivalent to the equations

tP P P Qy s T t y s f q T t y t X M t , y dt , 3.7aŽ . Ž . Ž .Ž .Ht 0 t
s

tQ Q Q Qy s T t y s f q T t y t X M t , y dt 3.7bŽ . Ž . Ž .Ž .Ht 0 t
s

for t G s .
Ž . Ž . Ž .From 3.7b , in view of 2.4 and estimates 3.4 , we obtain

tQ ya Ž tys . ya Ž tyt . Q5 5 5 5 5 5y F K f e q K sup m t e y dt , t G s .Ž .Ht t
stGs

Ž . b Ž tys .Choose b g 0, a . Multiplying the latter inequality by e , we get

5 Q 5 b Ž tys . 5 5 yŽ ayb .Ž tys .y e F K f et

t yŽ ayb .Ž tyt . Q b Žtys .5 5q K sup m t e y e dt 3.8Ž . Ž .H t
stGs

for t G s . Define

5 Q 5 b Žtys .¨ t s sup y e , t G s .Ž . t
sFtFt
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Ž .From 3.8 , it follows

tQ b Ž tys . yŽayb .Žtys .5 5 5 5y e F K f q K sup m t ¨ t e dtŽ . Ž .Ht
stGs

y15 5F K f q K a y b sup m t ¨ tŽ . Ž . Ž .
tGs

for t G s . Taking into account that ¨ is nondecreasing, the latter inequal-
ity implies

y15 5¨ t F K f q K a y b sup m t ¨ t , t G s . 3.9Ž . Ž . Ž . Ž . Ž .
tGs

If s is so large that0

sup m t - Ky1 a y b ,Ž . Ž .
tGs0

Ž Ž . . Ž .in view of 2.7 such a constant certainly exists and s G s , then 3.90
yields

5 5¨ t F û f , t G s ,Ž . 1

w Ž .y1 Ž .xy1where û s K 1 y K a y b sup m t . Consequently,1 t G s 0

5 Q 5 5 5 yb Ž tys .y F û f e , t G s G s . 3.10Ž .t 1 0

Ž . Ž . P Ž .By virtue of 3.3 , T t f is independent of t. Therefore, from 3.7a , in
Ž . Ž .view of estimates 3.4 and 3.10 , we obtain, for t G t G s G s ,2 1 0

t2P P yb Žtys .5 5 5 5y y y F K sup m t û f e dtŽ . Ht t 11 2
ttGs 10

5 5 y1 yb Ž t1ys .F K sup m t û f b e .Ž . 1
tGs0

From this, the Cauchy criterion assures the existence of the limit c s
lim y P in C. Since P is a finite-dimensional subspace of C, it is closedt ª` t

Q Žin C and hence c g P; i.e., c s f for some j g E. Since y ª 0 cf.j t
Ž .. Ž .3.10 , y ª f as t ª `. This completes the proof of statement i .t j

Ž . Ž . Ž .To show statement ii , observe that from 3.7a , by 3.10 and by similar
estimates as before, we obtain

tP yb Žtys .5 5 5 5 5 5y F K f q K sup m t û f e dt , t G s .Ž . Ht 1
stGs
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Hence

5 P 5 5 5y F û f , t G s G s , 3.11Ž .t 2 0

w y1 Ž .x Ž . Ž .where û s K 1 q û b sup m t . Combining 3.5c , 3.10 , and2 1 t G s 0
Ž .3.11 , we conclude

5 5 5 5y s y s , f F û f , t G s G s , f g C , 3.12Ž . Ž .t t 0

where the constant û s û q û is independent of s and f. Therefore,1 2
Ž . w .the zero solution of Eq. 2.2 is uniformly stable on s , ` . Since the0

w xuniform stability on the compact interval 0, s follows by standard0
estimates on the growth of the solutions of linear functional differential

Ž w x . Ž .equations cf. 6, Theorem 6.1.1 and its proof , the zero solution of 2.2 is
w .uniformly stable on the whole interval 0, ` . The proof of the theorem is

complete.

Before we present the proof of Theorem 2, we establish some lemmas
regarding L -functions.1

Ž .The function space L 0, ` consists of the Lebesgue measurable func-1
Ž . ` < Ž . <tions g : 0, ` ª R such that H g t dt - `. With the norm0

`def
5 5g s g t dt , g g L 0, ` ,Ž . Ž .L Ž0 , `. H 11

0

Ž .L 0, ` is a Banach space.1

Ž .LEMMA 1. Let a ) 0 and g g L 0, ` . Then the con¨olution1

tdef ya Ž tyt .g t s e g t dt , t G 0Ž . Ž .H
0

has the following properties,

wg is continuous on 0, ` , 3.13Ž ..
g t ª 0 as t ª `, 3.14Ž . Ž .

5 5 y1 5 5g g L 0, ` and g F a g . 3.15Ž . Ž .L Ž0 , `. L Ž0 , `.1 1 1

Ž .Proof. Statement 3.13 is a consequence of the fact that a convolution
of two functions which belong to classes L and L , respectively, wherep q

Ž w1 F p F ` and 1rp q 1rq s 1, is a continuous function of t cf. 10, p.
x.216 .
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Ž .Statement 3.14 follows immediately from the estimates

tr2 tya tr2g t F e g t dt q g t dtŽ . Ž . Ž .H H
0 tr2

` `
ya tr2F e g t dt q g t dt .Ž . Ž .H H

0 tr2

Ž .In order to show 3.15 , observe that

` `t tya Ž tyt . ya Ž tyt .5 5g s e g t dt dt F e g t dt dt.Ž . Ž .L Ž0 , `. H H H H1 ž /0 0 0 0

Changing the order of integration in the last integral, we get

` ` `t ya Ž tyt . ya Ž tyt .e g t dt dt s e g t dt dtŽ . Ž .H H H Hž / ž /0 0 0 t

y1 5 5s a g .L Ž0 , `.1

This completes the proof of the lemma.

Ž .The following lemma is useful in the proof of statement ii of Theo-
rem 2.

Ž .LEMMA 2. Let g g L 0, ` be a positï e function and let a , d , h be1
positï e constants. If d - ah, then there exists a positï e continuous function

w .h on 0, ` with the following properties:

h t ª 0 as t ª `, 3.16Ž . Ž .
h g L 0, ` , 3.17Ž . Ž .1

t ya Ž tyt .e d h t q g t dt s hh t for all t G 0. 3.18Ž . Ž . Ž . Ž .H
0

Ž .Proof. For h g L 0, ` , we define1

ty1 ya Ž tyt .FF h t s h e d h t q g t dt , t G 0.Ž . Ž . Ž .H
0

w . Ž .By Lemma 1, FF h is continuous on 0, ` , FF h t ª 0 as t ª ` and
Ž . Ž .FF h g L 0, ` . Thus, FF maps L 0, ` into itself. The proof is complete if1 1

w .we show that operator FF has a fixed point h which is positive on 0, ` .
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Ž .For h , h g L 0, ` and t G 0, we have1 2 1

ty1 ya Ž tyt .FF h t y FF h t F h d e h t y h t dt ,Ž . Ž . Ž . Ž .H1 2 1 2
0

Ž Ž ..which, by Lemma 1 cf. 3.15 , implies

5 5 y1 y1 5 5FF h y FF h F h da h y h .L Ž0 , `. L Ž0 , `.1 2 1 21 1

Ž . Ž .Since d - ah, FF: L 0, ` ª L 0, ` is a contraction mapping and it has a1 1
Ž .unique fixed point h g L 0, ` . It remains to show that h is positive on1

w .0, ` .
It is known that the fixed point h of operator FF can be written as a limit

of successive approximations

h s lim h in L 0, ` , 3.19Ž . Ž .n 1
nª`

Ž .where h g L 0, ` is arbitrary and h s FF h , n s 0, 1, . . . . Taking0 1 nq1 n

h ' 0, it can be seen by easy induction that0

ty1 ya Ž tyt .h t G h e g t dt , t G 0, n s 1, 2, . . . . 3.20Ž . Ž . Ž .Hn
0

Ž . Ž . Ž . w .From 3.19 , it follows that h t s lim h t for almost every t g 0, ` .n ª` n

Ž .Consequently, letting n ª ` in 3.20 , we obtain

ty1 ya Ž tyt .h t G h e g t dt 3.21Ž . Ž . Ž .H
0

w . w . Ž .for almost every t g 0, ` . Since h s FF h is continuous on 0, ` , 3.21
w .holds for all t g 0, ` and the proof is complete.

Proof of Theorem 2. Let s G 0, f g C be arbitrary. By the variation-
Ž . Ž .of-constants formula, the solution z s z s , f of Eq. 2.3 can be written

as

t
z s y q U t , t X f t , z dt , t G s , 3.22Ž . Ž . Ž .Ht t 0 t

s

Ž . Ž . Ž .where y s y s , f is the solution of Eq. 2.2 and U t, t : C ª C is the
Ž .solution operator of Eq. 2.2 defined by

U t , t f s y t , f , t G t G 0, f g C.Ž . Ž .t

Ž Ž ..According to the proof of Theorem 1 cf. 3.12 , there exists a constant
û ) 0 such that

5 5 5 5y F û f , t G s ,t
3.23Ž .

U t , t X F û , t G t G 0.Ž . 0
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By the triangle inequality, we have

f t , z s f t , 0 q f t , z y f t , 0Ž . Ž . Ž . Ž .t t

F f t , 0 q f t , z y f t , 0 ,Ž . Ž . Ž .t

Ž .which, together with 2.5 , implies

5 5f t , z F f t , 0 q g t z , t G s . 3.24Ž . Ž . Ž . Ž .t t

Ž . Ž . Ž .From 3.22 , in view of 3.23 and 3.24 , it follows that

` t
5 5 5 5 5 5z F û f q û f t , 0 dt q û g t z dt , t G s ,Ž . Ž .H Ht t

0 0

which, by the Gronwall inequality, yields

` `
5 5 5 5z F û f q f t , 0 dt exp û g t dtŽ . Ž .H Ht ž /0 0

w . Ž . Ž .for t G s . Thus, z is bounded on s , ` . This, together with 2.8 , 2.9 ,
Ž .and 3.24 , implies

`

f t , z dt - `. 3.25Ž . Ž .H t
0

By Theorem 1, the limits

c s lim y ,t
tª`

and

U t s lim U t , t X , t G 0 3.26Ž . Ž . Ž .0
tª`

Žw x n2 . Ž . Ž .exist in C and C yr, 0 , R , respectively. Relations 3.23 , 3.25 , and
Ž . w x3.26 show that we can apply Lemma 6 of 4 to the components of the

Ž .integral in 3.22 , which implies that

`t
U t , t X f t , z dt ª U t f t , z dt as t ª `,Ž . Ž . Ž . Ž .H H0 t t

s s

Ž Ž ..the last integral being absolutely convergent. Therefore cf. 3.22 :

`def
z ª c# s c q U t f t , z dt as t ª `.Ž . Ž .Ht t

s

Ž .Since, according to Theorem 1, c and the columns of U t , t G s , belong
to P, c# also belongs to P. That is, c# s f for some j g E. Clearly,j

Ž . Ž .z t ª j as t ª ` which completes the proof of statement i .
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Ž .Now we prove statement ii . Let j g E be given. Denote by B the
w . Žvector space of continuous functions z: s , ` ª C such that writing zt

Ž ..instead of z t ,

1def P Q5 5 5 5 5 5z s sup z q sup z - `, 3.27Ž .B t th tŽ .tGs tGs

w .where h is a positive continuous function on s , ` which is specified later.
5 5 Ž 5 5 .It is easy to show that ? is a norm on B and B, ? is a BanachB B

space.
Ž .On B, using the notation from the proof of Theorem 1 we define an

operator KK by

`
PKKz s f y T t y t X M t , z q f t , z dtŽ . Ž . Ž . Ž .Ht j 0 t t

t

t Qq T t y t X M t , z q f t , z dtŽ . Ž . Ž .H 0 t t
s

Ž . Ž .for t G s . In view of 3.6 , KKz can be written ast

`
P QKKz s f y T t y t X M t , z q f t , z dtŽ . Ž . Ž .Ž .Ht j 0 t t

t

t Q Qq T t y t X M t , z q f t , z dt .Ž . Ž .Ž .H 0 t t
s

Ž .The projections of KKz onto subspaces P and Q have the formt

`P P QKKz s f y T t y t X M t , z q f t , z dt , 3.28aŽ . Ž . Ž . Ž .Ž .Ht j 0 t t
t

tQ Q QKKz s T t y t X M t , z q f t , z dt . 3.28bŽ . Ž . Ž . Ž .Ž .Ht 0 t t
s

5 5By the definition of the norm ? , we haveB

5 P 5 5 5z F z ,Bt

5 Q 5 5 5z F h t z ,Ž . Bt 3.29Ž .
5 5 5 5z F 1 q h t z , t G s ,Ž . Bt

the last inequality being a consequence of the first and second one, since
5 5 5 P Q 5 5 P 5 5 Q 5 Ž . Ž . Ž .z s z q z F z q z . From 3.28b , in view of 2.4 , 3.4 ,t t t t t
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Ž . Ž .3.24 , and 3.29 , we obtain

tQ ya Ž tyt . 5 5KKz F K e m t h t z q f t , 0�Ž . Ž . Ž . Ž .H Bt
s

5 5qg t 1 q h t z dt ,4Ž . Ž . B

and hence

Q 5 5KKz F K 1 q zŽ . Ž .Bt

t ya Ž tyt .= e m t h t q f t , 0 q g t 1 q h t dt� 4Ž . Ž . Ž . Ž . Ž .H
s

3.30Ž .

for t G s .
aLet d be an arbitrary constant such that 0 - d - . By Lemma 2,2 K

w .there exists a positive continuous function h on 0, ` with the following
properties,

h t ª 0 as t ª `, 3.31Ž . Ž .
h g L 0, ` , 3.32Ž . Ž .1

1t ya Ž tyt .e d h t q f t , 0 q 2g t dt s h t for all t G 0.� 4Ž . Ž . Ž . Ž .H 2 K0

3.33Ž .

Choose s G 0 such that0

sup m t - d , 3.34Ž . Ž .
tGs0

and

sup h t - 1. 3.35Ž . Ž .
tGs0

Ž Ž . Ž . . Ž . Ž .The existence of s follows from 2.7 and 3.31 . Then 3.30 and 3.310
imply that

1 1Q 5 5sup KKz F 1 q z 3.36Ž . Ž . Ž .Bth t 2Ž .tGs

provided s G s .0
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Ž .From 3.28a , by similar estimates as before, we get

`P < < 5 5KKz F j q K m t h t z q f t , 0�Ž . Ž . Ž . Ž .H Bt
t

5 5qg t 1 q h t z dt .4Ž . Ž . B

Ž Ž . Ž ..Hence cf. 3.34 and 3.35 ,

`P < < 5 5sup KKz F j q K 1 q z d h t q f t , 0 q 2g t dt� 4Ž . Ž . Ž . Ž . Ž .B Ht
stGs

3.37Ž .

provided s G s .0
Ž . Ž .From 3.36 and 3.37 , we see that if h and s are chosen as before and0

s G s , then operator KK is well defined and maps B into itself.0
Ž . Ž .Let z , z g B. By similar estimates as in the proof of 3.36 and 3.37 ,1 2

we obtain

1 1Q 5 5sup KKz y KKz F z y z , 3.38Ž . Ž .B1 2 1 2th t 2Ž .tGs

and

` `P 5 5sup KKz y KKz F K d h t dt q 2 g t dt z y zŽ . Ž . Ž .H H B1 2 1 2t
s stGs

3.39Ž .

provided s G s . Let s G s be chosen such that0 0

` ` 1
d h t dt q 2 g t dt - .Ž . Ž .H H 3Ks s

Ž . Ž . Ž . 5Such constant certainly exists. Then 3.38 and 3.39 imply that KKz y1
55 5 5KKz F z y z for all z , z g B. Thus, KK: B ª B is a contractionB B2 1 2 1 26

mapping. It is easily seen that the unique fixed point z g B of operator KK

Ž . 5 5is a solution of Eq. 2.3 such that z y f ª 0 as t ª `. The proof oft j

the theorem is complete.
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