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Abstract

We present a model of the phytoplankton dynamics. The distribution of the size of the phytoplankton aggregates is described
by a non-linear transport equation that contains terms resporisititee growth of phytoplankton aggregates, their fragmenta-
tion and coagulation. We study asymptotic behaviour of moments of the solutions and we explain why phytoplankton tends to
create large aggregaté® cite thisarticle: O. Arino, R. Rudnicki, C. R. Biologies 327 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

La dynamique du phytoplancton. Nous présentons un modéale dynamique du phytophcton. La distribution de la taille
des agrégats de phytoplancton est décrite par une équation de transport non linéaire, qui contient des termes responsables de
croissance des agrégats de phytoplancton, leur fragmentation et leur coagulation. Nous étudions le comportement asymptotiqt
des moments des solutions et expliquons pourquoi le phytoplancton a tendance a créer de grandsRoymegaés. cet
article: O. Arino, R. Rudnicki, C. R. Biologies 327 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Phytoplankton cells have the ability of forming ag-
B, _ gregates which are dispersed in the water column as a
Corresponding author. .
E-mail address: rudnicki@us.edu.piR. Rudnicki). result of currents and turbulence, leading to a patchy
* Deceased on 29 September 2003. distribution of phytoplankton. Phytoplankton is the
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first level of food accessible to animals. It is, in partic- which two distinct aggregates join together to form a
ular, the main food available to the early larval stages single one. We consider here only splitting into two
of many fish species, including the anchovy. At such parts. One could consider generally the fission into
stages, larvae are passive and can only eat the preyseveral or even the complete disassembling of an ag-
passing in a very close vicinity. The best situation gregate. In order to simplify its representation, we as-
is when the larva is near a phytoplankton aggregate, syme that if an aggregate has been fragmented into a
while on the other hand larvae that stay far from ag- ymper of pieces during some time interval, one can
gregates are not likely to survive. Thus, being able t0 g, jvide the time into small-enough intervals for only

describe the distribution in numbers of phytoplankton one binary fission to take place during each one of
aggregates of different sizes as well as locating them in these time intervals

the space turn out to be of utmost importance in con- The main role in the process of coagulation of phy-

nection with the study of fls recruitment. Recently, :
several authors have addressed the issue of modellingtOplankton play TEP (Transparent Exopolymer Part

the dynamics of phytoplankton in such a way as to ex- cles). TEP are by-product of the growth of phytoplank-

hibit such structure. Using the approach of particles ton and their stickiness cause that cells will remain

moving randomly under the action of currents and hay- [©°9ether upon conta¢é—6]. On the other hand, the
ing at random times the ability of dividing into two low level of concentration of TEP leads to fragmen-

new particles leads to the so-called superprocesses, folt@tion of phytoplankton aggregates. Again, we assume
which we may refer for example {d]. One is led to that within small-enough time intervals, coagulation is

stochastic partial differential equations, whose treat- @ binary process. It should be mentioned here that our
ment is still out of reach. Another seemingly easier description of the coagulation process is rather simple.
approach works with approximations of densities by We assume only that two distinct aggregates join to-
empirical concentrations of particles, these are models gether with some probability, which depends only on

known to ecologists as adution—diffusion—reaction the size of aggregates. The coagulation is a complex

(ADR) modelg2] and heavily used in simulatiofi3]. physical procesfb] including turbulent shear, particle
Here, results abound, unfortunately, they are first un- settling and Brownian motion. Also porosity of aggre-
predictable and second unjustifiable. gates and their stickiness play an important role in this

The approach followed in this work is, in .Contrast procesg7]. In our model, all above-mentioned fac-
to the above two, rather elementary. In a first study tors are hidden in the probability of aggregation, which
of the problem, we take the view of phenomenology: makes mathematics much simpler.
we are not introducing the specific action of the en- The view we just briefly described is saving us from

V|r<I)nment, we arz not elthber dﬁscrltl)lngk the mﬁwld- the tedious alternate way that would consist in mod-
ual processes undergone by phytoplankton cells. We elling first and cumulating the various forces entailed

C?QS;:; t:rzt ;Tﬁjgt‘jr“égj%al tjhneltrlzigg ?g%r:f?rﬁ%nagl: by currents and the turbulence, on the one hand, as
greg y well those forces of a biotic nature, which altogether

which will be given later), and in fact our view is Id K the state of te. Whil
that of a population (of aggregates) with some spe- would make up the stale of an aggregate. e we
are not aware of another comparable approach for the

cific birth, death and growth processes. The popula- : !
tion changes with time, the cohorts of a certain size Modelling of phytoplanktoraggregates, it has been

grow or on the contrary lose some members: the var- used and is still being used in the completely different
ious actions of currents on the individual cells are Contextof polymerisation/depolymerisation of chemi-
modelled phenomenologically as actions on aggre- cal or biochemical speci¢8—11]. What we will show
gates. here is that, under a number of assumptions that we

Apart from growth due to cell division within an ag- will briefly discuss further on, the higher moments of
gregate, two main mechanisms are at work: splitting the distribution of the population of aggregates tend
of a given aggregate into parts, which is called frag- to infinity. It means that phytoplankton tends to create
mentation process, and coagulation (aggregation), by large aggregates.
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2. Description of the model and assumptions If the dynamics were just the result of growth and

death, the equation would read:
The first step is to describe the state variable of 5

the problem. The state at a given timas the dis- _”(x, 1) = ——[b(x)u(x,t)] —d@u(x,1) (1)

tribution at that time of khthe aggregates according ot dx

to their size. What we call the size of an aggregate

is either the number of cells forming the aggregate

or the total mass of those cells. It could be also the

sum of the lengths of the cells, in the case length is

a relevant parameter. Weigid length, as structuring

variables, are impaired by the fact that there is a signif-

icant heterogeneity of these parameters. We denote . L .

the generic size. In terms of the state of the systemis 10N P(x). During a small time intervalz, a fraction
p(x)Ar of the aggregates of size are undertaking

characterized at any momenby the densityu(x, t). breakup. W thati i b ded
We will assume that the state can be represented by a reakup. Ve assume thatis a continuous, bounde

function, or rather a class of functions, that is, the map and non-negative function. . :

t — u(.,1) is continuous from the set of times into a (2) Once an aggregate'breaks (into tW.O PIECeS, as
space of Lebesgue measurable functions. In fact, thealr‘?gdg .mtentlone?), the j.'tz.e O]; :jhe ‘V_VO pleceti 'i de-
choice of the right space is easy to make: the total mass>C1P€d I lerms ot a conditiona ensik(x, y), tha

of cells (or equivalently, the number of cells in all the 'S+ & Non-negative measurable function defined in the
aggregates) should be finite at all time, that is:

2.2. Fragmentation
Fragmentation involves (at least) two concepts.

Definition 2. (1) The ability of aggregates of a cer-
tain size to break. This ability is modelled by a func-

positive quadrant, with support in the gét, y): x <
y}, such that:
o0
/xu(x,t)dx<oo (i) Jo K(x,y)dx=1,forallx>0
, (i) K(x,y)=K(y—x,y), forallx,y, y>x
In this way we obtain the space of work, namely, ) _ )
ISway W I P W ¥ Part {i) of the definition of K has the following
x straightforward consequence:
X=1¢ /x|¢<x>| dr = [|¢lx < o0
def
0

y
/xK(x,y)dx:X forally >0 (2)
We will also use the con&*, which consists of all 2

non-negative functions fror. ) )
According to Eq.(2), the expected size of fragments

2.1. Growth and mortality of aggregates of sizeis just. If fragmentation were
the only process at work, the equation for the dynam-
Here, we consider the processes at the level of a sin-iCs would read:
gle aggregate. Aggregates grow as a result of divisions 3,
of phytoplankton cells and may just die, for example, - (1) =—p(Xu(x,1)
by sinking to the seabed, or whatever cause. We as- 00
ts#g];gtghrztgt;ct);r.] processes depend on the actual size of i 2/ K(x, y)pOuly, 1) dy 3)

Definition 1. We assume that the growth rate is a func- It is just a matter of standard computation to check
tion b(x), smooth enough, such thatx) > 0 for all that multiplying the equation on both sides byand

x > 0,b(0) =0, b'(0) > 0 and that there exists some integrating the result from 0 too will give that the
constanth such thatb(x) < bx. The mortality rate right-hand side is 0, that is to say, the total number
is a functiond(x), which we assume continuous and of cells remains constant under a pure fragmentation
bounded. process.



964 O. Arino, R. Rudnicki / C. R. Biologies 327 (2004) 961-969

2.3. Coagulation 2.4. Thefull equation

Until now, we have considered linear processes  Taking the sums of the variations due to growth and

only. Coagulation of pairs of aggregates is, by the mortality, fragmentation and coagulation, we arrive at
very fact, non-linear. It should normally depend on the e fyl equation:

space. In this work, space is not explicitly considered,
SO we are assuming that aggregates of any size aredu
somehow uniformly distributed. As for the fragmen- E(x’ t

tation, we also assume that only part of the aggregates 9
has the competence to join. This could for example = —a[b(X)M(x, n]—au(x,1)
be due to the fact that only several species have the ~
necessary devices to glue or to attach to others. The co-
efficient of competence is a functiafix). We assume + 2/ K(x, y)p(yu(y, t)dy
thatg is a positive, continuous, and bounded function. x
The population_ of cells tha_t, aF timea.re implicated N féf ux —y, Du(y, 1) (x — y)yg(x — y)g(y) dy
in the coagulation process is given by: e fooo 2 (u(z 1) dz
@ ©)
J() dzef/ zg(2)u(z, 1) dz where we use the notation:
0
and a(x)=d(x) + p(x) + g(x)
o) = xg(u(x, 1) Eq. (5) can be written in the following abstract form:
Tdet J(2t)
is the fraction of cells in size- aggregates compe-  #'(t) = —yu(r) + A1u(r) + Agu(t) 4+ Bu() (6)
tent for the coagulation process with respect to the h
total population of cells in aggregates prone to join. where
In terms of the quantities introduced so far, we can >0 7
express the time rate of cells forming aggregates of ¥ =supfa(x): x > 0} 7
sizex: d
" (419)(x) = = (b()P (1)) 8)
J(t)/j(x—y,t)j(yyl)dy (A20)(x) = (y —a(x))¢(x)
0 o0
Again, if coagulation were the only process, the equa- + 2/ K(x, y)p(y)¢(y)dy 9)
tion would read: x
. ) d(x = () (x — y)yglx —y)g(y)dy
d(ru) | | Bg)(x) = D0
o (1= J(t)/J(x—y,t)J(y,t) dy (Be)x) x [5°28(2)p(2) dz
0 (10)
—xg(ulx, 1) for a non-zerap > 0 andB0 = 0.

which, after obvious algebra, leads to:
S Theorem 1.For each ug € X, there exists a unique
E(x, 1) solution u : [0, oo[ — X of Eq. (6) such that x(0) =
uo.
_Joulx =y, Duly, n(x = y)yg(x — y)g(y) dy °
- o0
x fo 28@u(z, 1) dz The proof of Theorem 1can be found inAppen-
—g(u(x, 1) (4) dix A.
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3. Long-term behaviour

In this section we will study the behaviour of the
solution of Eq.(5) when time goes to infinity. Now
assume thab(x) = bx, d(x) =d, p(x) =p, glx) =
g and that there exists a functiah: [0, 1] — [0, oo[
such thatk (x, y) = 110( ). Then the last assumption
is very natural because’

ry

/K(x,y)dx:/W(Z)dZ

0

965

homogeneity of the operatgr and linearity of oth-
ers operators in Eq(12), it follows that v satisfies
Eq.(12), withb =d =d + A.

For each non-negative integer we consider the
spaceY,, of all measurable functiong from [0, co[
to R such that the functiol + x + - - - + x")¢p (x) is
integrable. Let

ol 2/(1+X+---+X”)|¢(X)|dx

be the norm iny,. We will also use the con&,',

which means that the size of aggregates after fragmen-which consists of all non-negative functions frdm
tation is proportional to the size of the aggregate be- For ¢ ¢ v, we denote byM, (¢) the nth moment of

fore fragmentauon From the assumptions concerning b, i.e. My (o) =

K |tfoIIowsthatf0 Y(x)dy =1 andy (x) = ¥ (1—x)
for x € [0, 1]. We assume that, for each non-negative
integern, we have:

1

/x"”w(x) dx =¢, < 00
def

0

(11)

From properties ofys it follows easily thatcg = %

Moreover, the sequence,) is decreasing.

It will be a little easier to study the behaviour of
the functionv(x,t) = xu(x,t) instead ofu. Recall
that fxxlz v(x,t)dx is the number of cells in all ag-
gregates with size between andx,. We will write
v(t)(x) = v(x, t) and, for each > 0, the functiorv(r)
is an element of the spade‘f [0, oo[ of all integrable
functionse : [0, oo[ — [0, oo[. The functiornv satisfies
the following equation:

V() =Av(t) — (d + p+ g)v(1)

+ pKv(t) + gJv(t) (12)
where
(Ap)(x) = —bx¢'(x) (13)
(Kp)(x) = / 2xy~20 (x/y)$(3) dy (14)
¥ — d
(T6)0x) = Jo o(x —y)p(y)dy (15)

Jo (@) dz

for a non-zerap ¢ X* and 70=0.
We can assume that=d. If b # d, then we can
substitutev(r) = €9(r), wherex = b — d. Then from

Jo~ x"¢(x) dx. First we formulate a
result similar toTheorem 1

Theorem 2. For each vg € ¥, there exists a unique
solution v: [0, co[ — Y, of Eq. (12) such that v(0) =
vo. Moreover, for each non-negative integer n, we
have:

-1
(Mo(v(9)))

My (U(t)) = Bn

ng( )Mk v(0) Mk (v(2))

(16)

d
3 M, (v(®)) +

where 8, =bn+2c,p—p —g.

The proof of Theorem 2can be found inAppen-
dix B. Now we study the long-term behaviour of the
solutions of EQ.(16). For n = 0 Eg. (16) reduces
to $Mo(v(r)) = 0. This implies thatMo(v(t)) =
Mo(v(0)). We simplify the notation by setting,, () =
M, (v(t))/Mp(v(0)). Then Eq(16)takes the form:

Bawn(t) forn=1

Buwn (1) + g 3021 (D wi(Dwn—i (1) (17)
forn>2

wy, (1) =

wherep, = B, +2g=bn+2c,p—p+g.

4. Discussion

To our knowledgéljttle is known about the solution
behaviour of equations likel7). The precise analysis
of Egs.(5) and (17)s difficult and we omit it here. We
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note thatiff; = b+ (2c1—1)p+g < 0, thenwy () — No. 2 PO3A 031 25 and by the EC program@en-
0 asr — oo. Consequently, if the fragmentation rate tresof Excellence for Satesin phase of pre-accession,
p is large in comparison with birth and coagulation No. ICA1-CT-2000-70024.
ratesh andg, thenp; < 0 and then the average size of
aggregates tends to zero.

The caseB; > 0 is more interesting. Then the av- Appendix A. Proof of Theorem 1
erage size of aggregates tends to infinity. Roughly, it
means that aggregates with larger size make up an es- First observe tha#i is the infinitesimal generator
sential part of the whole population of the phytoplank- of a Co semigroup of positive-bounded linear opera-
ton. We can say more about long-term behaviour of tors onX. Indeed, letr,;xo denote the solution of the
the distribution of aggregates if we assume a stronger equationx’ () = b(x(¢)) with x(0) = xo, i.e. 7;x0 =
inequality (2c1 — 1)p + g > 0. Consider a stochastic  x(z). If ¢ is a differentiable function, then the initial
processX; such that the:th moments ofX; is w, (¢). value problem:
Let ¥; = e X, and letm,(r) denotes theith mo- " 3
ments ofY,. Thenm1(¢t) = const, and the function E(x,t) = —a[b(X)u(x,t)], u(0,x) =¢(x)
my, () satisfies equation: (A1)

Y has a unique classical solution of the form:
— — n
my,(6) = (By = nprma(t) + 8y (k)mkmmn_k 0]
k=1

(18)
for n > 2. SinceB, —np1 < 0 for all n > 2, one can
check that lim_. o m,(t) = m}, where(m) is a se-
quence of positive constants. It means that the distribu-

tion of random variableg; is weakly convergentto the 00 00
distribution of a random variablg with the nth mo- /X|pt¢(x)| dx = /x|¢(n_tx)|i(7r_,x)dx
ox
0

0
u(t,x):tb(rr_,x)a—(rr_tx) (A.2)
X

Let P (x) = ¢(m_x) - (m_;x) for ¢ € X. Observe
that {P;},>0 is a Co semigroup of linear positive
bounded operators a¥. Indeed, forp € X, we have:

mentsm;,. Consequently, the random variable has
the distribution like &Y ast — oco. In this case, the

(0.¢]
size of almost all aggregates tends to infinity, which is _
rather unrealistic, and it is connected with the assump- = | Ty 1o10)dy (A-3)
tion that the behaviour of aggregates does not depend 0

on their size.

In order to control the growth of the size, we should
assume, for example, that the ability of aggregates to
break upp(x) depends on the sizeand that it is an o )
increasing function. One can check thapifr) = px | Pl < /ebty|¢(y)| dy =€ |¢| (A.4)

0

Sinceb(x) < bx, we haver,y < €y for¢,y >0 and
we finally obtain:

and other coefficients are the same, héx) = bx,
d(x) =d, andg(x) = g, then there exists a station-
ary distribution of the size of aggregates. We suppose
that in this case the distribution of the size of aggre-
gates converges to a stationary distribution when time
goes to infinity.

It is easy to check that the operatdf with domain
D(A1) ={¢ € X: A1¢ € X} is the infinitesimal gen-
erator of the semigrouf?, },>0. One can easily check
that boundedness of functionsand p and condition
(2) imply that A» is a bounded positive linear opera-
tor onY. From the Phillips perturbation theordd®],
Acknowledgements it follows that the operatoA = —y I + A1 + A2 with
the domaim®(A) = D (A1) is the infinitesimal gener-

This research was partially supported by the State ator of aCo semigroupS;};>o of linear bounded and

Committee for Scientific Research (Poland) Grant positive operators ox .
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Now we check that the operat8rsatisfies a global
Lipschitz condition on the set™ = {¢ € X: ¢ > O}.
In the proof we use the following notatioi¢ (x) =
xg(x)¢(x) anda(¢) = [5° G (x) dx. Then:

(Gp*xGp)(x)

xa(p)
wherex denote the convolution on the positive halfline.
Fix a functiongg € X+ \ {0}. Letc = supg(x): x >
0} and ¢ = a(¢o)c L. Let ¢ be any function from
X\ {0} suchthat|¢ — ¢ol| < &. Thena(¢) < 2a(¢po).
We have:

Bo(x) =

_ (Gp*Gp)algo— o)
Bo = B0 = 0a(d)
G(¢ + ¢o) * G(¢p — ¢o)

A.5
* (o) (A-5)

This implies that:

| B¢ — Bepoll < Jo (G * G§)(x) dxa(|do — )

a(go)a(e)
I [G (¢ + ¢0) * |G (¢ — $po)|1(x) dx
+
a(¢o)
(A.6)
Since
o) [ee} 2
/ (G * G (x) dx = [ / (G¢><x>dx]
0 0
=[a@®] (A7)
/ [G (¢ + ¢0) *1G(p — ¢o)|](x) dx
0
=a(¢ + ¢o)a(l¢ — ¢ol) (A.8)
anda(¢) < 2u(¢g), from (A.6) it follows that:
a(@)a(lgo — ¢l
B¢y — B {—
|B¢ — Beoll )
a(¢ + go)a(lp — dol)
A.9
* ) (A-9)
< 5a(|¢ — ¢ol) < 5cllg — doll  (A.10)

Now we check this inequality for ah, v € X+ \ {0}.
Fix ¢, % € X\ {0} and letg; = (1 — )¢ + t for
t € [0, 1]. Since the functiom — «(¢;) is continuous
anda(¢,) > 0 for eachr € [0, 1] we have infa(¢;) >

967

0. Leté = ¢ tinf; a(¢,). Then from(A.10) it follows
that || Bgs — Byl < Scllgs — ¢l if llps — ¢l < &.
Let n be an integer such that> |¢ — | /¢ and let
ti=i/nfori=0,1,...,n.Then|¢, —¢;_,|| <&and
consequently:

1B — By < IIBoy, — By, |
i=1

n
<5¢ Y llgy — iyl
i=1

el — v (A11)

By continuity the inequality passes to the limitgat

0 ory = 0. The rest of the proof of the existence and
uniqueness of solutions of E€B) is a simple conse-
guence of the method of variation of parameters (see,

e.g.,[13]).

Remark 1. An anonymous referee pointed us out that
the proof of the Lipschitz condition faB could be im-
proved. Indeed, frorfA.5) it follows that the operator

B has at the poinp the Fréchet derivativ®y B of the
form:

(Go x GP)(x)

(Dg B(Y)) (x) = — 2 W
(G *GY)(x)
y ik data A.12
T @) (A.12)
and therefore
| Dy B < 3Je(w)| < 3ellvll (A.13)

Since XT \ {0} is a convex subset of the Banach
spaceX we havel| B(y) — B(Yo)ll < 3clly — oll for
¥, Yo e XT\ {0}

Appendix B. Proof of Theorem 2

First, let us note that Eq16) can be obtained by
multiplying both sides 0{12) by x" and integration
with respect tax in the interval[0, oo[. But then we
should a priori know that the corresponding integral
exists and that:

e¢]

o0
ad
/x"+1a—v(x, Hdx =— /(n + Dx"v(x, t) dx
x
0 0
which is not obvious.
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We start with the definition of the semigroup gen-

erated by the operatad. Let us defineQ;¢(x) =

(e " x) for ¢ € ¥,,. Then{Q,};>0 is aCo semigroup
of linear positive bounded operators &h with the
infinitesimal generatod. Moreover, forg € Y,, we

have:

o0

My (019) = / (&7 x) d

0
00

— / eb(n+l)tyn¢(y) dy
0
=&, (9) (B.1)

From (B.1) it follows that the operatogG, = A —
b(n + 1)1 generates a sem|gr0L{p2 }i>o0 such that

M, (de)) M, ().
We also have:

M, (K) = / / 201y 2 (¢ /)b (y) dy dr

[ee]

y
=/ (/zx"”wx/y)dx)y_zci)(y)dy
0

0
0

= / 2c,y" ¢ (y) dy = 2¢,, M, (¢)

0

(B.2)

for ¢ € Y, which implies thatC is a linear, bounded
and positive operator oH,. Let H,, = (bn — p — g)1

+ pK. Then from(B.2) it follows that M,,(H, ¢) =
BuM, () for ¢ € Y,,. This implies that the semigroup
{S:}:>0 generated by the operatdy, + H, has the

property:
M,y (S;¢) = €' M, ($)

for¢ € Y,.
Now, we check some properties of the operafor
First observe that fop, ¥ € Y,, we have:

(B.3)

Mn(¢*w>=//x"¢<x—y>w<y>dydx

_ / (v +2"$ () (y) dydz
0

0

(B.4)

= (Z)Mk(¢>Mn_k<w>
k=0

and therefore

Mu(T$) = (Mo@) "+ (Z)Mk ()Mt ()
k=0

(B.5)
for ¢ € ¥, \ {0}. Definea(¢) = [;°¢(x)dx. If ¢ €
Y,” anda(¢) = 1 thenM} (¢) < MK (¢) for 1<k <n.
From this inequality and fror(B.4) it follows that:

" n
M (¢ ) = kgo (k> Mi () Mk (¥)

<> <k> My @) My ()

k=0
< (MY () + My " ()"
< 2N My () + My () (B.6)

for ¢,y € Y, such thata(¢) = a(y) =1. If ¢ €
v," anda(¢) = 1 then M, (T (¢)) = Mu(¢p * ¢) <
2"M,(¢). From homogeneity of7 it follows that
M, (J($)) < 2"M,(¢) for all ¢ € Y, \ {0} and, con-
sequently,

|T@], <2l (B.7)

Next we check that the operatgf satisfies a local
Lipschitz condition on the set . It can be done in
a similar way as for the operat® in Appendix Abut
now we apply the method describedRemark 1 The
operatorJ has at the poing € Y, \ {0} the Fréchet
derivativeDy 7 of the form:

Px¢ ¢ ¥
D =— Aah S B.8
6T (0) == e + 2 (B.8)
for ¢ € Y, and from(B.6) it follows that:
M, (IDg T ()]) < 2" 1M, (¢)“(|(Z)|) + 2"M, (|yr])
(B.9)
Thus
|DyT W), < 2"+1||¢||n% + 219l
<2l (14 2lplln/x(d))  (B.10)

and therefore7 is a locally Lipschitz operator. Let
v(0) € Y,". A continuous function : [0, T[ — Y, is
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a solution of(12)if and only if
t
v(t) =Sv(0) +¢g / Si—rJvu(r)dr

0

fort [0, T[ (B.11)

Using standard arguments based on the Banach princi-

ple one can check that E@.11)has a unique solution
defined in some intervad0, 7.

Now we proveg16). From(B.3)and(B.5) it follows
that:

M, (v(0)) = €™ M, (v(0))

t
+g / &M, (Tv(r)) dr
0

fort €[0, T[ (B.12)

Since integral equatiofB.12)is equivalent to the dif-
ferential equation:

d
EMn(U(I)) = BuMy (v(1)) + gMy (T v(1))
it follows from (B.5) that:

(B.13)

d _
5 M (v0) = B () + (Mo(v() !

xgy (’;) My (0(0) Myt (v(1)
=0 (B.14)

Forn =0, Eq.(B.14)reduces to Mo(v(1)) = 0. This
implies thatMp(v(z)) = Mo(v(0)) and, consequently,
Eq.(16)holds forzr € [O, T'[.

Finally, we check that Eq(12) has a unique so-
lution v:[0, co[ — X, for everyv(0) € X;'. Since
operatorsA and K are linear and the operatqgr
is homogeneous it is enough to consider the case
Mop(v(0)) = 1. Contrary to our claim let assume that
the solutionv is only defined on a bounded inter-
val [0, T[. Since{S;};>0 is aCo semigroup there ex-
ists a positive constant; such that|S;|, < c¢1 for
t € [0, T[. From(B.7) and(B.11)it follows that:

t
o], < o], +2'esg [ o], & (B.15)
0

From the above integral inequality it follows that there
exists a positive constamg, which depends only on
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lv(0)|l,., such that:
sup v, <c2 (B.16)

SI<

Let V() = {¢ € ¥, Mo(p) =1, llpll. < c} for

¢ > 0. Thenv(t) € V(c2) for eachr € [0, T[. From
(B.10)it follows that|| Dy J (Y)lln < 2" (14 20) 1Yl

for ¢ € V(c) andy €Y,. Since the seV (c¢) is con-
vex the operatoy7 is Lipschitzean orV (c¢) for each

¢ > 0. It is easy to check that there exists a constant
8 > 0 such that for eaclp € V(c2) Eq. (12) has a
solutionv: [0, §] — V(2c2) such thatv(0) = ¢. This
contradicts the assumption that the solutiomas only
defined on a bounded interval.
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