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The purpose of this paper is to provide an extension of the linear theory of
functional differential equations of retarded type to abstract equations. Such
equations include examples borrowed from population dynamics to which the
theory applies. An application will be given elsewhere. Our main effort in this
work consists in providing a suitable extension of the formal adjoint equation and
the formal dualiity. The solutions of the linear autonomous retarded functional
differential equation

x'(1) = Lx), H

where L is a bounded linear operator mapping the space C([-r, 0]; E) into the
Banach space E, define a strongly continuous translation semigroup. We show the
existence of a direct sum decomposition of C{(|—r, 0]; E) into two subspaces which
are semigroup invariants. The flow induced by the solutions of Eq. (1) can be
interpreted as the flow induced by an ordinary differential equation in a finite-
dimensional space. We explicitly characterize this decomposition by an ortho-
gonality relation associated to a certain definition of formal duality. The existence
of an integral representation for the operator L leads to an equation formally
adjoint to (1) characterizing the projection operator defined by the above decom-
position of C([—r, 0]; E). © 1995 Academic Press. Inc.
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INTRODUCTION

Let us consider the Cauchy problem for the linear autonomous retarded
functional differential equation

I

x'(1)

Xo = @,

L(x;), t>0
(1)

where L: C([—r, 0}; E)— E (r > 0) is a bounded linear operator and E is a
Banach space. The solution of (1) is a function x € C([-r, +=[; E), x €
CY([0, +[; E), which satisfies (1) for ¢ > 0. As usual, we denote by x, the
section at ¢ of the function x, x,(8) = x(t + 6), 6 € [—r, 0}

We know already from [8] that the unique solution of (1), which exists
for each initial value ¢ € C([—r, 0]; E), is associated with a strongly
continuous semigroup of translations. More precisely, we have

THEOREM 1. The operator Af = f with domain
DA) = {f € Ci({—r, O; E); f(0) = L(f N

is the infinitesimal generator of a strongly continuous semigroup {T(1)},-9
on C([—r, 0]; E) satisfying the translation property

f(t + 6) ft+6=<90

T(nf(0) =
0f {T(t+0)f(0) ift+6>0,
t>0,06€ [~-r,0],f€ C(—r, 0; E).

Furthermore, for each ¢ € C([—r, 0]; E), define x: [—r, +>| — E by

{(P(t) ifte[-r 0]
TMe©)  ift > 0.

Then x is the unique solution of (1) and T()¢ = x,, t > 0.

Let o(A), o.(A) be the spectrum and the essential spectrum [20], re-
spectively, of the infinitesimal generator A. From the general theory
about operator reduction for isolated points of the spectrum, we obtain
the following theorem, which yields the decomposition of C([—r, 0]; E)
into a direct sum:

THEOREM 2. Let A € (A) — d.(A). Then N is an eigenvalue of A and
for some positive integer m we have

C(I—r,0); E) = N(A - AND)™ D R(A — A7,
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where N(A — N )™ is the generalized eigenspace of A with respect to A
and dim N(A — AI)™ = g < +oo,

Moreover A is completely reduced by this decomposition, A restricted
to N(A — M) is bounded with spectrum {\}, and the subspaces
N(A — XD™, R(A — M) are invariant under the semigroup {T(t)},=¢ [10,
24].

The results concerning the behaviour of solutions obtained by J. Hale
[9] for the problem (1) in finite-dimensional spaces remain valid without
essential modifications. Let @, = (¢4, ..., ¢,) be a basis for N(A — A)™.
There is a ¢ X g constant matrix B, such that &, = ®,B, and A is the
unique eigenvalue of B,. Therefore

D,(0) = D(0)eB, 6el—r 0]

and also

T()D, = Peb, t > 0.

Furthermore, if the initial value ¢ of (1) belongs to N(A — AI)™, we have
¢ = ®,a for some g-vector a and the solution is defined by

x, = T = TW)®a = OyeBa, 1+ >0.

The same theory applies for a finite subset of d(A) — o.(A) and gives a
very clear description of the geometric behaviour of the solutions of (1).
We summarize these results in the following theorem.

THEOREM 3. Suppose A = {\| ... A;} is any finite subset of the non-
essential spectrum of A, 0(A) — o.(A), and let &, = (P, ..., D, ), By =
diag(B,,, ..., B,), where b, is a basis of the generalued eigenspace
assoczated to A, N(A — A 1)’"! with dim N(A — ;D)™ = q; < +=, and B, is
a constant matrix such that A®, = ®, B, . The only eigenvalue of B, is \;,
J=1,..,s. Moreover, let

Pyr=NA-N"D - DNA — NI

Then there exists a subspace Qx of C([—r, 0]; E) invariant under A and
{T(t)},=9, sSuch that

C([~r, O; E) = P\ ©® O

and the operator A is completely reduced by this decomposition.
Furthermore, for any initial value ¢ = ®a, where a is a constant
vector of dimension g, + + -+ + q,, the solution of the Cauchy problem (1)
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is defined by
x;, = T(e = T(YDra = drebVa, t=0.

We say that A is reduced by A.

In this paper we obtain an explicit characterization for the projection
operator on the subspace Q4. To do this, we define a formal duality as a
certain bilinear form which allows us to state a Fredholm alternative
theorem.

It is known that any bounded linear operator L: C([—r, 0]; E) — E is
represented by an integral assoctated with a bounded semivariation vec-
tor measure. From this we define an operator A* formally adjoint to A
which helps in characterizing Q4 by means of the orthogonality relation-
ship with respect to formal duality.

There have been several attempts to extend the theory of linear func-
tional differential equations from finite to infinite dimensions. Most of
them are motivated by the study of partial differential equations with
delay. A seminal work on that, and a classic reference, is a paper by
Travis and Webb [23]. A short discussion of our work compared to that of
others together with prospective work along these lines is given in the
conclusion of the paper.

1. FORMAL DUALITY AND A FREDHOLM ALTERNATIVE THEOREM

Let us consider C([0, r]; E¥*), where £* is the topological dual space of
E. We shall define a continuous bilinear form denoted ({«, ¢)) on the
product C([0, r]; E*) X C([—r, 0]; E) which will be interpreted as a formal
duality.

A function f: [0, r] — E* is called simple if there exist two finite collec-
tions x}, ..., xy EE*and Ay, ..., A, EZwithUL A, =[0,r],ANA =T
such that

Jed
f: Z xl'*XAn
i=1

where x4 is the characteristic function of A and T is the Borel algebra on
[0, r]. Denote S([0, r); E*) the space of simple functions.

DeriNITION 1. Forany a € S([0, r]; E¥) and ¢ € C((0, r]; E) we define
the bilinear form

e o) = @0, o) + 3 (a7 L ([ xate - 01010 ).
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where & = 27, xfx,, and (x, =) denote the usual duality between E*
and E.

The value {{«, ¢)) is independent of the representation chosen for a as a
linear combination of characteristic functions.
Since

e, oDl = (1 + rllLD]adl el

there exists a unique continuous extension of this bilinear form to the
completion of S(l0, rl: E*) X C([-r, 0]; E), where both spaces are
equipped with the sup norm.

We restrict our extension to the product C([0, r): E*) X C(]—r, 0]; E)
and we call this the formal duality associated with the operator L.

It is interesting to specify the formal duality for a« € C([0, ¢]) ® E*.

LEMMA . Letf &€ CU0, r]) and u* € E*. We consider the function f &
u* € C({0, rl; E*) defined by (f @ u*)(s) = f(s)u*, s € [0, r]. Then

W@ o) = e fOpo) + (s, L ([ 1€ - 01016 d)).

Proof. The function f'is representable as the limit of a uniformly con-
vergent sequence of simple real functions defined in {0, r],

Pn
f=1im Y B"xm,
n—= =1

and therefore the sequence of functions in S([0, r]; E*),
Pr
{2 B;n)“* ® XAi"’} )

i= n=12

converges to f ® u*.
By continuity of the formal duality, we obtain

(f @ u*, o)

= {(f © u*)0), (0)) + lim 2 <B$”’u*, L ( [} xarte = 010® d§)>

>

i=

= (/@ w0 o) + lim 3 (. £ ([] Bxerte = 01pt6) de))

= e, £ ) + . L ([ 1€ ~ 0o d)).
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In particular for g, & u* with £,(0) = ¢*® we have

(o ® ut, o) = (e, o) + (ur, L ([} ot d)).

We shall characterize the closed subspace R(A — AI) with X\ in ¢(A) —
a.(A), in terms of the formal duality and to do this we need to reduce o (A)
to the spectrum of some operators defined on £. More precisely, forA € C
we define the operator L, € (F) by

L\(u) = L(g, @ u), u € E.

As usual, £(E) is the space of bounded linear operators on E.
We know that A € o(A) if and only if A € o(L,). Also, the operator R,:
C([-r, 0]; E) — E defined by

Ri) = 00) + L ([ eope) de)

1s onto (8].

ProposITION 1. Let A € 0(A) — o (A). Then ¢ € R(A — ) if and
only if o, ¢)) = 0 forall a = e_, ® x*, with x* € N(L¥ — \I), where L} is
the adjoint operator of L,.

Proof. We need two auxiliary results stated in the following lemmas
and whose proofs are postponed until the Appendix.

LEMMA 2. For any A € C we have ¢ € R(A — AN) if and only if

LEMMA 3. The subspace R(A — \l) is closed in C([~r, 0]; E) if and
only if the subspace R(L, — Al) is closed in E.

Since A € o (A) — 0,(A), we conclude from Lemma 3 that R(L, — Al) is
closed in E and then Ry(¢) € R(L, — M) if and only if (x*, R,\(¢)} = 0 for
all x* € N(LY — ). But (x*, Ry()) = ((e_, ® x*, ¢)).

We can state Proposition 1 in alternative Fredholm theorem form:

Let A € a(A) — o.(A). Then, the equation (A — M)W = ¢ has a solution
if and only if {e_\ ® x*, ¢)) = 0 for all x* € N(LY — ).

2. CHARACTERIZATION OF THE SUBSPACE R(A — N)™
WITH A IN 0 (4) — g.(4)

Our approach is based on the characterization of the subspace R(A —
AD™ in terms of another operator defined on product space E™. If the



EQUATIONS OF RETARDED TYPE 553

equation (A — Al)"e =  is to have a solution, then

m—1 Y R ’ o (0_ )mfl
<p(0)=;0u,j—!e0+foewf>(7§—”!—¢(§)d§, 0 €[-r 0]

where uy, ..., u,- are arbitrary elements of £ which must be determined
so that ¢ € D(A — AI)™.
Introducing the notation

R
o*(G) = (d% - M) e, O0€][-r 0]

we have o € D(A — A)™if and only if o € D(A), k=0, ..., m — |. By
direct calculation it is easy to obtain the condition

Szi‘m'(u[)a ey um—])T = G‘R;’")(d‘)’

where (...)T means the transpose vector and we have introduced the oper-
ators

(A —L 1-1L) ... -y o
0 M—-L, ... =Ly —pmt
P e PEM); AR : : , :
0 0 .. NM—-L, I-1L]
0 0 0 A - L,

with L, € L(E), Li(u) = L(¢), ® u), u € E, and
i
|

8{\(0)=;0i—(’*9, =1 .,m=1

and also R{™: C([~r, 0]; E) — E is defined by
(LG eX0-0¢(0 — &y '/im — 1)) (&) de) ]
L(f§ eX0=9((0 — &)~ 2/(m — 2)!) (&) de)
R = ;
L(J§ X80 — () dE)
L —9(0) + L(J§ e Ou(8) d¢)
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Therefore we have proved the following result
LEMMA 4. ¥ € R(A — N)" if and only if RV () € R(EM).

We wish to locate R(£{™) in terms of the adjoint operator £, In
order to achieve this, we need to see that R(£\™) is a closed subspace of
E™. No other result similar to the one stated in Lemma 3 is known.

Since R(A — A)™ = (R (R(L™)), one obtains that if R(L™) is a
closed subspace in E™, then R(A — AI)™ is closed in C([—r, O]; E).
However, the converse statement is more interesting to us. We begin its
analysis proving the following proposition.

PROPOSITION 2. Let A € o(A) — o (A). Then ¥ is a Fredholm
operator for eachm = 1,2, ...

The proof is an immediate consequence of the two next lemmas, which
are proved in the Appendix.

LEMMA S. IfA € o(A) — o (A), then L, — M is a Fredholm operator.

LEMMA 6. Let A, ... A,, be Fredholm operators on E. The operator
A defined on the product space E" by

A *
‘ﬂ(m) =
0 AV"

where the operators * are in L(E), is a Fredholm operator.

We return to the problem set before the statement of Proposition 2 and
we conclude that R"(y) € R(LV™) if and only if (X*, R{™(Y)) = 0 for all
X* = (x, ..., x}_ )T € N,

Note that

. . 0
(&) @ u*, o)) = (u*, e4(0)p(0)) + <u*, L (L g6 — E)e(&) d§)>,
where

(_s)j e*)\.\
J!

é")"(s) = s’;\(—s) =

and therefore

oo = (S e 00)) =0

=0
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We consider the subspace

m—1
HiM" = {a = @xE i, L xE)Te N(i‘["«)}.

Jj=0

Since £ is a Fredholm operator, we have dim N (£{™") = p for some p <
+= and as well dim ™" = p.
We summarize the previous work in the following proposition.

PrROPOSITION 3. Let A € 0(A) — o.(A) and let m be a positive integer.
Then y € R(A — M) if and only if {a, ¥)) = 0 for all « € K",

Also, ¢ € N(A — M) means (A — A)"p = 0, with ¢ € D(A — ATY" and
then

m-1

NA - A = {<p = Z s{\ & w;; (g, «ons 1y )T E N(Sf',{"’)}

J=0

with dim N(A — A)y" = dim N(£™) < +<.

Note that (x§, .... x5 )T € N(E"") implies also that (0, xF, ...,
Xm-2)T € N(£"") and then it is easy to prove by direct calculation that the
subspace J\™" is differentiation invariant.

This fact implies that elements of this subspace are solutions of a linear
ODE. In fact, choosing a basis ®f = (¢}, ..., ¢5)7 of H\"", we have

dF = (&f, ... @91 = BT, ..., of)T = Bid},

where B is a constant p X p matrix and A is the only eigenvalue of this
matrix. Therefore

b)) = BDF(0), 6 €10, r].

3. DECOMPOSITION OF THE SPACE C([—r, 0}; E)

We have seen that for A € o(A) — o.(A) there exists a positive integer
m for which a direct sum decomposition of the following type is verified,

C{—r,0: E) = N(A — A" D R(A — )™
with dim N(A — M) = g < += and ¢ € R(A — A" if and only if

{a, ¢)) = O for all « € H"". Also, dim H{™ = p < +=.
We wish to find a suitable coordinate system which serves in character-
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izing the projection operator on the subspace R(A — AI)™. To this end, we
shall find a relationship between the numbers p, g.

Recall that p = dim N (™), ¢ = dim N(£™) but in general, even for
Fredholm operators, we have p # g. In the following, we state that p < ¢
and we obtain some sufficient conditions for p = g.

Let W, = (y, ..., ) be a basis for the subspace N(4 — M) and ¥} =
(af, ..., &H)T another one for %\, and make up the constant p X g matrix

M = [, WMij=1.py = (¥ W)

If (A, ..., A)T € N(M), then ({a*, Mgy + - -+ + Ap,)) = 0 for all a* in
K™ and Proposition 3 implies that Ay, + - - + A, € R(A — )", But
also, Ay + -+ + Npy € N(A — AV and then Ay + -+ + A, = 0.
Therefore A, = 0,i =1, ..., g, N(M) ={0}. Thus we conclude that M is of
rank g, implying that g = p.

In particular we can choose two new bases, @, = (¢, ..., ¢,), DX = (o1,
..., @m)T, such that the constant p X g matrix satisfies

<<¢’i‘, b)) = [5ij]i.j:l ..... P

where 8; is the Kronecker symbol.
We summarize al} of this in a theorem, stating in this way one of the
main results in this paper:

THEOREM 4. [f A € 0(A) — 0.(A) then dim N(A — AIy” < dim V"
and there exist two bases, &, = (g1, ..., @¢4), ¥ = (¢, ..., ¢})", of the
subspaces N(A — A)" and ‘3{‘}""", respectively, such that the p X q con-
stant matrix (@, ®\)) = [(ef, @Wijo1. pq satisfies (PF, B) =
(By)ij=t...pq

Moreover, for each ¢ € C([—r, 0]; E) we have a unique decomposition
© =@k + @ with ok € N(A — M), ¢; € R(A — A", and (e}, ¢1)) = 0,
i=1, ... p.

Also, ox = ZE) Nps with {oF, ox)) = Niif i = g and (of, ex)) = 0 if
i>q.

Next we relate the matrices B,, B} defined by &, = ®,B,, & = Bd}.

It is easy to check that for o = f® u*, f € CY([0, r]), u* € E*, and for all
¢ € D(A), we have

(o, @) + (a, @) = (U™, L(f @ o(0)) + (u*, £(0)e(0)),

wheref(e) = f(—9).
Thus, for « € X" and ¢ € D(A),

{a, o)) + (a, o)) = 0.
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Therefore

(D), D)) = Bf (BF, &) = —(DF, b))
—((®F, D)) By

i

Since
1‘1
(DY, D) = [ ]
0

with I, the identity matrix of order g, we can obtain

_B)\ N
Bl = :
o P

where N, P are two matrices of required dimensions and 0 is a zero
submatrix.
Note that for p = g the last relation reduces to

Now we state some sufficient conditions to obtain p = g.
LEMMA 7. If the formal duality is non-degenerate then p = g.

Proof. We say, as usual, that the formal duality is non-degenerate if
the equality ({(a, ¢)) = 0 for all ¢ € C({—r, 0]; E) implies that « = 0.

With the above notations, let (u,, ..., u,)" € N(MT). Then {uiaf + - -
+ w0, o) = 0 for all ¢ € R(A — AI)™ and also for all ¢ € C([—r, 0]; E).
Since the formal duality is non-degenerate, w,af + *-- + w,«y must be
equal to zero and then N(MT) = {0}. This implies that p < g.

The converse is not true in general. There are examples for finite-
dimensional spaces E such that p = g and the formal duality is degenerate.

Finally, we relate the equality p = g with some compactness properties
on the operator £, Introduce the operators

07 0 ... 0 0] "Ly Ly o.oLprtoLyet]
0 07 .. 00 0 L, .. Ly3 Lr?
] T A T R
000 .. 0 [ o 0 .. L, L
000 ... 0 0] L0 0 .. 0 L, |
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If A # 0 the operator AJ + J is invertible and then
P =N+ I — H™ = A+ T — M+ J)TH),

The operators J and H!™ commute and from well known general results
about the spectrum of compact operators [18, Th. 4.25] we get to

LEMMA 8. Let A € o (A) — o (A) be an eigenvalue of A, A # 0. If the
operator H{™ or some of its iterates are compact then p = q.

LEMMA 9. Let A, u be given in a(A) — g.(A), A ¥ u. Forany m, r €
N*, a € H, ¢ € N(A — ul) we have (o, ¢)) = 0.

Proof. Given that the two polynomials in x, (x — A)™, and (x — ) are
relatively prime, we infer from the Bezout identity the existence of two
polynomials P(x), Q(x) such that

1= (G- ) () + (G - wi) el)
or = {{a (55 01) P (Gghe)) + ({5 - i) 0l)e)
<<(———~)” P(G)e) « (= o(5)(5 - w) o))

Let A = {Ay, ..., A,} be a finite subset of non-essential points of o (A) and
consider the decomposition of the space C([~r, 0]; E) stated in Theorem
3. We are now able to characterize the subspace Q4 by an orthogonality
relation associated with the formal duality.

To this end, we define

* 3{(;::»* 69 ... EB 31{()‘1;1\)'.

Next, let ®;, ® be bases of the subspaces N(A — NJ)™, H\™", respec-
tively, j = 1, ..., s. From the results stated above we know that each
constant p; X g; matrix J; = (&, ®))), g; < p;, has rank equal to g; and also
that the matrix ({(®j, ®))) is equal to zero for k # I. Then the matrix J of
order (py + -+ + p) X (qi + -+ + q,),
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J = (@], PNjik=1...s

has rank equal to ¢, + -+ + g,.
Therefore there exist two bases ®,, ®F of the subspaces P, P¥, respec-
tively, such that the constant matrix {(b%, &, > satisfies

<(¢*v ¢\>> = [8ij]i.j:|. capt ol et g

Finally, we have found the characterization of the projection onto the
subspace Q.. We retain all the above notations to state this last result as
follows:

THEOREM 5. Consider the direct sum decomposition
C([—r, 0]; E) = P, © Qa.
Then,
Ox = {p € C([~r, 0; E); (@], ) = O}
Moreover, any ¢ € C([—r, 0]; E) may be written as ¢ = ¢p, + o, With

(DX, po)) = 0 and pp, = ®ra, where a is a constant vector of dimension
g, + - + q, such that

«q)ﬂ\(v ﬁo» = <((I)“*, ‘FP\> = «‘bt, Py a = [g:l

and 0 is the zero vector of dimensionp, + -+ + p. — (g, + '+ + g,).

Note that if p; = ¢;, j = 1, ..., s, then

ep, = Pra = Dy <<<I>.T, o).

4. THE ForMAL ADJIOINT EQUATION

Before proceeding to the construction of this equation let us recall some
well known results about the integral representation of bounded linear
operators defined on C({~r, 0]; E). We refer to [6] for the general theory.

Any bounded linear operator L: C([—r, 0]; E) — E determines a unique
vector measure m: > — P (E; E**) of bounded semivariation and such
that for all f € C([—r, 0]; E) we have
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L= | fdm.

where £(E; E**) is the space of the bounded linear operators defined on E
with values in E**, where E** is the bidual of E, and Z is the Borel
algebra on [—r, 0]. .

For each x* € E* there exists a vector measure m,.: 2 — E* defined by

(ma(A), x) = (x*, m(A)x)); AES, xEE,
which satisfies

fdm. = (x*, L(f));  Vx* € E*.

[~r.0}

Next we define the linear operator L: S([0, r]; E¥) — E* for any f € S([0,
rl; £E%), f = Zle -\';.(XA, by

L) = D, me(—A).
i=1

LeEMMA 10.  If the vector measure m is of bounded variation, then L is
continuous with respect to the sup norm in S([0, r]; E*).

Proof. Letf= 2I_, x*x, be asimple function with ||x}|| <= 1,i=1, ...,
r. Then

N =[5m0 = 3 im0
i— i=1

= 3 =40 = omi=r. 0D <+,
where v(m) means the variation of m and we have used
I (=AD] = sup Kom.s(~A. x)
= sup [KxF, m(—AD))] = [m(—A)|.

Under this hypothesis, there exists a unique continuous extension L of
the operator L to the completion of S([0, r]; £*) equipped with the sup
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norm and we are able to define the formal adjoint operator of the opera-
tor L.

DEFINITION 2. The operator L* is the restriction to the space C([0, r];
E*) of the extension operator L.

Just as in the case of the formal duality, it is convenient to obtain the
expression of L* for the elements in C([0, r]) ® E*. Calculations very
similar to those above for Lemma 1 show that

LEMMA 11. Foreachf® u* € C([0, r])) @ E*, L¥*(f @ u*) € E* is the
linear form defined by

(L*(f @ u*), u) = (u*, L(f @ u)); u€E.
In particular, for the functions &7 introduced above, we reach the result
(LX(&S ® u*), uy = (u*, L(e, ® u))
= (u*, L) = (L)' (u*), u); u€E
and then
L¥(&) ® u*) = L (u*).

The existence of the operator L* allows us to define a new linear func-
tional differential equation associated with problem (1).

DErFINITION 3. The formal adjoint equation associated to (1) is
a(s) = —L¥a,}; s=0. (2)

A function a € C(]—=, r]; E*) is a solution if @« € C!(]—=, 0]; E*) and
satisfies (2) for all s = 0.

It is easy to check that a(s) = ¢™*x*, s < 0, is a solution of (2) for all x*
€ N(L} — \I). Suppose that a(?) = f(£)x* is a solution of (2) on }—o, b]
and that x(#) is a solution of Eq. (1) on [a, +®{, a < b. Then {{a,, x,)) is
constant for all t € [a, b].

Indeed

(ot x) = (@), x0) + (x=, L ([[ ¢ ~ 0101 d))

= {a(t), x(1)) + <X*, L (ﬁ‘gf(w - Ox(w) dw>>.
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Therefore

< e, ) = (@00, x(0) + (alt), $0)
+ (et LU = 0)x(0) = (%, LUOx(E + ).
But since

{at), X(1)) — (x*, L(f(Dx(t + O))
= (a(t), (1)) — {a(t), L(x)) = 0

we have

£ e ) = (@00, x(0) + x*, L = ()

= {a(n), x(1)) + L*(f @ x*), x(1))
= {a(), x(1) + (L*(a,), x(1)) = 0.

S. THE OPERATOR A* FORMAL ADJOINT OF A

In the sequel we accept that the vector measure m associated to L is of
bounded variation and L* has been defined.

DEFINITION 4.  We call the formal adjoint operator of A relative to the
formal duality the operator A*, defined by

A¥a) = —a; DAY = {a € C'(0, r]; E*); a(0) = —L*(e)}.

A* is linear and closed, with domain dense in C([0, r]; E*).

From Lemma 1 and after an adequate integration by parts we obtain for
a=f@®x* € D(A*)

{a, Ap)) = (A*a, ¢)); Ve € D(A).
PropPOSITION 4. o (A) = a(A%).

Proof. The solution of (A* — A)¢* = ¢* with y* € C({0, r]; E*) is

o*(0) = eNe*(0) — [ ek ds; 6 E [0, 7,
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where ¢*(0) is to be determined so that ¢* € D(A*). We get to

(LE ~ M) = 40 + L+ [ eoyris) ds).

Since the operator R}: C([0, r]; E*) — E*, defined by

RiW) = wr@ + L* ([ eo-ours) ds),

is onto, we conclude that A € o(4*) if and only if A\ € o (L)).

We have seen above that A € o(A) if and only if A € o(L,) and it is well
known that o(L,) = o (L) [22]. Therefore the result follows.
Note that

NA = M) = {&, ® x; x € N(L, — AD}
N@A* — ul) = {e_, ® x*; x* € N(LX — uD)}.

If A, p are eigenvalues of A, A*, respectively, and A # w, then {{a, ¢)) =0
for all « € N(A* — ud), ¢ € N(A — AI).
Indeed

{(A*a, o)) = pua, o) = (o, Ap)) = AM(a, ¢))

but A # w implies that {(a, ¢)} = 0.
This enables us to state again Proposition 1 in a Fredholm alternative
theorem form.

PROPOSITION 5. Let A € o(A) — o.A). Then, the equation
(A — M) = ¥ has a solution if and only if {{a, ¥)) = 0 for all solutions «
of the equation (A* — ADa = 0.

We try to obtain a direct sum decomposition of C([0, r]; E¥), which
plays for A* the same role as the one stated for the space C([—r, 0]; E) in
Theorem 3. In a similar way we shall define a generalized eigenspace of
the formal adjoint operator A*, associated with a finite collection A = {A,,
...y A} C 0 (A) — o.{A), which helps us to characterize the subspace Q, of
Theorem 5 in terms of the orthogonality associated with the formal dual-
ity. From the following lemmas we can easily obtain the equality between
the non-essential spectra of A and A*.

LemMa 12, The subspace R(A* — N) is closed in C([0, r]; E*) if and
only if R(A — ) is closed in C([—r, 0]; E).
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Proof. Arguments similar to those developed in Lemmas 2 and 3 lead
to

(a) If we define the operator R}: C([0, r]; E*) — E* by
, .
REW) = 4@ + L* ([ e-20s) as)

then, for any A € C, we have a € R(A* — \) if and only if Rf(«) €
R(LE — AD).

(b) The subspace R(A* — Al) is closed in C([0, r]; E£¥*) if and only if
RILT — A is closed in E*.

Now we finish by recalling the known result that R(L, — Al) is a closed
subspace in E if and only if R(LY — AI) is closed in E*.

LeEmMMA 13. Forany A € Candm = 1, 2, ... we have
NA* = Ay = 3

Proof. The equation (A* — Al)”"a = 0 has a solution

m—1 —OV
a®) = S u::-,_,-%e*“; o€ (0, r]
j=0 -

with (i, ..., uk_)) such that & € D(A* — )™
By setting up the notation

m-1-k
o = (A* — \Dra = D & Qubo 4

J=0

and making calculations like those in LLemma 4 above, we see that o €
N(A* — A if and only if a = 274" &4 @ up-y-; with (ug, ..., up- )T €
N(LS™"). But this is the characterization of the space %"

Last, let A = {X\(, ..., \,} be a finite subset of non-essential points of
o(A) and let N(A* —- N;I)™, j = 1, ..., s, be the generalized eigenspaces
associated to these eigenvalues, with dim N(A* — N )™ = p; < +=, The
results obtained so far allow us to state the existence of a direct sum
decomposition for the space C([0, r]; E*) which reduces the operator A*,
similar to the one established for the space C({—r, 0}; E) in Theorem 5.

Then, there exists a subspace Q. invariant under A* such that

c(o, r}; E*) = P{ & 0F,
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where

Px — N(A* —_ )\ll)m' @ @N(A* — )\S])m,\.

6. CONCLUSION

Several extensions of Hale’s theory of functional differential equations
to infinite dimensions exist in the literature, starting from the one given by
Travis and Webb [23]. The main motivation is the study of partial differ-
ential equations with finite or infinite delay. In most cases (in works of
Kunish and Schappacher [12, 13] and Schumacher [21], to name a few),
the equation is of the form

X0 = Ax) + [ dns)xtt + s),

where A generates a cg-semigroup on a Banach space X and d7 is a
suitable restricted Stieltjes measure with values in £(X). Another impor-
tant motivation is related to control theory. Increasingly elaborate exten-
sions of earlier work by Bernier and Manitius {5} and Manitius [14] on
attainability, completeness, or degeneracy, to the case of partial differen-
tial equations with delays have been given by Nakagiri [15-17]. The
works by Nakagiri include results on the spectral theory of such equations
and the characterization of some generalized eigenspaces in terms of the
solutions of an adjoint equation. Many of the considerations of this author
are similar to ours. The results differ in the following ways: some restric-
tions are imposed by Nakagiri [16, 17] on the measure, which takes the
form

ﬁ) dn(s)e(s) = O, Aw(—1) + ﬁ) D(s)¢(s) ds

with A, € £(X), D € L'((—r, 0); £(X)). Moreover, it is assumed that the
space X is reflexive. In contrast, we make no hypotheses on the functional
term or on the space. Let us finally describe briefly the problem which
motivated us to build a general theory. Our interest stems from the study
of an equation of cell population dynamics introduced first by Kimmel er
al. [11]. The equation reads

n(t, x) = fo'x glx, y)n(t — 6(y), y) dy, (3)



566 ARINO AND SANCHEZ

where g and 8 are given and satisfy appropriate assumptions [2], and » is
the state variable. Equation (3) sets up a difference-integral equation
which leads to a strongly continuous positive semigroup on a space L'({}),
Q C (—r, 0) x R*. Under additional conditions on 8 and g, one can
associate with Eq. (3) an abstract delay differential equation of type

u'(t) = L(u,),
where u(t) = n(t, .) € X := L(R"), and

(L) = [ [ kx, v, De(=0») — 6(2), 2) dy dz.

Equation (3) and some variants of it have been the subject of several
studies by Arino and Kimmel [2, 3], Sanchez, Arino, and Kimmel [19],
and others. Most of the results concentrate on the determination of the so-
called asynchronous exponential growth [1]. In [2-4], nonlinear perturba-
tions of Eq. (3) are considered. It is our hope that the framework provided
by the theory of linear abstract delay differential equations will make it
easier to study dynamical properties of nonlinear perturbations of (3),
especially those arising from changes of stability of steady states, Hopf
bifurcation, etc. Basic tools for these purposes are spectral theory of non-
essential eigenvalues, projectors onto associated invariant subspaces,
which possibly behave nicely with respect to time, and a good variation of
constants formula. These are precisely the extent to which we have aimed
at expanding our study of abstract delay differential equations. While the
present article has been devoted to describing spectral decomposition for
non-essential eigenvalues and the formal dual product and the adjoint
equation associated with it, the derivation of a variation of constants
formula and the application to the study of Eq. (3) will be presented
elsewhere.

APPENDIX: PROOFS OF LEMMAS

Proof of Lemma?2. ¢ € R(A — A)if and only if there exists y € D(A)
such that (A — AI)¥ = . This differential equation has the solution

W) = ) - [ e0vp@ de, 6 € (-1, 0],

where ¢ € D(A) and then $(0) = L),

20) + (O = Liey @ w0 — L ([ e*o-0tp(¢) de):
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that is,

(L = ADWO) = (0 + L ([' X706 dg) = R

The solution of the last equation exists if and only if R,(¢) € R(L, — Al).

Proof of Lemma 3. First, we suppose that R(L, — AI) is a closed
subspace of E and let {,} C R(A — AI) be a convergent sequence with
¢ = lim, .. ¥,

From Lemma 2 we have R,(J,) € R(L, — A} and then R,(y) €E R(L, —
Al). Again Lemma 2 enables us to conclude that ¢y € ®R(A — \I) and so
R(A — AD) is closed in C([—r, 0]; E).

Now we shall demonstrate the converse. To this end we recall that R, is
surjective and the equation R,(¢) = b has a solution of the form

@(&) = QU + T)7'(b),

where & is some positive integer satisfying the conditions &, € C([—r, 0]),
supp @, C [—1/k, 0], ®(0) = 1,0 < ®,(8) < 1. The operator T, € L(E) is
defined by

T.(h) = L ( [} ero-o@, 806 dg).

[}

Indeed, it is enough to observe that lim,_... || Tx|| = 0 and then for some £,
the operator I + T; has an inverse.

We return to the proof of the converse. Let {v,} C R(L, — Al) be a
convergent sequence with v = lim,. v,. For each n the equation R,({s,) =
v, has a solution

Un(€) = DO + T \(wy).

It is easy to see that {112,,} C R(A — \l)is a Cauchy sequence in C([—r, 0];
E). Then there exist ¢y = lim,_,.. Y, and y € R(A — A[I). Therefore

Ry(b) = lim R,(b,) = fim v, = v.

IfR(A — A1) is aclosed subspace in C([—r,0]; E)and v € R(L, — Al), we
havg seen that there exists y € R(A — M) = R(A — Al) such that v =
R,(¥). Now, from Lemma 2 we conclude that v € R(L, — A[).

Proof of Lemma 5. Since A € o(A) — o.(A), from Lemma 3 we infer
that R (L, — Al) is a closed subspace in E. Moreover N(A — AJ)is made by
the functions &, @ « with « € N(L, — Al) and then dim N(L, — A) < +=.
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It is enough to prove that R(L, — Al) is of finite codimension.

Let M be a finite-dimensional complementary subspace of R(A — A[),
let Py be the projection on M, and let &, be one of the functions defined in
the proof of Lemma 3. Denote by &, ® E the space of the functions ¢, ® b
with b € E. The finite-dimensional subspace Py (P, ® F) admits a basis

{Pu(®; ® e)), ..., Py(D, @ e},

where {e|, ..., e,} is a fixed finite subset in E. For each b € E we can write

r

Py ® b) = > aPy(d; ® ¢)).

i=1

The scalars «y, ..., «, are determined in terms of b and then the operator
Sy = ae; bEE
i=1

is well defined. Also, S € $(E).
Finally, we consider the operator T € ¥(E) defined by

T(b) = R\(P, ® (b — S(b)); beEE.

Introduce the notations

Kith) = b~ L ([ evo-otyepp de)
Kb) = —S(b) + L (f: M-, (£)S (b) dg).

Since K is an isomorphism for adequate 4 and K, is a finite rank operator,
K,K;'is a compact operator. But

T(b) = U + KK 'NK(b)),  bEE

and therefore T is of Fredholm [18] and [7]. Then %R (T) is a closed sub-
space of finite codimension in E.

Lemma 5 follows from R(T) C R(L, — Al). Indeed, &, ® (b — S(b)) €
R(A — A) since Py (P, ® (b — S(b))) = 0 and from Lemma 2 we conclude
that T(b) € R(L, — M) for all b € E.
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Proof of Lemma 6. We work by induction in m. Consider the operator

A B
AR =
0 A

with A, A, Fredholm operators on E and B € £(E).
Elementary arguments of linear algebra allow us to ensure that

NAB) = (&), ..., 8] + N(A1)) X (N(A2) N B"HRADY),

where [€|, ..., &,] is the linear subspace generated by the elements & such

that A\é; = Be;, j = 1, ..., p, and {ey, ..., ¢,} is one basis of N(4;) N

B~ (A(A))). Therefore N(A®) is a finite-dimensional subspace of E-.
Also,

RAD) = {(v), v2) € E2; v; € R(A>); vy — BA;'v2 € R(A)) + BIN(A))},

where A, is an isomorphism obtained by restriction of A, to a complemen-
tary subspace of N(A,).
There exist two finite subsets of E*, {x, ..., x;} and {y{, ..., y¥}, such
that
(@) vy € R(A,) ifand only if (x*, v2) = 0,/ =1, ..., gq.
(b) vy — BA;' € R(A)) + B(N(A,)) ifand only if (¥}, v, — BA; 'v2) =
0,/j=1,...,s.
From this we conclude that R(A?) = N(HA), where A: E* — R9*¥ is
defined by

RS I

M (x5, v:>~
Us (yF, vy — BA3'vy)

_(y;k» vy — BA; 'vy) |

It is easy to see that dim N(#) < +% and then R(A?) is a closed subspace
of finite codimension in E2.
With this we have finished the proof that A® is a Fredholm operator.
If we accept that A1 is of Fredholm, from the above arguments it
follows immediately that A" is so as well.
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