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Abstract. The aim of this work is to study a model of age-structured population with two
time scales: the first one is slow and corresponds to the demographic process and the second one
is comparatively fast and describes the migration process between different spatial patches. From a
mathematical point of view the model is a linear system of partial differential equations, where the
state variables are the population densities in each spatial patch, together with a boundary condition
of integral type, the birth equation. Due to the two different time scales, the system depends on a
small parameter ε and can be thought of as a singular perturbation problem. The main results of the
work are that, for ε > 0 small enough, the solutions of the system can be approximated by means
of the solutions of a scalar problem, where the fast process has been avoided by supposing it has
attained an equilibrium. The state variable of the scalar system represents the global density of the
population. The birth equation causes a singularity for ages close to 0 to appear, which produces a
boundary layer type phenomenon.

This work originated from the study of some fisheries of the West Coast of the Atlantic Ocean,
namely, small pelagic fish (anchovy and sardine) and flatfish (sole) of the Bay of Biscay. The general
model of fish population dynamics considered throughout the paper was elaborated as part of this
study.
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1. Introduction. Nature offers many examples of systems where several events
occur at different time scales. It is then common practice to consider those events
occurring at the fastest scale as being instantaneous with respect to the slower ones,
which results in a lesser number of variables or parameters needed to describe the
evolution of the system. A subsequent issue is to determine how far the results
obtained from the reduced system are from the real ones. Several mathematical
methods have been developed in relation with the two above-mentioned issues, that is,
reduction and an estimation of the discrepancy between the complete system and the
systems arising from the reduction; the best known are averaging methods, singular
perturbation methods, and aggregation methods. Regarding applications of these
methods, by far the most important ones have been in physics, chemistry, mechanics,
and industrial processes, and concern essentially averaging and singular perturbation
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methods (see, for example, the latest edition of the book by Kevorkian and Cole [15];
see also the special issue of the SIAM Journal on Applied Mathematics devoted to
singular perturbation theory [30]). Life sciences are more concerned with aggregation
methods. This is probably due to the way scales differences occur in life sciences:
we see, in various contexts, interactions of the large and the small (whales eating
krill, blood cells flowing in our veins, bacteria transforming our food, etc.) which
lead us to disregard any structure in the small or fast species compared to the large
or slow ones. Aggregation was, and still is, first of all an implicit common practice.
The possible importance of aggregation in biological and ecological phenomena was
recognized only recently. The development of aggregation methods has been notably
undertaken within the past 10 years by Auger [6], in the frame of ordinary differential
equations. The main effort was spent in deriving so-called aggregated systems and a
general formal computational method, the quick derivation method, was described by
Auger in a large class of systems possessing one or several invariants. The method was
refined and a number of examples were investigated by Auger and his collaborators
[7, 8, 9]. Recently, aggregation methods were developed in the context of discrete
dynamical systems by Auger, Bravo de la Parra, and Sanchez [10, 11, 12, 28]. Both a
quick derivation method and error estimates were obtained, and a few examples were
worked out.

In this paper, a general linear model with both a continuous age structure and a
finite spatial structure is considered. It is assumed that discrete migration processes
take place between spatial patches at a frequency much higher than the demographic
events—so high that one nearly cannot see them. The impression is that of a spatially
homogeneous age-dependent population governed by a von Foerster equation with
birth and death coefficients averaged from the original patch-dependent coefficients
through a weighted average. The weights are computed in terms of the migration
matrix and are in fact the mark of the hidden underlying spatial structure.

Spatial homogeneity is reached after a short time: the time it takes newborns to
adapt their migrations between the patches in such a way as to maintain the weight
of each patch. This time length corresponds to the thickness of a boundary layer near
age a = 0.

The model covers a variety of situations in the modeling of fish population dy-
namics, namely, the segment of the fish life cycle where fish undergo movements in
the water column, from below the surface down to the seabed or the top of a lower sea
layer, according to an essentially circadian rhythm. This work was in fact motivated
by the study of two species which are subject to industrial fishing by both French
and Spanish fleets of the Atlantic Ocean: Solea solea, the common sole of the Bay of
Biscay [13], [17], [4], and Engraulis encrasicholus, the anchovy of the Bay of Biscay
[33], [5]. The anchovy is a pelagic fish throughout its life, that is, it lives in the water
column, while the sole is pelagic in the larval stage and becomes benthic after its
metamorphosis into a flatfish [32].

In [4], the authors modeled the migration of the sole from its spawning grounds
(60 to 80 miles from the coast) to the nursery grounds (in bays or river estuaries less
than 20 miles from the coast) essentially as a horizontal diffusion process taking place
during the larval stage. In the model presented in [4], the effect of vertical migration
on the horizontal movement was averaged throughout the whole water column to
produce a supposedly constant shoreward velocity. What we present here is both a
general and a rigorous treatment of averaging in the framework adopted in [4] in which
vertical motion was considered a fast process compared to the process of nearing the
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coast.
In order to keep our readership large enough and at the same time maintain a

satisfactory level of generality, spatial dependence has been restricted to the vertical.
This means that after averaging has been performed, using the aggregation method,
the model at hand is age-only dependent. Another simplifying assumption of our
model is that it does not discriminate among the stages. Such a discrimination is
usually done via growth equations [4], [2] and is not taken into account here. Research
toward allowing horizontal spatial dependence, together with vertical dependence and
incorporating growth equations into the model is in progress.

The framework chosen in this paper is deliberately linear in order to focus read-
ers’ attention on the main mechanism. In future work, we plan to relax this strong
assumption.

The organization of the paper is as follows. Section 2 presents the general model
to be considered throughout and the main aggregation result. The situation of fish
population dynamics is explained in detail in subsection 2.3, mainly in the context of
Engraulis encrasicholus. Section 3 deals with the solution operator of the perturbed
problem and gives an asymptotic formula (Theorem 3.8). Section 4 deals with the
important issue of age-asynchronous distribution and shows that, under some con-
ditions, asynchronous distribution of the aggregated system is the limit of the same
property for the full (nonaggregated) system. Section 5 concludes the paper by dis-
cussing the way the nonaggregated solution operator approaches the aggregated one
and by illustrating some of the results on the fish dynamics example.

2. The model. We consider an age-structured population, with age a and time
t being continuous variables. The population is divided into N spatial patches. The
evolution of the population is due to the migration process between the different
patches at a fast time scale and to the demographic process at a slow time scale.

Let ni(a, t) be the population density in patch i (i = 1, . . . , N) so that
∫ a2

a1
ni(a, t)da

represents the number of individuals in patch i whose age a ∈ [a1, a2] at time t, and

n(a, t) = (n1(a, t), . . . , nN (a, t))
T
.

Let µi(a) and βi(a) be the patch and age-specific mortality and fertility rates, respec-
tively, and

M(a) = diag {µ1(a), . . . , µN (a)} , B(a) = diag {β1(a), . . . , βN (a)} .
Let kij(a) be the age-specific migration rate from patch j to patch i, i 6= j, and

K(a) = (kij(a))1≤i,j≤N

with kii(a) = −∑N
j=1,j 6=i kji(a).

The model based upon the classical McKendrick–von Foerster model for an age-
structured population is as follows:

Balance law:

∂n

∂a
+
∂n

∂t
= [−M(a) +RK(a) ] n(a, t) (a > 0, t > 0).(2.1)

Birth law:

n(0, t) =

∫ +∞

0

B(a)n(a, t)da (t > 0).(2.2)
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Initial age distribution:

n(a, 0) = φ(a) (t > 0),(2.3)

where R > 0 is a large constant.
Matrix K(a) has nonnegative off-diagonal elements and the sum of its columns

is equal to zero. If we also assume that K(a) is irreducible, then Theorem 2.6 of
[29, pp. 46–47] applies and we have, for every a > 0, that 0 is a simple eigenvalue,
larger than the real part of any other eigenvalue, with strictly positive left and right
eigenvectors. Henceforth we assume the following.

Hypothesis H1. The matrix K(a) is irreducible for every a > 0.
The left eigenspace of matrix K(a) associated with the eigenvalue 0 is generated

by vector 1 = (1, . . . , 1)T ∈ RN . The right eigenspace is generated by vector ν(a)
and is unique if we choose it having positive entries and verifying 1T ν(a) = 1.

We assume K(·) is of class C1 and ν(·), ν′(·) are bounded; that is, there exist
two positive constants M1, M2, such that for all a ≥ 0, ‖ν(a)‖ ≤M1, ‖ν′(a)‖ ≤M2.

We use the notation

µ∗(a) =

N∑
i=1

µi(a)νi(a) = 1TM(a)ν(a),(2.4)

β∗(a) =
N∑
i=1

βi(a)νi(a) = 1TB(a)ν(a).(2.5)

The mortality and birth rates satisfy the following conditions.
Hypothesis H2.
(i) µj , βj ∈ L∞(R+), µj(a) ≥ 0, βj(a) ≥ 0 a.e. a ∈ R+, j = 1, . . . , N .
(ii) infa≥0 µ

∗(a) = µ∗ > 0.

(iii) There exists s0 ∈ R, s0 > −µ∗, such that
∫ +∞

0
e−s0aβ∗(a)e

−
∫ a

0
µ∗(σ)dσ

da > 1
and lim supa→∞ es0a‖B(a)‖ < +∞.

We transform the initial system (2.1)–(2.3) by defining ε = 1/R and writing (2.1)
in the singular perturbed form

ε
∂n

∂a
+ ε

∂n

∂t
= [−εM(a) + K(a) ] n(a, t).

For every initial age distribution φ ∈ L1(R+,R
N ), the problem (2.1)–(2.3) has a

unique solution and therefore we can associate with it a strongly continuous semigroup
of linear operators

Tε(t) : L1(R+,R
N ) −→ L1(R+,R

N ),

φ −→ Tε(t)φ = nε(·, t),
where nε(·, t) is the solution of (2.1)–(2.3) corresponding to the initial condition φ.

The infinitesimal generator of the semigroup is

Aεφ = −φ′ +
[
−M(a) +

1

ε
K(a)

]
φ(2.6)

with domain

D(Aε) =

{
φ ∈ L1(R+,R

N ), φ′ ∈ L1(R+,R
N ); φ(0) =

∫ +∞

0

B(a)φ(a)da

}
(see [35]).
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2.1. The aggregated model. We build up a model which describes the dy-
namics of the total population:

n(a, t) =

N∑
i=1

ni(a, t).

The exact model satisfied by the new variable n(a, t), henceforth called the global
variable, is obtained by adding up the variables ni(a, t) in system (2.1)–(2.3):

∂n

∂a
+
∂n

∂t
= −

N∑
i=1

µi(a)ni(a, t) (a > 0, t > 0),(2.7)

n(0, t) =

∫ +∞

0

(
N∑
i=1

βi(a)ni(a, t)

)
da (t > 0),(2.8)

n(a, 0) = φ(a) =
N∑
i=1

φi(a) (a > 0).(2.9)

In order to obtain a system with the global variable as the unique state variable
we propose the following approximation:

νi(a, t) =
ni(a, t)

n(a, t)
≈ νi(a) (i = 1, . . . , N)

which implies that

N∑
i=1

µi(a)ni(a, t) ≈
(

N∑
i=1

µi(a)νi(a)

)
n(a, t) = µ∗(a)n(a, t)

and

N∑
i=1

βi(a)ni(a, t) ≈
(

N∑
i=1

βi(a)νi(a)

)
n(a, t) = β∗(a)n(a, t).

The approximated model for the density of the total population, which we call
the aggregated system, is the following:

∂n

∂a
+
∂n

∂t
= −µ∗(a)n(a, t) (a > 0, t > 0),(2.10)

n(0, t) =

∫ +∞

0

β∗(a)n(a, t)da (t > 0),(2.11)

n(a, 0) = φ(a) (a > 0).(2.12)
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2.2. Asymptotic behavior of the aggregated model. The aggregated sys-
tem is a classical linear model, called a Sharpe–Lotka–McKendrick model in [35]. The
general theory applies here, yielding exponential asynchronous behavior in the case
where the characteristic equation associated with the problem possesses a unique real
simple root which is strictly dominant.

From Hypothesis H2 (i) and (ii) we have that the function

F (λ) =

∫ +∞

0

e−λaβ∗(a)e
−
∫ a

0
µ∗(σ)dσ

da

is defined for Reλ > −µ∗. F (λ) is continuous, strictly decreasing for real values of λ,
and limλ→∞ F (λ) = 0. Since F (s0) > 1, from Hypothesis H2 (iii), we conclude that
the characteristic equation

1 =

∫ +∞

0

e−λaβ∗(a)e
−
∫ a

0
µ∗(σ)dσ

da(2.13)

has a unique real root λ0 > s0.
The fact that µ∗ > 0 implies that if F (0) > 1, then λ0 > 0; if F (0) = 1, then

λ0 = 0; and if F (0) < 1, then λ0 < 0.
Now Theorem 4.9 of [35, p. 187] applies.
Proposition 2.1. Let λ0 ∈ R be the real solution of the characteristic equation

(2.13). Then

lim
t→∞ e

−λ0tn(a, t) = e−λ0ae
−
∫ a

0
µ∗(σ)dσ

c(φ),

where n(a, t) is the unique solution of the aggregated model (2.10)–(2.12) corresponding
to the initial age distribution φ ∈ L1(R+) and c(φ) > 0 is a constant that depends on
φ. The limit is taken in L1(R+).

This proposition establishes that the semigroup {S0(t)}t≥0 associated with the
solutions of the aggregated model (2.10)–(2.12) has the asynchronous exponential
growth property with associated malthusian parameter λ0 and asymptotic distribution

θ0(a) = e−λ0ae
−
∫ a

0
µ∗(σ) dσ

.

2.3. An application to fish dynamics. This work was motivated by the study
of fish dynamics and the role played by the position of fish in the water column
and diel migration inside the column. For several fish species, including Engraulis
encrasicholus [19], an anchovy present in the Bay of Biscay, or the pelagic stage
of Solea solea, the common sole of the same area [4], many concordant field data
indicate the following features [22], [21]: (1) a distribution of the species throughout
the water column with one or several peaks; (2) this distribution changes during the
life of individuals (ontogenetic migration) with the range increasing through time; (3)
distribution also changes during the day, with most of the population being near the
surface at night and closer to the lower part of the water column during daylight.

Vertical displacements are the result of a number of factors: sea turbulence,
reaction to light, quest for food, and energy cost minimization (a possible explanation
for night migration toward the surface, which is generally warmer than the deeper
layers of the sea and thus, in particular, more suited for digestion). An evolutionary
advantage of migration toward the lower layer of the sea during the day could be that
it gives better protection to small fish from predation by large fish.
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At the level of a life stage, such as the larval stage or the juvenile stage (for
the anchovy), or the much longer adult stage (for the anchovy), vertical migration
may be considered a rather fast process, occurring many times during a single stage,
especially after the swim bladder has become functional (about 10 days or more after
egg fertilization in the case of the anchovy (see [22, Fig. 4.9])). The day (24 hours)
is the fast time scale, compared to the time spanned from fertilization to the juvenile
stage.

It is tempting, when describing the demographic processes of those fish, to for-
get the details about vertical migration. This means working with the population
aggregated over the whole column. However, a question immediately arises: Can
heterogeneity entailed by differences in birth rates and death rates along the water
column and the vertical movement can be aggregated? This is precisely the issue dealt
with in this paper and it will be shown that, under quite standard hypotheses, the
aggregated equations obtained by the procedure explained in section 2 approximate
the full system to the order of some number ε > 0, where ε represents the rate of the
fast time scale to the slow scale.

We return to the fish problem. From field studies, one can determine a migration
matrix, a function of age and time [26], [17], [21]. For simplicity, we omit time
dependence here. In the absence of data on the migration between layers, we treat the
migration as a random process activated at each small time interval, the probability
for an individual to go from patch i to patch j being the same for all i 6= j and equal
to the average proportion of individuals of age a occupying patch j during this time
interval. So, this yields

kij(a) = pi(a), if j 6= i; kii(a) = pi(a)− 1.

Assuming that each pi > 0 immediately yields that the matrix K is irreducible, that is,
Hypothesis H1 holds. From a straightforward computation, we get that νi(a) = pi(a).

The migration modeled here is of a very different nature, dependent on the stage
that the fish is in: while for adults it is essentially governed by a circadian cycle
and the quest of food, in the early larval stage of anchovy (before the swim bladder
becomes functional [22] it is mainly governed by physical turbulence [31], [24] to which
the animal responds with more or less intensity depending upon its size [22].

Let us now look at the two main components of a demographic model: mortality
and reproduction. Mortality is probably dependent on depth, especially in the larval
stage of fish. Depth acts through the temperature which generally decreases down the
water column: a lower temperature means a slower development and thus a higher
mortality within a given stage (see [25] and [22, Fig. 4.20]). Mortality is also dependent
on age; for the anchovy, the structure of the mortality function is strongly related to
its stage: it is high during the egg stage, due to both biological defects and predation
on egg aggregates; it decreases steadily during the larval stage, where it is essentially
due to starvation [14], [34]; mortality at the juvenile and adult stages is impacted
by harvest by humans, much more for the adult fish which are subject to industrial
fishing more than the juveniles which serve as bait for other harvested species [33].

As for the birth rate β(a), it depends both on depth and age: for the anchovy,
reproduction takes place at night (between 10 pm and 2 am, with a peak around
midnight) and is, with few exceptions, done below the surface in the few first layers.
Aggregation of the spawned eggs may be determined using the migration matrix
associated with night migrations. Instead of modeling the birth as a function of the
population, it is sometimes possible to use field data. For the anchovy of the Bay



AGE-STRUCTURED POPULATION MODEL 415

of Biscay, egg samples are collected throughout the whole spawning area, and egg
production is estimated using the DEPM (daily egg production method) [18], [20].
Although it is possible to arrange for the samplings to discriminate along the depth,
this is both costly and time-consuming: a preferred technique consists of collecting
the material contained in a straight cylinder of water going from the surface to the
seabed, thus providing the egg data for the aggregated model ([18]; see also [32]).

Let us now see how the above information can be combined into a model. A
preliminary step is the selection, for each of the processes, of the appropriate time
scale: the demographic time unit is the mean duration of a group of egg and/or larval
substages, say, of the order of 10 to 20 days. Mortality in a given group is evaluated
as the ratio of the number of individuals of that group not reaching the next group
to the number of individuals of the group. During the same time unit, migration
has been activated 10 or more times so that the migration time unit is a tenth or
less of the demographic time unit. More generally, we denote by ε the fraction of the
demographic time unit corresponding to the duration of a single migratory activation,
that is to say, the demographic time unit. From this, it follows that the matrix K(a)
has to be multiplied by R = 1/ε (according to the notation used in (2.1)) when writing
the equation for the variation of the population.

Finally, an estimate of the initial population (that is, the population present at
a given fixed time) can be deduced from surveys of fishing captures and an estimate
of the fishing effort. Such estimates discriminate among age and the geographic area
where fish have been captured but will usually consider fish summed up throughout
the whole water column. Thus, they are well suited to the aggregated model, while
they are not especially adapted to an age- and space-structured model.

3. The semigroup associated with the perturbed problem. In this section
we will obtain the main result of this paper: The semigroup {Tε(t)}t≥0 associated
with the perturbed problem (2.1)–(2.3) can be decomposed into a stable part which
is precisely S0(t)ν(·) and a perturbation of order O(ε).

With the aim of studying the behavior of the semigroup {Tε(t)}t≥0, we consider

the following direct sum decomposition of the space RN , whose existence is ensured
by Hypothesis H1:

RN = [ν(a)]⊕ S,

where [ν(a)] is the subspace of dimension 1 generated by the vector ν(a) and S =
{v ∈ RN ; 1Tv = 0}. We notice that S is the same for all a, because it is orthogonal
to vector 1, and moreover KS(a), the restriction of K(a) to S, is an isomorphism on
S with spectrum σ(KS(a)) ⊂ {λ ∈ C ; Reλ < 0}.

We decompose the solutions of (2.1)–(2.3) according to the projections onto the
subspaces [ν(a)] and S, that is to say,

nε(a, t) = pε(a, t)ν(a) + qε(a, t).

The projection onto [ν(a)] is obtained by premultiplying by 1. We denote by Π(a)
the complementary projection onto S. As 1Tν(a) = 1, we have 1Tν ′(a) = 0, which
means that ν ′(a) ∈ S, for every a.

Substituting in (2.1), (2.2) we obtain the following equations for the components
pε(a, t) and qε(a, t) of nε(a, t):
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∂pε
∂a

+
∂pε
∂t

= −1TM(a)ν(a)pε(a, t)− 1TM(a)qε(a, t),(3.1)

∂qε
∂a

+
∂qε
∂t

= − [MS(a)ν(a) + ν′(a)] pε(a, t) +

[
1

ε
KS(a)−MS(a)

]
qε(a, t),(3.2)

pε(0, t) =

∫ +∞

0

1TB(a)ν(a)pε(a, t)da+

∫ +∞

0

1TB(a)qε(a, t)da,(3.3)

qε(0, t) =

∫ +∞

0

BS(a)ν(a)pε(a, t)da+

∫ +∞

0

BS(a)qε(a, t)da,(3.4)

where MS(a), BS(a) are the projections of M(a) and B(a), respectively, onto S, that
is to say, MS(a) = Π(a) ◦M(a) and BS(a) = Π(a) ◦B(a).

The general solution of that system can be expressed in terms of the resolvent
operators of certain associated problems. From that we can deduce the dependence
of the solution on ε.

Hypothesis H3. Let Rε(a, α), (a ≥ α), with Rε(α, α) = I, be the fundamental
matrix of the homogeneous differential system

v′(a) =

[
1

ε
KS(a)−MS(a)

]
v(a).(3.5)

There exist constants k1 > 0, k2 > 0, and k3 > 0 such that

‖Rε(a, α)‖ ≤ k3e
(−k1/ε+k2)(a−α), a ≥ α.

Lemma 3.1. If K(a) is a constant matrix K, then hypothesis H3 holds.
The proof of this lemma is skipped. It is based on the use of a Lyapunov function

associated with KS .
From (3.2), (3.4) we can obtain the function qε in terms of pε. Then, substituting

in (3.1), (3.3) we obtain a problem for pε. In order to determine qε in terms of pε, let
us consider the more general nonhomogeneous problem

∂q

∂a
+
∂q

∂t
=

[
1

ε
KS(a)−MS(a)

]
q(a, t) + F(a, t),(3.6)

q(0, t) =

∫ +∞

0

BS(a)q(a, t)da+ G(t),(3.7)

q(a, 0) = q0(a).(3.8)

Lemma 3.2. For ε > 0 small enough, there exists a function Φε : R+ −→ L(S),
differentiable for every a ≥ 0 and such that

Φ′ε(a) =
[

1
εKS(a)−MS(a)

]
Φε(a), a ≥ 0,

Φε(0)− ∫ +∞
0

BS(a)Φε(a)da = Id.

As usual, L(S) means the space of bounded linear operators defined on S.
Proof. The first equation is just (3.5). So, it yields the following expression for

Φε:

Φε(a) = Rε(a, 0)Φε(0),



AGE-STRUCTURED POPULATION MODEL 417

where Rε is the resolvent matrix introduced in Hypothesis H3. Then, we obtain for
Φε(0) the equation

Φε(0)−
[∫ +∞

0

BS(a)Rε(a, 0) da

]
Φε(0) = Id

which has a solution for every ε > 0, small enough, due to the bound assumed for Rε
in Hypothesis H3. Let us notice, moreover, that limε→0+

Φε(0) = Id.
Now, we perform a change of the unknown function from q to q1 defined by

q1(a, t) = q(a, t)−Φε(a)G(t).

This transforms the problem (3.6)–(3.8) into another nonhomogeneous problem with
a homogeneous condition for a = 0:

∂q1

∂a
+
∂q1

∂t
=

[
1

ε
KS(a)−MS(a)

]
q1(a, t) + F(a, t)−Φε(a)G′(t),

q1(0, t) =

∫ +∞

0

BS(a)q1(a, t)da,

q1(a, 0) = q0(a)−Φε(a)G(0).

The solution of this problem can be expressed with the help of the variation-of-
constants formula, in terms of the semigroup {Uε(t)}t≥0 which gives the solution

in L1(R+,R
N ) of the homogeneous problem

∂q

∂a
+
∂q

∂t
=

[
1

ε
KS(a)−MS(a)

]
q(a, t),(3.9)

q(0, t) =

∫ +∞

0

BS(a)q(a, t)da,(3.10)

q(a, 0) = q0(a)−Φε(a)G(0).(3.11)

To be specific,

q1(·, t) = Uε(t) [q0(·)−Φε(·)G(0)] +

∫ t

0

Uε(t− τ) [F(·, τ)−Φε(·)G′(τ)] dτ.

In order to eliminate G′ in the expression of q1 we integrate by parts. Finally,
we obtain an expression for qε:

qε(·, t) = Uε(t)q0(·) +

∫ t

0

Uε(t− τ)F(·, τ)dτ −
∫ t

0

Vε(t− τ)(·)G(τ)dτ,(3.12)

where

Vε(t)(a) =

[
∂Uε
∂t

(t)Φε

]
(a), a > 0, t ≥ 0.(3.13)

In our case

F(a, t) = − [MS(a)ν(a) + ν′(a)] pε(a, t),

G(t) =
∫ +∞

0
BS(a)ν(a)pε(a, t)da.
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Now, we substitute expression (3.12) of qε(·, t) in (3.1), (3.3), obtaining the equa-
tions for pε(a, t):

∂pε
∂a

+
∂pε
∂t

= −µ∗(a)pε(a, t) + (Dε(t)pε) (a) + fε(a, t) (a > 0 , t > 0),(3.14)

pε(0, t) =

∫ +∞

0

β∗(a)pε(a, t)da+ Bε(t)pε + gε(t) (t > 0),(3.15)

pε(a, 0) = p0(a) (a > 0),(3.16)

where

fε(a, t) = −1TM(a)(Uε(t)q0)(a),(3.17)

gε(t) =

∫ ∞
0

1TB(a)(Uε(t)q0)(a)da,(3.18)

and we have defined, for each t > 0 fixed, the following two operators:

Dε(t) : C
(
[0, t], L1(R+)

) −→ L1(R+),

Bε(t) : C
(
[0, t], L1(R+)

) −→ R,

Dε(t) (p) (a) = 1TM(a)

∫ t

0

Uε(t− τ) [MS(a)ν(a) + ν′(a)] p(a, τ)dτ

+1TM(a)

∫ t

0

Vε(t− τ)(a)

(∫ +∞

0

BS(α)ν(α)p(α, t)dα

)
dτ,(3.19)

Bε(t)p = −
∫ +∞

0

1TB(a)

(∫ t

0

Uε(t− τ) [MS(a)ν(a) + ν′(a)] p(a, τ)dτ

)
da

−
∫ +∞

0

1TB(a)

(∫ t

0

Vε(t− τ)(a)

(∫ +∞

0

BS(α)ν(α)p(α, τ)dα

)
dτ

)
da.(3.20)

3.1. Formulation of a fixed point problem for the function pε. Integrat-
ing (3.14) along characteristic lines, we can formulate this system as a fixed point
problem. To this end, we need some estimates stated in the following lemmas, whose
proofs are deferred to the Appendix.

Throughout the paper, we denote by Ci, i = 1, . . ., constants arising from com-
putations whose specific value is not important.

Lemma 3.3. The semigroup {Uε(t)}t≥0 satisfies the following estimate:

‖Uε(t)‖ ≤ C1e
(C2−k1/ε)t (t ≥ 0),

where k1 is the same as in Hypothesis H3.
Lemma 3.4. For each t ≥ 0, the function Vε(t)(·) : R+ −→ L(RN ) defined in

(3.13), satisfies the following estimate:

‖Vε(t)‖L1 ≤ C1e
(C2−k1/ε)t.
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Lemma 3.5. For each t ≥ 0, the operators Dε(t) and Bε(t) defined in (3.19),
(3.20) satisfy the following estimates:

‖Dε(t)p‖L1(R+) ≤ εC1 sup
τ∈[0,t]

‖p(·, τ)‖L1 ,

|Bε(t)p| ≤ εC2 sup
τ∈[0,t]

‖p(·, τ)‖L1 .

We now return to system (3.14)–(3.16).
Denote by ρ0(a, α), ρ0(α, α) = 1, the resolvent operator of the problem

dz

da
= −µ∗(a)z(a).

Observe that ρ0(a, 0) = e
−
∫ a

0
µ∗(s) ds

is the resolvent function associated with the
aggregated problem (2.10)–(2.12). After standard calculations, we obtain

(i) for a > t:

pε(a, t) = ρ0(a, a− t)p0(a− t)

+

∫ t

0

ρ0(a, a− t+ σ) [(Dε(σ)pε) (a− t+ σ) + fε(a− t+ σ, σ)] dσ.(3.21)

(ii) for a < t:

pε(a, t) = ρ0(a, 0)

[∫ +∞

0

β∗(α)pε(α, t− a)dα+ Bε(t− a)pε + gε(t− a)

]
+

∫ a

0

ρ0(a, σ) [(Dε(t− a+ σ)pε) (σ) + fε(σ, t− a+ σ)] dσ.(3.22)

Both (3.21) and (3.22) can be reformulated as a single equation of the form

pε = F(ε, pε),(3.23)

where the operator F(ε, p) can be decomposed into the sum of three terms:
(i) A term H0, independent of ε:

H0(p)(a, t) =

{
0 a > t,

ρ0(a, 0)
∫ +∞

0
β∗(α)p(α, t− a)dα t > a.

(ii) A term A(ε, p), dependent on ε and linear in p:

A(ε, p)(a, t) =


∫ t

0
ρ0(a, a− t+ σ) (Dε(σ)p) (a− t+ σ)dσ, a > t,∫ a

0
ρ0(a, σ) (Dε(t− a+ σ)p) (σ)dσ + ρ0(a, 0)Bε(t− a)p, t > a.

(iii) A nonhomogeneous term J (ε, p0,q0)(a, t), dependent only on the initial con-
ditions:

J (ε, p0,q0)(a, t) =

 ρ0(a, a− t)p0(a− t) +
∫ t

0
ρ0(a, a− t+ σ)fε(a− t+ σ, σ)dσ, a > t,

ρ0(a, 0)gε(t− a) +
∫ a

0
ρ0(a, σ)fε(σ, t− a+ σ)dσ, t > a.
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We have

F(ε, p) = H0(p) +A(ε, p) + J (ε, p0,q0).

In order to apply a fixed point theorem, we consider for T > 0 the Banach space
C = C([0, T ];L1(R+)), with the norm

‖p‖C = sup
[0,T ]

‖p(·, t)‖L1(R+).

Lemma 3.6. Under the hypothesis µ∗ > β̃∗ = supa≥0 β
∗(a), the equation

(Id−H0)p = Φ

has, for each Φ ∈ C, a unique solution p ∈ C.
The proof of this lemma is skipped. It can be done by showing that H0 is a strict

contraction when restricted to a suitable function space.
Notice that the hypothesis µ∗ > β̃∗ does not introduce any restriction in the

model. In fact, performing in (2.1)–(2.3) the change of unknown (if necessary)

n∗(a, t) = e−mtn(a, t)

for some m > β̃∗−µ∗, we obtain an equivalent model in which the condition of Lemma
3.6 is accomplished.

From Lemmas 3.3–3.5, after some straightforward calculations, we obtain the
following estimate for the operator A(ε, ·):

‖A(ε, p)‖C ≤ C1
ε

µ∗
‖p‖C .(3.24)

Lemma 3.6 establishes the existence of the inverse (Id−H0)−1. The following estimate
can be obtained:

‖(Id−H0)−1‖ ≤ 2µ∗
µ∗ − β̃∗

.

Then, bearing in mind (3.24), we can ensure the existence of the inverse (Id−H0 −
A(ε, ·))−1, for ε > 0 small enough:

(Id−H0 −A(ε, ·))−1 = (Id−H0)−1 + Γε,

where

Γε =

∑
j≥1

[
(Id−H0)−1A(ε, ·)]j

 (Id−H0)−1

with

‖Γε(p)‖C ≤ εC1‖p‖C .

We can then write the following expression for the solution pε of (3.23):

pε = (Id−H0 −A(ε, ·))−1[J (ε, p0,q0)] =
[
(Id−H0)−1 + Γε

]
[J (ε, p0,q0)].(3.25)
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3.2. Asymptotic expression for the perturbed semigroup. We are going
to study the dependence on ε of the solution pε obtained in (3.25). This solution,
together with the expression for qε obtained by substituting pε in (3.12), gives the
solution nε of the perturbed problem (2.1)–(2.3).

Let us define

J (0, p0,0)(a, t) =

{
ρ0(a, a− t)p0(a− t) (a > t),

0 (a < t).

In the Appendix the following lemma is proved.
Lemma 3.7. J (ε, p0,q0) = J (0, p0,0) + εB̃(ε, p0,q0), where

‖B̃(ε, p0,q0)(·, t)‖L1(R+) ≤ C1e
−µ∗t‖q0‖L1(R+) (t ≥ 0).

Straightforward calculations lead to the following asymptotic expression for pε:

pε = [Id−H0]−1 (J (0, p0,0)) + εB(ε, p0,q0),(3.26)

where B is an operator defined by formula (3.26) and satisfies, for some constant
C1 > 0,

‖B(ε, p0,q0)(·, t)‖L1(R+) ≤ C1e
−µ∗t‖(p0,q0)‖L1(R+).

The term (Id −H0)−1[J (0, p0,0)] is the solution of (3.14) and (3.15) for ε = 0,
which is just the aggregated model (2.10), (2.11), with initial age distribution p0(a).
Then, it can be expressed in terms of the semigroup {S0(t)}t≥0, as S0(t)p0.

Remember that the solution of perturbed problem (2.1)–(2.3) can be written as

nε(a, t) = pε(a, t)ν(a) + qε(a, t),

where pε is given by (3.25) and qε is given by (3.12). Both results, together with
(3.26), give finally

(3.27)

nε(a, t) = (S0(t)p0) (a)ν(a) + (Uε(t)q0) (a) + εB(ε, p0,q0)(a, t)ν(a) + Qε(a, t),

where

‖Qε(·, t)‖L1(R+) ≤ εC1e
(C2−k1/ε)t.

The main result of this section is summarized in the following theorem.
Theorem 3.8. For every ε > 0, small enough,

(Tε(t)φ) (a) = (S0(t)p0) (a)ν(a) + (Uε(t)q0)(a)

+ εB(ε, p0,q0)(a, t)ν(a) +O
(
εe(C1−k1/ε)t

)
,

where {S0(t)}t≥0 is the semigroup associated with the aggregated model (2.10)–(2.12)
and φ = p0ν + q0, with q0 ∈ S, is the initial age distribution.

We point out that the above formula is of interest mainly in the case when λ0 ≥ 0.
In this case, it can be concluded from the formula that

Tε(t)φ ≈ S0(t)p0 ⊗ ν as t −→ +∞,
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uniformly with respect to ε > 0 small enough. Conversely, if λ0 < 0, then

Tε(t)φ −→ 0 as t −→ +∞,

and this is again uniform with respect to ε > 0 small enough. In this case, however,
S0(t)p0 ⊗ ν does not, in general, dominate the term εB.

Corollary 3.9. For each t > 0, we have

lim
ε→0

Tε(t)φ = S0(t)p0ν,(3.28)

where the limit is taken in L1(R+,R
N ).

In order for the solution to reach the unperturbed state, it is necessary that
the migration between patches equilibrate the proportions in the various patches
according to the vector ν. This implies that the newborns, which are produced in
proportions unrelated to ν, move between patches until the proportion ν is reached.
The process takes a time of the order of ε.

4. Asymptotic exponential growth of the perturbed semigroup. In this
section we will show that the semigroup {Tε(t)}t≥0 has the asynchronous exponential
growth property. We also obtain the behavior of its associated malthusian parameter
λε and eigenfunction ϕε as ε → 0: λε converges to λ0 and ϕε converges to θ0ν,
where λ0, respectively, θ0, is the malthusian parameter, respectively, the asymptotic
distribution, associated with the aggregated model (2.10)–(2.12).

4.1. The spectrum of the infinitesimal generator Aε. With the aim of
finding the spectrum of Aε, σ(Aε), and its dependence on ε, we solve the equation

(Aε − λI)ϕ = 0, ϕ ∈ D(Aε),(4.1)

by decomposing the solution into its stable and unstable parts.
To simplify the notation we make the following change in the unknown function:

ϕ(a) = e−λaϕλ(a).

From Hypothesis H1 we can write the following direct sum decomposition:

RN = [ν(a)]⊕ S

and then we can decompose ϕλ into

ϕλ(a) = θλ(a)ν(a) + σλ(a) σλ(a) ∈ S.

By substituting in (4.1) and having in mind that K(a)ν(a) = 0, we obtain

θ′λ(a)ν(a) + θλ(a)ν′(a) + σ′λ(a) = −θλ(a)M(a)ν(a)−M(a)σλ(a) +
1

ε
K(a)σλ(a).

We project onto subspaces [ν(a)] and S and, since σ′(a) ∈ S for each a, we obtain
the following system for the components of ϕλ:

θ′λ(a) = −µ∗(a)θλ(a)− 1TM(a)σλ(a),(4.2)

σ′λ(a) =

[
1

ε
KS(a)−MS(a)

]
σλ(a)− [MS(a)ν(a) + ν′(a)] θλ(a).(4.3)



AGE-STRUCTURED POPULATION MODEL 423

The general solution of that system can be expressed in terms of the resolvent
operator Rε(a, α) introduced in Hypothesis H3. Applying a variation of constants
formula, we can get an expression for σλ(a) in terms of θλ:

σλ(a) = Rε(a, 0)σλ(0)−
∫ a

0

Rε(a, α) [MS(α)ν(α) + ν′(α)] θλ(α)dα(4.4)

and substituting in (4.2) we obtain an integrodifferential equation for θλ(a),

θ′λ(a) = −µ∗(a)θλ(a) +

∫ a

0

rε(a, α)θλ(α)dα− 1TM(a)Rε(a, 0)σλ(0),(4.5)

where we have used the notation

rε(a, α) = 1TM(a)Rε(a, α) [MS(α)ν(a) + ν′(a)] .

Let us notice that

|rε(a, α)| ≤ C1e
(k2−k1/ε)(a−α), a ≥ α.(4.6)

Let ρε(a, α), a ≥ α, with ρε(α, α) = 1, be the resolvent kernel of the homogeneous
integral equation

θ′λ(a) = −µ∗(a)θλ(a) +

∫ a

α

rε(a, β)θλ(β)dβ.

In terms of ρε(a, α), the solution of (4.5) reads

θλ(a) = ρε(a, 0)θλ(0)−
[∫ a

0

ρε(a, α)1TM(α)Rε(α, 0)dα

]
σλ(0)

which, substituted in (4.4), yields the following expression for the solution of the
system (4.2), (4.3):

θ(a) = e−λaρε(a, 0)θ(0) + e−λaξT
ε (a)σ(0),(4.7)

σ(a) = e−λaηε(a)θ(0) + e−λaΛε(a)σ(0),(4.8)

where

ξT
ε (a) =

∫ a

0

ρε(a, α)1TM(α)Rε(α, 0)dα,

ηε(a) =

∫ a

0

Rε(a, α) [MS(α)ν(α) + ν ′(α)] ρε(α, 0)dα,

Λε(a) = Rε(a, 0) +

∫ a

0

Rε(a, α) [MS(α)ν(α) + ν′(α)] ξT
ε (a)dα,

and we have returned to the notation

θ(a) = eλaθλ(a); σ(a) = e−λaσλ(a).
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4.2. Characteristic equation. From the definition (2.6) of the infinitesimal
generator Aε, through standard calculations, we obtain the following characteristic
equation for its eigenvalues λ ∈ σ(Aε):

det

[
Id−

∫ +∞

0

e−λaB(a)Rε(a, 0) da

]
= 0.

Another expression for this characteristic equation can be obtained from (4.7), (4.8)
by substituting ϕ(a) = θ(a)ν(a) + σ(a) in the birth equation

ϕ(0) =

∫ +∞

0

B(a)ϕ(a)da

which yields, in matrix form,(
θ(0)

σ(0)

)
=

(
d1(ε, λ) dT

2 (ε, λ)

d3(ε, λ) D4(ε, λ)

) (
θ(0)

σ(0)

)
,

where

d1(ε, λ) =
∫ +∞

0
e−λaβ∗(a)ρε(a, 0)da+

∫ +∞
0

e−λa1TB(a)ηε(a)da,

dT
2 (ε, λ) =

∫ +∞
0

e−λaβ∗(a)ξT
ε (a)da+

∫ +∞
0

e−λa1TB(a)Λε(a)da,

d3(ε, λ) =
∫ +∞

0
e−λaρε(a, 0)BS(a)ν(a)da+

∫ +∞
0

e−λaBS(a)ηε(a)da,

D4(ε, λ) =
∫ +∞

0
e−λaBS(a)Λε(a)da+

∫ +∞
0

e−λaBS(a)ν(a)ξT
ε (a)da.

We deduce from the last equality that the elements λε ∈ σ(Aε) are the solutions
of the characteristic equation

det

[
d1(ε, λ)− 1 dT

2 (ε, λ)

d3(ε, λ) D4(ε, λ)− I

]
= 0.(4.9)

To prove the existence of real solutions of the characteristic equation (4.9) we
need a bound for the resolvent kernel ρε(a, α) that we state in the following lemma.

Lemma 4.1. For ε > 0 small enough, it is verified that

|ρε(a, α)| ≤ e−kM (a−α) + εC1e
εC2(a−α), a ≥ α,(4.10)

where kM is any constant for which 0 < kM < µ∗ holds.
Proof. For the proof, see the Appendix.

Proposition 4.2. Recall that ρ0(a, 0) = e
−
∫ a

0
µ∗(s)ds

. Then we have

lim
ε→0+

ρε(a, 0) = ρ0(a, 0)

uniformly for a ≥ 0.
Proof. For the proof, see the Appendix.
Corollary 4.3. There exists ε0 > 0 such that for each a ≥ 0, ρε(a, 0) > 0 holds

for every 0 < ε < ε0.
We can now prove the existence of real solutions of (4.9) which are elements of

σ(Aε) as close as needed to the root λ0 of (2.13).
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Proposition 4.4. Let λ0 be the unique real solution of (2.13). For any δ > 0
such that −µ∗ < λ0 − δ, there exists ε0(δ) > 0 such that for every 0 < ε < ε0(δ), the
characteristic equation (4.9) possesses at least a real solution λε ∈ [λ0 − δ, λ0 + δ].

Proof. From Hypothesis H3 and Lemma 4.1 it is straightforward to obtain, for a
fixed δ > 0, that

sup
λ>λ0−δ

‖D4(ε, λ)‖ −→ 0 (ε→ 0+)

and therefore there exists ε0(δ) > 0 such that for every λ > λ0−δ and every ε ∈]0, ε0[,
‖D4(ε, λ)‖ < 1 holds. This allows us to write

σ(0) = (I−D4(ε, λ))−1d3(ε, λ)θ(0),

and substituting it in the expression of θ(0) we have

θ(0) = d1(ε, λ)θ(0) + dT
2 (ε, λ)(I−D4(ε, λ))−1d3(ε, λ)θ(0)

which, in view of the expression of d1, yields that

1 =

∫ +∞

0

e−λaβ∗(a)e
−
∫ a

0
µ∗(s)ds

da+ σ(ε, λ),

where

σ(ε, λ) =
∫ +∞

0
e−λaβ∗(a)(ρε(a, 0)− ρ0(a, 0)da) +

∫ +∞
0

e−λa1TB(a)ηε(a)da

+ dT
2 (ε, λ)(I−D4(ε, λ))−1d3(ε, λ).

Straightforward computations lead to

sup
λ>λ0−δ

|σ(ε, λ)| −→ 0 (ε→ 0+).

Now, if we call

G(ε, λ) =

∫ +∞

0

e−λaβ∗(a)e
−
∫ a

0
µ∗(s)ds

da+ σ(ε, λ),

in view of (2.13), we have that there exists ε0 > 0, ε0 = ε0(δ), such that

G(ε, λ0 − δ) > 1 > G(ε, λ0 + δ) for every ε ∈]0, ε0(δ)[

which implies the existence of a real root, λε ∈ [λ0 − δ, λ0 + δ], of the equation
G(ε, λε) = 1, which is, therefore, a root of the characteristic equation (4.9).

4.3. Asynchronous exponential growth of the perturbed semigroup. We
cannot deduce immediately that the eigenvalue λε, whose existence has been proved
in Proposition 4.4, is equal to the spectral bound s(Aε) of the infinitesimal generator
Aε. In order to prove the equality, we establish in the following proposition the asyn-
chronous exponential growth property for the perturbed semigroup {Tε(t)}t≥0. This
property is a consequence of essential compactness and irreducibility of {Tε(t)}t≥0

for ε > 0 small enough. Irreducibility makes it necessary to impose an additional
assumption on the fertility rate function.

Hypothesis H4. There exists a1 > 0 such that for all a > a1, ‖B(a)‖ > 0.
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Proposition 4.5. Under Hypothesis H4, the semigroup {Tε(t)}t≥0 is irreducible
and, for ε > 0 small enough, is essentially compact.

Proof. For the proof, see the Appendix.

Straightforward calculations show that the characteristic equation (4.9) has a
unique positive real root which is strictly dominant. Thus, (see [1], [3], [23]), we can
conclude from Propositions 4.4 and 4.5, that s(Aε) = λε.

The eigenfunction ϕε(a) = θε(a) ν(a) + σε(a) associated with λε verifies the
following asymptotic result.

Proposition 4.6. Let λε be the eigenvalue of Aε found in Proposition 4.4. Then,
there exists an eigenfunction, ϕε(a), associated with λε which verifies

lim
ε→0+

ϕε(a) = θ0(a)ν(a), a ≥ 0,

where θ0(a) = e−λ0aρ0(a, 0). In particular, for every ε > 0 small enough, ϕε(a) > 0,
(a > 0).

Proof. From expressions (4.7), (4.8), we have

ϕε(a) = θε(a)ν(a) + σε(a)

=
(
e−λεaρε(a, 0)θ(0) + e−λεaξT

ε (a)σ(0)
)
ν(a) + e−λεaηε(a)θ(0) + e−λεaΛε(a)σ(0).

If we choose θ(0) = 1 we obtain from the proof of Proposition 4.4 that σ(0) =
(I−D4(ε, λε))

−1d3(ε, λε), and hence

ϕε(a) = e−λεaρε(a, 0)ν(a) + e−λεaηε(a)

+
(
ν(a)e−λεaξT

ε (a) + e−λεaΛε(a)
)

(I−D4(ε, λε))
−1d3(ε, λε).

The use of the different bounds obtained above leads us to the final result:

lim
ε→0+

ϕε(a) = e−λ0aρ0(a, 0)ν(a) = e−λ0ae
−
∫ a

0
µ∗(s)ds

ν(a).

The following theorem summarizes the results obtained in this section.

Theorem 4.7. For every ε > 0 small enough, it is verified that

lim
t→∞ e

−λεtnε(a, t) = ϕε(a)Cε(φ),

where nε(a, t) is the solution of (2.1)–(2.3), λε is the real solution of the characteristic
equation (4.9), ϕε(a) = θε(a)ν(a)+σε(a) is the eigenfunction expressed in Proposition
4.6, and Cε(φ) is a positive constant depending on the initial age distribution φ.
Moreover,

lim
ε→0+

λε = λ0

and

lim
ε→0+

ϕε(a) = eλ0ae
−
∫ a

0
µ∗(σ)dσ

ν(a).
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5. Conclusion. The present work explores the important class of age-structured
population models, with continuous age-structure, and a lattice spatial structure.
More specifically, it is assumed that the population occupies some space subdivided
into N patches: individuals may migrate from patch to patch according to a spatial
transition matrix; they also reproduce, age, and die. It is also assumed that the
migration process is much faster than the demographic (birth, death, and aging)
process. How fast it is, is marked by the presence of a multiplicative constant R = 1/ε
before a normalized transition matrix K, where ε can be interpreted as the time needed
for a single patch migration of a single individual. A crucial assumption is that the
jump process is conservative with respect to the life dynamics of the population, that
is to say, no death or birth is directly incurred by spatial migrations. This is reflected
in the coefficients of the transition matrix: on a given column, off-diagonal coefficients
are proportions of the individuals of the given patch which migrate to other patches,
and are thus positive, while the diagonal coefficient represents the resulting loss from
the given patch, and is thus negative. The sum of the coefficients of any given column
of the transition matrix is equal to zero. Under two additional assumptions on K, (1)
it should be irreducible, and (2) an assumption about the flow associated with a sort of
a projection of the main equation onto the space of transients, (the latter assumption
is to be made only in the case when the transition matrix is not constant from some
age on), and under an assumption on the fertility rate function, the following two
results have been shown:

(A) Exponential asynchronous growth with asymptotic expression with respect
to ε, near ε = 0 (Theorem 4.7). Roughly speaking, we show that for ε > 0 small
enough, each solution nε(a, t) of the perturbed system is such that

nε(a, t) ∼ Ceλεtϕε(a) (t→ +∞)

and λε, ϕε converge as ε→ 0:

lim
ε→0

λε = λ0; lim
ε→0

ϕε = νθ0,

where λ0 and θ0 are, respectively, the Malthus parameter and the associated eigen-
function of the so-called aggregated system (2.10)–(2.12) and ν is a positive vector of
the kernel of matrix K.

(B) Nature of the convergence to the solutions of the aggregated system (Theorem
3.8). There exists a decomposition of the space RN into a direct sum RN = [ν(a)]⊕S,
where ν(a) is, for each a, the solution of K(a)ν(a) = 0 normalized by the condition
ν(a) ≥ 0, ‖ν(a)‖ = 1. Accordingly, there exists a decomposition of the space of
initial values L1(R+,RN ) into

(
L1(R+,R)⊗ ν(·))⊕L1(R+, S) = P0⊕Q0 such that,

denoting by {Tε(t)}t≥0 the semigroup corresponding to the value ε of the minimal
transition time, for each φ ∈ L1(R+,RN ), it holds that

(∗) (Tε(t)φ) (a) = (S0(t)p0) (a)ν(a) + (Uε(t)q0) (a) +O(ε).

In the above formula, we have φ = (p0,q0) ∈ P0 ⊕Q0; {S0(t)}t≥0 is a C0-semigroup
on L1(R+,R), independent of ε; Uε(t) ∈ L(Q0) is such that

(∗∗) ‖Uε(t)‖ ≤ C3e
(C2−C1/ε)t

for all t ≥ 0, and some positive constants C1, C2, and C3. Finally, the term O(ε)
denotes a bounded linear operator on L1(R+,RN ), with

(∗ ∗ ∗) ‖O(ε)‖L(L1(R+,RN )) ≤ Cε.
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Let us now interpret formula (*). For each a, the components of ν(a) are positive and
sum up to one. They represent a distribution of individuals of age a in the patches.
(S0(t)p0) (a) gives the total number of individuals of age a. Hypotheses H1 and H2
ensure that the semigroup {S0(t)}t≥0 has an asynchronous exponential growth. For
each t > 0, formula (*) yields that Tε(t)φ → (S0(t)p0)ν, in L1, as ε → 0. However,
the convergence is not uniform in t. In fact, we have

lim
ε→0,(t/ε)→∞

[Tε(t)φ− (S0(t)p0)ν] = 0.

Thus, the convergence is uniform with respect to t, provided that t stays far from 0,
that is, for each b > 0, convergence is uniform in the interval [b,+∞[. The convergence
is definitely nonuniform on [0,∞[ since Tε(0)φ = φ→ φ as ε→ 0, while if the other
limit were reached uniformly on [0,+∞[, we would have Tε(0)φ→ p0ν, which implies
φ = p0ν.

For ε = 0, that is to say, if we assume that the transition time between any two
patches is zero (or say, infinitely small), the equation reduces to K(a)n(a, t) = 0, with
the same boundary condition at a = 0. In this case, the population moves in such
a way that it instantly occupies the patches according to the desired distribution.
In practice, some time is needed for the individuals to jump between two patches.
Formula (*) tells us how long it takes for a given distribution to reach a neighborhood
of the asymptotic distribution. It yields the following: For every 0 < η < (C1/C2),
there exists κ > 0 such that for every 0 < ε < η/(C + 1) and t ≥ κε, and every initial
value φ, we have

‖Tε(t)φ− S0(t)p0ν‖ ≤ η‖φ‖,

where C1, C2 are given in (**) and C is given in (***).
The solution S0(t)p0ν is typically the outer solution in the singular perturba-

tion theory, while S0(t)p0 is the solution of the aggregated system in the sense of
aggregation theory; a = 0 plays the role of the boundary layer associated with a sin-
gular perturbation, and the above estimate of the region of nonuniform convergence
indicates that the boundary layer has a thickness of the order of ε.

Thus, the present work deals with singular perturbation in a semigroup setting.
Our work is close in spirit to one by Khasminskii, Yin, and Zhang [16], although the
equation considered in [16] is an ordinary differential equation with time-dependent
coefficients. The matrix defining the equation is singular, as our transition matrix
K, with the same right eigenvector for all time t. It is also weakly irreducible in the
sense that for each time t, there is a unique left eigenvector. Our results are not so
precise as in [16] regarding the expansion in terms of the singular parameter. They
focus more on the population dynamics relevance of our findings and are satisfactory
at this level.

Let us conclude with the application of our work to fisheries. What can the aggre-
gation method add to our knowledge of a fishery, and in particular, can aggregation
show more than a crude age-dependent model of population dynamics, which does not
take vertical position into account? In the case of the anchovy of the Bay of Biscay, we
showed in subsection 2.3 that, starting from a vertical structure of the demographic
parameters, one can aggregate these parameters along the vertical structure to arrive
at an age-only dependent model which approximates reasonably well the full model.
Moreover, from the general theory presented in sections 3 and 4, the discrepancy
between the full model and the aggregated one can be estimated.
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Thus, aggregation in our example provides a theoretical ground for the building
up of an age-only dependent model, a global model which embodies some supposedly
crucial migration mechanisms. In a sense, the aggregated model emerges from the
full model, as a summary of the latter one, and one can expect that it captures some
of the features of the full model, more than what we call a crude model, usually
based on some input–output phenomenological relationships. At the same time, an
aggregated model will be easier to deal with than the full model, since it has one or
several variables less. As already mentioned, the restriction of spatial dependence to
the vertical structure was dictated by our intent to render this paper more readable
by a larger audience. We are currently working to eliminate this restriction.

6. Appendix.
Proof of Lemma 3.3. Remember that {Uε(t)}t≥0 is the semigroup associated

with the problem (3.9)–(3.11), and then, for each initial condition q0 ∈ L1(R+; RN ),
Uε(t)q0 is the solution q(·, t) of this problem. Solving the system (3.9)–(3.11), along
the characteristic lines, this solution can be expressed also in terms of the resolvent
Rε introduced in Hypothesis H3:

q(a, t) =

{
Rε(a, a− t)q0(a− t), a > t,
Rε(a, 0)q(0, t− a), a < t,

where q(0, t) satisfies the following integral equation:

q(0, t) =

∫ +∞

0

BS(a)q(a, t) da

=

∫ t

0

BS(a)Rε(a, 0)q(0, t− a) da+

∫ +∞

t

BS(a)Rε(a, a− t)q0(a− t) da.(6.1)

Observe that

‖Uε(t)q0‖L1(R+;RN ) =

∫ t

0

‖q(a, t)‖ da+

∫ +∞

t

‖q(a, t)‖ da.

We compute both integrals in the above expression:∫ +∞

t

‖q(a, t) da =

∫ +∞

t

‖Rε(a, a− t)q0(a− t)‖ da ≤ C2‖q0‖L1e(k2−k1/ε)t,(6.2)

(6.3)∫ t

0

‖q(a, t)‖ da ≤
∫ t

0

‖Rε(a, 0)‖‖q(0, t− a)‖ da ≤ C3

∫ t

0

e(k2−k1/ε)a‖q(0, t− a)‖ da.

Bearing (6.1) in mind, we can write

‖q(0, t)‖ ≤ C4

∫ t

0

e(k2−k1/ε)a‖q(0, t− a)‖ da+ C5‖q0‖L1e(k2−k1/ε)t

from which it is easy to obtain ‖q(0, t)‖ ≤ C6‖q0‖L1e(C7−k1/ε)t. Substituting in (6.3)
we have ∫ t

0

‖q(a, t)‖ da ≤ C8‖q0‖e(C7−k1/ε)t.
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The lemma holds from this last inequality and (6.2), (6.3).
Proof of Lemma 3.4. Remember that

(Uε(t)Φε) (a) =

{
Rε(a, a− t)Φε(a− t) (a > t),
Rε(a, 0)Q(0, t− a) (t > a),

where

Q(0, t) =

∫ t

0

Bs(a)Rε(a, 0)Q(0, t− a) da+

∫ +∞

t

Bs(a)Rε(a, a− t)Φε(a− t) da.

(1) Estimation for a > t. Observe that Rε(a, α) ◦Rε(α, b) = Rε(a, b) and then(
∂

∂α
Rε(a, α)

)
◦Rε(α, b) = −Rε(a, α) ◦

(
∂

∂α
Rε(α, β)

)
= −Rε(a, α)

[
1

ε
KS(α)−MS(α)

]
Rε(α, b)

which implies ∥∥∥∥ ∂∂αRε(a, a− t)
∥∥∥∥ ≤ C1

ε
‖Rε(a, a− t)‖ ≤ C1

ε
e(k2−k1/ε)t.

Conversely, from definition of Φε in Lemma 3.2, we can easily obtain the estimations

‖Φε(a)‖ ≤ C2e
(k2−k1/ε)a; ‖Φ′ε(a)‖ ≤ C2

ε
e(k2−k1/ε)a.

Bearing in mind that(
dUε
dt

(t)Φε

)
(a) = − ∂

∂α
Rε(a, a− t)Φε(a− t)−Rε(a, a− t)Φ′ε(a− t),

the following estimation, valid for a > t, holds:∥∥∥∥(dUεdt (t)Φε

)
(a)

∥∥∥∥ ≤ C3

ε
e(k2−k1/ε)a.

(2) Estimation for a < t. In this case,(
dUε
dt

Φε

)
(a) = Rε(a, 0)

∂Q

∂t
(0, t− a).

Denoting z(t) = Q(0, t), we have

z′(t) = BS(t)Rε(t, 0)z(0) +

∫ t

0

BS(a)Rε(a, 0)z′(t− a) da

−BS(t)Rε(t, 0)Φε(0) +

∫ +∞

t

BS(a)
∂

∂t
[Rε(a, a− t)Φε(a− t)] da.

Since

‖z(0)‖ ≤ C4

∫ +∞

0

‖Φε(a)‖ da ≤ C4

∫ +∞

0

e(k2−k1/ε)a da ≤ C4ε
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and∥∥∥∥∫ +∞

t

BS(a)
∂

∂t
[Rε(a, a− t)Φε(a− t)] da

∥∥∥∥ ≤ C5

ε

∫ +∞

t

e(k2−k1/ε)a da = C5e
(k2−k1/ε)t,

standard calculations lead to

‖z′(t)‖ ≤ C6e
(C7−k1/ε)t

from which we obtain the following estimation, valid for t > a:∥∥∥∥(dUεdt (t)Φε

)
(a)

∥∥∥∥ ≤ C8e
(C9−k1/ε)t.

We are now ready to obtain the estimate of the lemma:

‖Vε(t)(·)‖L1 =

∫ t

0

‖Vε(t)(a)‖ da+

∫ +∞

t

‖Vε(t)(a)‖ da

≤ C10te
(C9−k1/ε)t + C11e

(k2−k1/ε)t ≤ C12e
(C13−k1/ε)t.

Proof of Lemma 3.5. We made only the calculations corresponding to the operator
Dε(t) since the calculations for the operator Bε are similar.

‖Dε(t)p‖L1(R+) ≤
∫ +∞

0

∣∣∣∣1TM(a)

(∫ t

0

Uε(t− τ) [MS(a)ν(a) + ν′(a)] p(a, τ) dτ

)∣∣∣∣ da
+

∫ +∞

0

∣∣∣∣1TM(a)

(∫ t

0

Vε(t− τ)(a)

(∫ +∞

0

p(α, τ)BS(α)ν(α) dα

)
dτ

)∣∣∣∣ da
≤ C1e

(k2−k1/ε)t

∫ +∞

0

(∫ t

0

e−(k2−k1/ε)τ |p(a, τ)| dτ
)
da

+ C2 sup
τ∈[0,t]

‖p(·, τ)‖L1

∫ t

0

(∫ +∞

0

‖Vε(t− τ)(a)‖ da
)
dτ

≤ C3ε sup
τ∈[0,τ ]

‖p(·, τ)‖L1

[
1− e(C4−k1/ε)t

]
≤ εC3 sup

τ∈[0,t]

‖p(·, τ)‖L1 .

Proof of Lemma 3.7. First of all, observe that

‖J (ε, p0,q0)(·, t)− J (0, p0,0)(·, t)‖L1(R+) ≤
∫ t

0

ρ0(a, 0)|gε(t− a)| da

+

∫ t

0

(∫ a

0

ρ0(a, σ)|fε(σ, t− a+ σ)| dσ
)
da

+

∫ +∞

t

(∫ t

0

ρ0(a, a− t+ σ)|fε(a− t+ σ, σ)| dσ
)
da.

The latter term is less than

C1

∫ t

0

(∫ +∞

t

e−µ∗(t−σ)e(C2−k1/ε)σ‖q0(a− t+ σ)‖ da
)
dσ ≤ εC3‖q0‖L1e−µ∗t

and the other two are estimated by

C4

∫ t

0

e−µ∗ae(k4−k1/ε)(t−a)‖q0‖L1 da+ C5

∫ t

0

(∫ a

0

ρ0(a, a− s)|fε(a− s, t− s)| ds
)
da

≤ εC6‖q0‖e−µ∗t(1 + t).
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Finally, both estimations yield

‖J (ε, p0,q0)(·, t)− J (0, p0,0)(·, t)‖L1(R+) ≤ εC7‖q0‖L1(R+)e
−µ∗t(1 + t)

≤ εC8e
−µ̃t‖q0‖L1(R+),

where µ̃ is any number such that µ̃ < µ∗ and C8 is an estimate in terms of µ̃.
Proof of Lemma 4.1. The resolvent kernel ρε(a, α) is the solution of the problem{

v′(a) = −µ∗(a)v(a) +
∫ a
α
rε(a, β)v(β)dβ,

v(α) = 1.

Its expression is

v(a) = e
−
∫ a
α
µ∗(s)ds

+

∫ a

α

v(β)dβ

(∫ a

β

e
−
∫ a
s
µ∗(u)du

rε(s, β)ds

)
.

From inequality (4.6) we get∣∣∣∣∫ a

β

e
−
∫ a
s
µ∗(u)du

rε(s, β)ds

∣∣∣∣ ≤ εC1,

where C1 > 0 is a constant, and hence

v(a) ≤ e−kM (a−α) + εC1

∫ a

α

v(β)dβ.(6.4)

Using the notation W (p) =
∫ p

0
v(s+ α)ds, the last inequality reads

W ′(p)− εC1W (p) ≤ e−kMp.
Integrating we obtain

W (p) ≤ eεC1p − e−kMp
kM + εC1

.

The proof of the lemma is completed by substituting the last inequality in (6.4).
Proof of Proposition 4.2. If we write

ρε(a, 0) = e
−
∫ a

0
µ∗(s)ds

fε(a),

then fε verifies the integral equation

fε(a) = 1 +

∫ a

0

dα

[∫ α

0

rε(α, β)e

∫ α
β
µ∗(s)ds

fε(β)dβ

]
.(6.5)

We will treat the existence of fε as a problem of inversion of an operator in a
certain space. To this end, for each γ > 0, we consider the space

Eγ = {f ∈ C([0,+∞[); |f(a)| ≤ C1e
γa, a ≥ 0}

which is a Banach space with the following norm:

‖f‖γ = sup
a≥0

e−γa|f(a)|.
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For each ε > 0 we define the operator Kε : Eγ −→ Eγ :

(Kεf)(a) =

∫ a

0

dα

[∫ α

0

rε(α, β)e

∫ α
β
µ∗(s)ds

f(β)dβ

]
It is straightforward to prove that

‖Kεf‖γ ≤ εC2‖f‖γ
[

1

γ
+

ε

C3

]
,

where C2 and C3 are positive constants, and then for a fixed γ there exists ε0(γ) > 0
such that for every ε ∈]0, ε0(γ)] it is verified that ‖Kε‖γ < 1.

Equation (6.5) can be written in the form

[(I −Kε)fε](a) = 1,

and the last inequality yields that, for ε ∈]0, ε0(γ)], there exists a unique solution
fε ∈ Eγ .

Now we can write

sup
a≥0
|ρε(a, 0)− ρ0(a, 0)| ≤ ‖Kεfε‖µ∗ ≤ εC2

[
1

µ∗
+

ε

C3

]
‖fε‖µ∗ −→ 0 (ε→ 0+).

The last inequality completes the proof of the proposition.
Proof of Proposition 4.5. (a) Essential compactness. Solving the system (3.1),

(3.2), through the characteristic lines of the operator (∂/∂a) + (∂/∂t), we have, for
a > t, [

pε(a, t)
qε(a, t)

]
= Rε(a, a− t)

[
p0(a− t)
q0(a− t)

]
,

where Rε(s, σ) is the fundamental matrix of the system

du

ds
= −µ∗(s)u(s)− 1TM(a)v(s),

dv

ds
= −[MS(a)ν(a) + ν′(a)]u(s) +

[
1

ε
KS(a)−MS(a)

]
v(s).

Standard calculations allow us to estimate the norm ‖Rε(s, σ)‖ in terms of the funda-
mental matrix Rε(s, σ) defined in Hypothesis H3. To be more specific, the existence
of ε̃0 > 0 can be proved such that, for all δ > 0 there exists ξ(δ) > 0, which satisfies

‖Rε(s, σ)‖ ≤ ξ(δ)e−(µ∗−δ)(s−σ), s ≥ σ,

for all 0 < ε < ε̃0.
Then,

‖(pε(·, t),qε(·, t))‖L1([t,+∞) ≤ ξ(δ)e−(µ∗−δ)t‖(p0,q0)‖L1(R+).

Let us denote by I[t0,t1] the restriction of a function F(·, t) to the interval [t0, t1]. We
can write

Tε(t) = I[0,t]Tε(t) + I[t,+∞)Tε(t).
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The term I[0,t]Tε(t) is an operator with some compact iterate and, from the above
considerations we have, for 0 < ε < ε̃0,

α (Tε(t)) ≤ ξ(δ)e−(µ∗−δ)t,

where, as usual, α(·) is the measure of noncompactness (see [35]). Then, the α-growth
bound of the perturbed semigroup satisfies

∀δ > 0, ωe (Tε(t)) ≤ −(µ∗ − δ),
that is, ωe (Tε(t)) ≤ −µ∗, with ωe(·) being, as usual, the essential growth bound of
the perturbed semigroup.

In Proposition 4.4 it is ensured that, for 0 < ε < ε0, the infinitesimal generator
of the semigroup has a real eigenvalue λε such that λ > −µ∗. This implies that

ω0 (Tε(t)) ≥ λε > −µ∗ ≥ ωe (Tε(t)) .

Then, we can conclude that the semigroup {Tε(t)}t≥0 is essentially compact for 0 <
ε < min(ε0, ε̃0).

(b) Irreducibility. We start by proving that, under Hypothesis H4, if for some
a0 > 0 and some i0 we have ni0(a0, 0) > 0, then

∀i = 1, . . . , N, ∀s > 0, ni(a0 + s, s) > 0.

Let us denote by [K(a)]i6=j the matrix K(a) − diag {kii(a); i = 1, . . . , N} and by
[K(a)]i=j the matrix diag {kii(a); i = 1, . . . , N}. By continuity, we have the following
estimation for a in some neighborhood of a0:

[K(a)]i6=j ≥
1

2
[K(a0)]i6=j .

Solving the PDE (2.1) along the characteristic line which starts at (a0, 0), it is easy
to obtain, for s > 0 small enough,

dn

ds
≥
[
−M(a0 + s) +

1

ε
[K(a0 + s)]i=j

]
n+

1

2ε

[
[K(a0)]i6=j

]
n.

Consider the function ñ(s) = ersn(s), with r > 0 big enough to have the estimation

dñ

ds
(s) ≥

[
r

2
Id+

1

2ε
[K(a0)]i6=j

]
ñ(s).

This implies that

ñ(s) ≥ e(l/2)se(1/2ε)s[K(a0)]i6=j ñ(0).

From positivity and irreducibility of matrix K(a0), we can conclude that ñ(s) > 0 for
s > 0 small enough, and the same is true along the characteristic line.

Hypothesis H4 implies that, for t > a1 − a0 if a1 > a0, or as well for t > 0 if
a1 < a0, there exists i = i(t) such that ni(t)(0, t) > 0. Then, we have

∀i = 1, . . . N, ∀s > 0, ni(s, t+ s) > 0, t > max(0, a1 − a0).

Let T > 0 be such that T > max(0, a1 − a0). We have proved that

∀i = 1, . . . , N, 0 ≤ s ≤ T, ∀τ > T + max(0, a1 − a0), ni(s, τ) > 0.

That is, the semigroup is positive and irreducible.
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436 O. ARINO, E. SÁNCHEZ, R. BRAVO DE LA PARRA, AND P. AUGER

cell kinetics models, Differential Integral Equations, 4 (1991), pp. 1233–1249.
[28] E. Sánchez, R. Bravo de la Parra, and P. Auger, Linear discrete models with different

time scales, Acta Biotheoretica, 43 (1995), pp. 465–479.
[29] E. Seneta, Non-negative Matrices and Markov Chains, Springer-Verlag, Berlin, 1981.
[30] Special Issue on Perturbation Methods in Physical Mathematics, SIAM J. Appl. Math., 55

(1995), pp. 277–575.
[31] P. Tett and A. Edwards, Mixing and plankton: An interdisciplinary theme in oceanography,

Oceanogr. Mar. Biol. Ann. Rev., 22 (1984), pp. 99–123.
[32] A. Uriarte and L. Motos, Sampling errors in anchovy egg abundance estimates using the

PAIROVET net, J. of Plankton Research, 20 (1998), pp. 1861–1888.
[33] A. Uriarte, P. Prouzet, and B. Villamor, Bay of Biscay and Ibero Atlantic anchovy pop-

ulations and their fisheries, Scientia Marina, 60 (Suppl. 2) (1996), pp. 237–255.
[34] W. J. Vlymen III, Swimming energetics of the larval anchovy, Engraulis mordax, Fishery

Bull., 72 (1974), pp. 885–899.
[35] G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New

York, 1985.


