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In this article, an abstract (infinite dimensional) neutral functional differential
equation arising from a cell population model is exhibited. It is then shown that a
large class of such equations can be solved by means of the theory of nonlinear
semigroups. Finally, application to the model equation is detailed. © 1999 Aca-
demic Press

1. INTRODUCTION

In this article, we consider the model of cell proliferation described by

the equation

n(x) = 2H[NOL[ [T F e, b(r ) 3(r, Enla = 7,6) de dr,

in which

N(t) = [OM[OMft’_Tn(s, V)y (7, y) dsdr dy.

435

0022-247X /99 $30.00
Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.



436 ARINO AND SIDKI

This model is a modification of a model first proposed in Kimmel et al.
[9]. The original model was linear.

Nonlinear variants were later considered in Arino and Kimmel [1, 2] and
Arino and Mortabit [4]. The model is based on the subdivision of the cell
cycle into four consecutive phases represented as follows:

—>yGl S| G, M—>y~f(-,x)—>

7~ 7v(.,y) x=®(7,y).

During its progression inside the cycle, a cell keeps growing, although
with a variable strength. Generally, it doubles its size from birth (as a
daughter cell) to the end of the G, phase before the M phase (mitosis)
were it divides into two identical cells, each with half the constituents of
the mother cell.

The main hypothesis introduced in [9], in the case of subdivision of the
cell, is that the division is not equal.

Equation (1) takes into consideration two further aspects, compared to
the one aspect in [9].

One assumes here that the life duration of a cell (that is, the length of a
cycle) is not determined by the initial size, but dependence is, in probabil-
ity, determined by a conditional density y(., £) (conditioned on the size):
[72y(7, §) dr = Probability for the lifelength of a cell, with initial size &, to
lie within the interval [7, 7,].

As a result, the final size of cells cannot be expressed in terms of their
initial size only (as was assumed in [9]) but it is also a function of the
lifelength: ¢(r, £).

A linear model based on these considerations was presented in [3].
Here, we introduce the limiting effects due to the environment in the form
of a function of the total population, which decays to zero when population
grows to +c. Such models were considered in [1, 2]. Equation (1) collects
and extends two previous models: a linear by Arino, et al. [3] and a
nonlinear by Arino and Kimmel [1]. Equation (1) is an integral equation
and was studied as such in [1, 3].

Here we transform the integral equation into a functional differential
equation of neutral type (NFDE) that we solve under suitable hypotheses.
Thus, we obtain both a strict extension of previous existence results [1, 3]
and novel regularity properties verified by the solutions of the NFDE.

Differentiating (formally) Eq. (1) with respect to time yields the NFDE,

Jd
—n(1,) = G(n,)(), 2)
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where G is a nonlinear operator defined from W([—r,0]; L0, + %))
into 210, +) by

G(¢) = 2K(@)H[Z(¢)]
xfomfomf(-: d(r. &) y(r. &) e(—7, &) dédr

+2H[Z(¢)]

+o .t J
<[ [ 1 )v(r ) e(—7.€) dédr (3)
with

[

J
[ 5 e(0.6)v(r.y) dodr dy

K(QD) _ j(;+wj(;+
2o = [ [ [ eto.6)v(ry) dodrdy

for every ¢ € Whi([—r, 0; LY(0, + =)).

Under appropriate assumptions on the parameters defining Eq. (1), one
shows that, for each initial value n, € W**([—r,0]; L*(0, + %)) and each
T >0, NFDE (2) possesses one and only one solution n, n e
W[ —r, TT; LXO, +%)).

Integrating (2), one obtains the solution of (1) and, in the same way as in
[2], one shows that it is nonnegative for all # > 0, if n, > 0.

2. RESOLUTION OF THE NFDE: x(¢) = F(x,)

In order to study Eq. (2), we give some results on the following class of
NFDEs.

%=F(xt), xo=¢@€ Whi([-r,0]; X), 0<t<T, (4
where x:[—r,T] - X, 0 < r < 4+ is the delay, X is a Banach space with
norm ||y, and x, is the history defined pointwise by x,(8) = x(¢ + 6), for
all 6 €[—r,0].

We suppose that F: W([—r,0]; X) — X, is Lipschitz continuous, with
Lipschitz constant «; i.e.,

Hy: |F(‘P1) - F(@z)lx < alle; — @,lh,1,
forall ¢,, ¢, € W-([-r,0]; X).
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And, we define the space W ([a, b]; X) by

whi([a,b]; X)

fe*[a,b]; X); f absolutely continuous on [a, b],
[ exists a.e., f' € [*([a,b]; X),

and f(1) = f(a) + [f'(s)ds, Vi€ [a,b]
For all f€ W([a, b]; X), we define the following norm:

Iflly = fflf(s)lds + fablf’(S)IdS- (5)

Note by [5] that if dim X < +«, or X is a reflexive Banach space, then
each absolutely continuous function x: [a, b] —» X, is a.e differentiable,
and x(¢) = x(a) + [2x'(s) ds.

In [7], Dyson and Villella-Bressan proved the existence and uniqueness
of solutions of NFDE (4), written in the form of an evolution equation

du

— = Au,
a Y

where A is a nonlinear operator defined on W2 ([—r,0]; X) with values
in Wti([—r,0]; X) by

Ae=4¢ and ¢ eD(A) ={pc W ([-r,0]; X): ¢(0) = F(¢)}.
(6)

These authors proved that if F satisfies H ., then A is (1 + «)-dissipative
and such that Im(/ — xA4) = WX1([—r,0]; X), for A > 0 small enough.
Therefore, by the Crandall and Liggett theorem [6], lim,_ ,.(I —
(t/n)A) "o exists for all + > 0 and for all ¢ € Wh1([—r,0]; X). If we
define T(1)¢ = lim,,_, , (I — -A)"p, then T(¢) is a nonlinear strongly
continuous semigroup of type (1 + «) on Wt([—r, 0]; X). More precisely,
it is proved in [7] that:

THEOREM 1 [7].  Let F satisfy H,. Then, A defined by (6) generates a
semigroup T(t) of type (1 + ) in Wh([—r,0]; X). Set

e(t) ift € [-r,0]

D=1 (1(e)©) 10
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Then x(t) is the unique strong solution of Eq. (4) forall ¢ € W' ([ —r,0]; X).
If o€ E={pe @ —r,0];, X): ¢(0) = F(p)}, then the solution is contin-
uously differentiable.

In [10], we proposed another method. A direct approach by means of an
integral equation was considered. More precisely, we proved that there
exists an integer N, such that K" is a strict contraction, for all n > N,
where K is given by

¢(0)+fF(x)ds if£>0

o(1) ifre[-r, 0]

K is defined on the set E, ={y € W"'(—r,T]; X):y = ¢ on [~r,0]},
where T > 0 is arbitrary and e € WEi([—r,0]; X) is the initial datum of
(4).

In [10] the following theorem was proved:

THEOREM 2.  Let F satisfy H zy and E, = {y € Wii(-r, T, X):y =
on [—r,0l}. Then, NFDE (4) has a unzque solution x € E,, for all T > 0,
and for each initial data ¢ € W*([—r,0]; X).

Set

(Kx)(1) =

()¢ =x,, (7)
with
x(t+6) ift+6>0

0) = .
x(6) p(t+0) ift+6<0

(8)

Finally, we quote the following proposition that will be used for the
resolution of NFDE (2).

ProposITION 3 [10].  Suppose that F verifies H . Then, (a) The family of
operators {T(1)}, . , defined from W*([—r,0]; X) into W*'([—r,0]; X) by
(7) is a nonlinear strongly continuous semigroup that verifies the following
relation: for all 6 € [—r,0],

o(0) + fo’”F(T(syp)ds f1+0>0

(T(1))e(0) = (9)

o(t+6) ift+6<0
(b) Forall ¢, 0, € WH([—r,0]; X) and all t > 0, we have

IT(t) e = T(1) o1, < e Pligr = @yl 1. (10)

(¢) The operator A defined by (6) is the infinitesimal generator of T(t).
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3. RESOLUTION OF THE NFDE: (d/d0)n(t,.) = G(n,)()

The parameters of Eq. (1) are the functions f, ¢, y, and H. We make
the following hypotheses:

H): f€LMIR?), f=0,and [ "f(y,x)dy = 1, for all x > 0.

H.: vy € L'(UR?), y=0, [{“y(r,x)dr =1 and there exists a con-
stant k£ > 0, such that [y(r,x)| <k, for all (r,x) € [0, +%) X [0, +).
There exist A,, A,, 7,,and 7, such that 0 < 7, < 7,,0< A4, <A4,, and
suppy(., &) c 7y, 7,], forall ¢ [A,, 4,].

H: ¢ € £(IR%) and ¢ > 0.

H: He #'(IR),0 <H < 1,and H, H are locally Lipschitz.

We define the norm in W ([ —r,0]; L*(0, +=)) by

lela= [ le(0.)ldo+ [ (0,6 (12)

for all ¢ € Wh([—r,0]; L0, +=)).

PROPOSITION 4. We suppose H ), H,,, H,, and H . Then, the map

o = G()IxrUlell1) is Lipschitz continuous from W*([—r,0]; L*(0,
+)) into LY0, + ), where

1 if Ix| <R
0 if x| > 2R
1
Xg(x) = —R¥+2 fR<x<2R . (12)
1
Ex+2 if —2R<x< —R

Proof. Let ¢, ¢, € WH1([—r,0]; L0, +)). For each x > 0, we will
evaluate the following expression:
G(¢1)(x) xg(ll@sll,1) = G(@2) (%) xr (Il @2 ll1,1)
= [G( @) (x) — G( ‘Pz)(x)] Xz (ll@yll1,1)
- G( §01)(x)[ XR(||€02||1,1) - XR(||€01||1,1)]- (13)

We consider three possible cases: (ll¢lli1 <R and [lg,lli1 < R),
(leqll,1 = 2R and l@,ll1,1 = 2R), and (ll¢,ll1,1 < R and [lg,ll1,1 > 2R).
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Case I. |lgll1 > 2R and |lg,ll. 1 > 2R. So, we have

G(e)(2) xr(lill 1) = G(2) (%) Xr(ll@2lli,1) = 0.

Case I. |lojlli1 < R and [[g,ll;1 > 2R.
From (13) one obtains

|G(e1) (%) xg(llesll1) = G(@2) (%) xr(ll@2lli. )]
=[G (o) ()| xr(ll@yll1) = xe(ll@ylls,1)]
< |G(€01)(X)| | )(R|Lip|||<P2||1,1 - ||901||1,1|

<|G(@1)(x) |l xrlLipll@; = @1ll1,1.

So,

[ 16N xallenls) = Gle) () xalle ) e

—+ oo
< | xgluplle, — qolul,lfo |G(@,)(x)]dx.

Now, we prove that there exists a constant C > 0, such that

[ 16 (x)]ds < C.

for all ¢, such that |lg,ll;; < R: ¢, is defined on [—r,0], so, in (3)
7 € [0, r]. By a change of variable 7 = — 7 and integrating (3) from 0 to

+ 0, we obtain

/O+°°|G(¢)(x)|dx
<2|K(¢)||H(=Z(¢))]

8 {fowfoﬂfo,'fw s(—7 ENllv(=7 &)lle(r, g>|dgd7dx}
+ 2|H(3(¢))I{fowfowfojf(x, o(=7.8))ly(=7. )]

X|{o(7‘,§)|d§d7dx}.
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From H(y), we have

K@= [ [ e0.)llx(r vl dodray

Sfowfiléo((?,y)lcl(?dysR (14)

and

2@l = [ leon)lv o dras

+%° 0
<[ [ le(6.y)ldody <R. (15)
0 —-r
Then, there exists a constant k, > 0, such that
[H(Z(e)| < ks (16)
So, from H,;,, we obtain

/O+°°|G<<o)(x)|dx

+% .0 +% .0 .
< 2k,R T, dédr+ 2 T, dédr
R [ le(r.o)ldédr+2] [ |o(r.8)|de
< 2(k,R + 1)R.
Finally, we have

|G(@1)(2) xr(llerlli1) = G(02)(2) xe(l@alli 1) |2 < Aalles = @5l
(17)
with A, = 2(k; R + DR xgliip.
Case Il. |l,ll1 < R and [l@,ll;.1 < R. Therefore,

G( <Pl)(x)XR(||€Dl||1,1) - G(sz)(x)XR(HQDzHl,l)
=G(e)(x) = G(e)(x)

= 2K(e) A(Z(e) [ [ fx b))
Xy(=7.&)eu7, &) dédr

+ 2H(Z( @1))f0+wfif(x, d(—1,8))
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Xy(=71, €)o7, &) dédr
2K () H(Z(e2) [ [ F(x. d(—7.€))
0 —-r
X y(=7, &) ey(7,&)|dédr
—2H( () [ [ F(x d(=7.6))
Xy(—=71,&) (1, &) dédr.

So, [¢“1G(e )(x) — G(@, X X)ldx < I, + I, + I, + 1,, where

1= 2K (e[ H(Z(en))|
<[ [ I a(=m.e)llv(=7. &)

X|@y(7, &) — @p(7, &)|dE dr dx,
I =2|K(e) H(Z( 1)) — K(0,) H(Z(,))]
<[ 1 e ) lly(-76)

><|g02(7,§)|d§d7dx,
I; = 2|H(£Z(¢2))|

<[ 1 e ) ly(-r6))
X|@y(7, &) — @y(7, €)|dé dr dx,
and,
I, = 2|H(3(€01)) _H($(§D2))|

Xfomfomf_oﬂf(x' d(—7, ENv(=7. &) o7, &) |dé dr dx.

In view of H, H,, H,, (14), (15), and (16), we have

+% .0
I, < 2Rkk1£) f |€D1(7', £) — oo(7, §)|d§d7S Aolles = @ll1a
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with A, = 2Rkk,
I, < 2Rk{|K( ;) — K(¢,)||H(A(¢y))]
+|K(@) ||H(Z (1)) — H(Z(#,))])
< 2Rk [ [ |or €)= br )| dedr
+ 2Rl [ [ e, €) = ¢o(r, £)|dE dr
0 —r

< )\3”@1 - @2”1,1

with A, = 2Rk(k, + R),

t° .0, . .
I, < 2k[0 f, |@i(7,€) — @p(7, &) |déEdr < M@y — @yllia

with A, = 2k, and

+© .0
Iy < 2Hlip KR [ [ |eu(r.€) = oo(7, €)[dEdr < Alles = ol

with A; = 2|H|.ip k°R.
So,

—+ oo
fo |G(e1)(x) = G(@)(x)|dx <1, + I, + I; + I,
< (A + A+ A+ A) e — @llis.

Then, there exists a constant « > 0, such that

1G(0) () xz(lells1) = G(@,) () xr(l@olly 1) |1 < alley — @l s

|
Thus, by Theorem 2, the problem

J
—(0) = G(n) () xe(lln 1) (18)

ng=¢
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has a unique solution n € WY ([—r, T1; L0, +)), for all T > 0, and for
all initial data ¢ € WY([—r,0]; L*(0, +»)).

4. APPLICATION TO THE INTEGRAL EQUATION
For all R > 0 and for all ¢ € WY([—r,0]; L0, +=)), we define
Tr(t) @ = n,. (19)

Then, by Proposition 3, the family {7x(¢)},., is a nonlinear strongly
continuous semigroup of type (a + 1) on Wti([—r,0]; L0, +«)), and
verifies the relation

0(0.%) + [ "G(Ta(5) 0)(x) xa(ITa(5) ¢l 1) s
(Te(1) @)(0.x) = ift+6>0
e(t+0,x) if-r<t+60<0,

(20)
and the infinitesimal generator of Ty(¢) is given by
Are =@
D(Ag) = {o € W2H([~r,0]; L}(0, +%)):
¢(0,.) = G(¢) () xr(llell1)}. (21)

The map ¢t = Tx(¢)¢ is continuous on [0, +). So, for all ¢ in the ball
B(0, R), there exists (¢, R) > 0 such that ||[Tx()¢ll;,1 <R, for all ¢ <
t(p, R). Then we set

(@) = sup{s > 0, | Tp(1) @], <R,0 <t <s}. (22)

Note that the map R — 7;(¢) is monotone strictly increasing on ]0, + o[.
We will now prove that essentially Tr(¢)¢ is independent on R, for all
¢ € B(0, R), provided that ¢ < (¢, R). In fact,

ProposITION 5. For all R;,R, > 0, such that R, > R, and for all
¢ € B(0, R,), we have TR1(I)‘P = TRz(t)go, forall t €0, TRl(cp)[.

Proof. Lett € [0, (@)l So, t < 1z (¢) < 7 (¢), therefore

XR1(|| TRl(t)¢||l,l) = XRz(” TRz(t)‘P”l,l) =1
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and
” TRl(t)q) - TRz(t)¢||1,1

= f+wf0 |TR1(t)‘P(0:x) — TRz(t)qo((),x)|d0dx

R(t)¢(0 x) — T () (6, x)|do dx

= fo f_l|TR1(t +0)e(0,x) — Tp(t+ 0)<p(0,x)|d9dx

+fo+*/0t‘&—(2TRl(t + 0)¢(0,x) — %TRz(t + 6)¢(0,x)|d6 dx
_ ];+wj;)t|TRl(n)¢(0,x) — Tp () @(0, x)| dn dx
+/0+xf0l ’ (M e(0,x) — a—iTRz(n)so(OIX) dn dx
- fo fo / (To($)@)(x) = G(Tr(5)¢)(x)] ds|dn dx
[T L16(Tm e)(x) = 6(Tr(n)¢)(x)| dnds
< mfot” To(5)¢ = To(s)e], , ds
+af |Te(me = Te(mell,, dn
< a(l + ’TR1(QD))/(;|| TR1(s)qo — TRZ(S)cp”Ll ds.
So, by Gronwall’s lemma, we have,
”TRl(t)qo - TRz(t)‘Pnl,l =0, forallze [0,7z(o)l.
|
From (19), we have Tx(t)¢ = n,. Thus,
n(t,x) = (Tx(t)@)(0,x) ift>0 (23)

o(t,x) if r € [—r,0].
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Let Ry, such that 7 (¢) = supg. |, , Tr(¢) and [0, 7, (¢)[ the maximal
interval where a solution n of (18) is defined. Then, for each T < 7 (¢),
n.r; € WHH0, T]; LX0, +)) and is unique as a solution of (18).

We will now show that 7, (¢) = +. Indeed, we have the following:

ProPOSITION 6. If TRo(go) < +o, then

limsuplln,ll;,1 = +c°.

t— R,

Proof. The proof is done by contradiction. Suppose that there exists
k > 0, such that ||n,ll; 1 <k, for all r € [0, rRo(go)[. Then, by (19),

| Tr () ell, , <k, forallze [0, ().
We have 7,(¢) < 7, (¢), therefore k < R, So,

||TR0(t)qo||l <R, forallze [0, (¢)].

There exists T > 0, such that 7, (¢) — T/2 < T < 7 (¢). So, Eq. (18) has
a unique solution on [0, T, for the initial data ¢ = Ty (7 (¢) — T/2)¢.

T
<R, (because (@) — 5 < TRO((,D)).
1,1

o) = 5| .

” ?5”1,1 =

The solution of Eqg. (18) is given by

T
t+ TRO(go) — E)go

forall t € [0,T].

T
n,= TRO(t)go = TRD(t)TRO(TRO(go) — E)go = Tg,

We denote ¢ =1 + 7, (@) — T/2. Then, é € [0, 74 (¢) + T/2[ and n, =
Tz (&)¢ is a solution of (18) on [0, 7z (@) + T/2], for the initial data ®.
This is a contradiction with the maX|maI|ty of interval [0, 7, (¢)I. So,

limsuplln,ll; 1 = +oo.

- TR,

From the fact that [|ln,ll;, 1 < R,, for all ¢ € [0, 7, (¢)[, we have 7 (¢) =
+o0. But, 7 (¢) = SUPg gy, , TrR(P) = limp, . Tr(@) = +o°.
Then, we define T(1)¢ = Ty (1)¢ for all £ € [0, +) and all ¢ € Wh*,
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So, by (20) we have for all ¢ € Wh?,
n(0,x)=T(t)e(0,x)
_ {qo(O,x) + LI+OG(T(S)¢)(x)ds ift+6>0
o(t+0,x) if —r<t+6<0.
(24)

The infinitesimal generator of T(¢) is given by

Ap=1o,  D(A) ={eeW? $(0,.) =G(e)()}. (25

So,
[ (T(t)e)(0,x) ift>0
n(t,x) = {cp(t,x) if ¢ € [=r,0] (26)
is the unigue solution of the problem
J
{Em = G(n)() 27)
ng = @

Finally, we have the following theorem:

THEOREM 7. Forall ¢ € WYY —r,0]: LY0, +%)) and all T € [0, +),
problem (27) has a unique solution n € W*((—r, T1, LX0, +=)), given by
(26).

For all ¢ € WLi([—r,0]; L0, +=)), we define

o) = [ [ [ et6 )y dras
and
) (x) = [ [ b(r ) y(r ) p(—7.6) de dr.

So, #(n) = N and (n)x) = [¢7fg "fCx, ¢(r, ODy(r, E)nlt —
7, &) dédr. Thus, Eq. (1) becomes

n(t,x) = 2H(Z(n,))#(n,)(x). (28)
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In order to return to Eq. (28), we integrate (27) from 0 to ¢, for all
x> 0:

foto%n(s, x)ds = LIZ%H(E(nJ))M(nJ)(x) ds.
It is equivalent to
n(t,x) —n(0,x) = 2H(Z(n,))(n,)(x) = 2H(ZL(ng))(no)(x),
ie.,
n(t,x) = 2H(L(n,))&(n,)(x) + [n(0,x) = 2H(L(ny))#(n,)(x)].
So, an additional condition comes out:

ny(0,.) = ZH(Q(”O))M(”O)(-)- (29)

ProrosITION 8. Suppose H(f), H(y), H(d)), and H(H) and consider the

map defined from Wt ([ —r,0]; L'(A4,, A,)) into L'( A, A,) by
I'(e)(1) = ¢(0,) = 2H(Z(¢))(¢)(.),
forall o € Wh([—r,0]; L'( Ay, Ay)).
Then,

() T is continuous from W[ —r,0]; L'(A,, A,)) into L}(A,, A,).

() & ={pc W ([—-r,0], L}(A,, A,)): T(e)) =0} is a closed
and nonempty set of Wh([—r,0]; L*(A,, 4,)).

Proof. (i) Let ¢, ¢, € W N[ —r,0], L*(A,, A,)) such that [l¢; —
o,ll1.1 = 0. We have
I'(e)(x) = T(e;)(x)

= ¢4(0,x) — ¢,(0, x)
— 2[H(Z( 1)) (@) (x) — H(Z(¢2))( ;) ()]

= ¢1(0,x) = ¢,(0, x)
= 2H(Z (1)) [#( 1) (x) —(¢,)(¥)]
+ 29/ 9,)(0) [H(Z(¢1)) — H(Z(¢2))].
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So,
[T Cen () = T(en) ()] ds
< f:2|¢1(o,x) — ¢,(0,x)|dx
#2AH(Z (o)) [0 () ~ () ()
HH () = H(# (o) [ T(0) ()] v,
and

[ 100 (x) () (x) | ds

[
Al

szfff(x, ¢(7,£))

Xy (r. ) e~ 7. %) — @y~ 7. 1)] drdg‘dx

A, T2
< [T (. Ole=7x) = e — 7. x)[drdé < Kley = ¢lla.
Ay 71y

From [10], the norm

0, .
lello =1(0,) e, + [ (8., db

is equivalent to ||l 1. So,
A2
[, 1ex0.%) = @(0,.x)

0,. .
= ||€01 - ‘Pz”o - f_ |(Pl(0") - @2(‘9“) |L1 deo.

We have | Z(¢,) —Z(@,)| < ll@; — ¢,ll.1 and H € &, so, |H(Z(¢,)) —
H(Z(@))l, [f2lo/(o)(x) — (@, )(x)l dx, and [2]@,(0, x) — ¢,(0, x)| dx

converges to 0 as |l¢; — @,ll1,1 — 0. Hence, the result.
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(i) The function 0 €% and by (i) T is continuous, so & = I'"1({0})
is a nonempty closed set of W([—r,0]; L'(A4,, 4,)). 1

In order to determine an element in %, i is sufficient to start from any
function defined on [—7,, —7,] X (A4;, 4,). In fact, suppose ¢ €.%: De-
note ¢, the restriction of ¢ to [—7,, —7,] X (A4, A,) and ¢, the
restriction to [—7,,0] X (A, 4,). We search ¢, € W"([—r,,0];, L*(A4,,
A,)), such that

@(—71,.) = @(—71,)) and  @,(0,x) =k (@y)(x),  (30)
where k = 2H(Z(¢)). So

= 2H{'/A1 '/;1[ gp(@ y)d@]y(ﬂ' y) dey}

= ZH{ Al 71 [ @1(6,y) dG}y(T,y) dr dy

+[4A2f:z[f_°7 ¢2(9,y)d9}y(r,y) dr dy}
- 2H{LA2LT2[f_TTI¢1(07 y) de]‘Y(T, y) drdy

A 0
+ [ qoz(o,y)dedy}.
Ay Ty
Denote
A T - T
= [fA | ZU 1@1(9.y)d0}7(7.y)d7dy. oo
1 7'1 - T

If k € 2H(I), then the problem is reduced to finding ¢,, verifying (30),
and such that

[5f ex0.y) dody
1 T

=m0 - [ et sy ara @

The set of admissible ¢, is a nonempty closed subset of W* ([ —,,0];
I* Ay, A,)). In fact, for all ¢y € Wt(—r,, — 7,1, [*(A,, 4,)) and for k
in 2H(I), we consider the map defined from Wh(—r,,0];, L*(A4,, 4,))
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into R defined by
F(F) = [ F0.y) dody — 2H) (k)

+/Z2/:2[/_:1¢(0, y)d(?]y('r, y) drdy.

It is easily verified that F, is continuous on W*([—,,0]; L'(A4;, A,)).
So, F, '({0}), is a closed, nonempty subset of W*'([—r,,0]; L'(4,, 4,)),
contained in a ball of L'((—7,,0) X (A,, A,)). More precisely, it is the
intersection of the ball with the positive cone of L'((—7,,0) X (A;, A,)).
Moreover, one has to have ¢, € W (-1, 0], LX(A4,, A,)), with
o,(—7,,) = o(—7;,) and ¢,(0,.) = ko/(¢,)(). These two conditions de-
termine a closed subset of W*([—7,,0]; L'(A4,, A,)) which is dense in the
intersection of the ball with the positive cone.

PROPOSITION 9.  Suppose H), H,, H,, and Hg). Then, for all
n, >0, in B, the solution n of (1), with n, as initial value, is positive.

Proof. From the fact that the parameters f, v, ¢, and H are positive,
the proof follows the same steps as in [2]. |

5. CONCLUDING REMARKS

In [2] and [4], Eq. (1), or a delay equation modelled on (1), is dealt with
using a direct method. In the direct method, the equation is treated as an
integral equation: One of the shortcomings of this approach is the lack of
a suitable linearization that could be used in looking at the stability of
solutions. The technique employed here allows the derivation of such a
linearization. Developments along these lines are deferred to a further
study.
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