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We propose a nonlinear model for migrating populations based on a system of
population patches. The equations are shown to have a unique global solution
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1. INTRODUCTION

Continuous models for population dynamics are based on the basic ideas
of growth and decay, known for many years. A major change in population
studies was introduced by Sharp and Lotka [3] with age structure, the total
population at time ¢ being defined by a population density function p(a, t)
dependent on both age a and time ¢. That is, the population P(¢) at time ¢
is assumed to be given by

P(1) = fOUp(a,z)da. (1.1)

* Authors supported by the Centre National de Recherche Scientifique, France.
" E-mail address: smithw@math.byu.edu.

61

0022-247X /99 $30.00
Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.



62 ARINO AND SMITH

Where U is the upper limit of possible age (we assume U < ). This
gives the distinct and realistic advantage of allowing the death and birth
processes to be age-dependent.

One process that characterizes many bio-populations is migration. Mi-
gration has received less attention than other population variables and few
models have introduced migration into age-dependent schemes. Many
bio-populations migrate from a birth location or several birth locations and
then reproduce elsewhere, or return to the primary location to reproduce.
To model the general case of such behavior, we have introduced and we
have studied some characteristics of a seasonal linear model involving
migration and age-dependence [1].

It is reasonable to assume however that birth and death processes for a
population would depend on P(t), the size of the population, as well as age
and time [2, 4].

A natural way to approach this problem is to consider several popula-
tions residing in “patches” and migrating between these patches, allowing
for the possibility of different birth and death parameters in each patch
and between “natives” and *“migrants” in the same patch. If we assume
there are N > 2 patches, then the rate of change of native population
density /; in patch i would be given by

lL(a+h,t+h)—1(a,t)

Dl(a,t) = lim g (1.2)

h—0
This, because when time is incremented, age is incremented by an equal
amount. This quantity added to the number who die or leave the patch
should be zero (the so-called balance law.) A similar expression would
define the rate of change for the migrant density in patch i except that
here the density must depend in general on the length of time b (always
less than or equal to a) spent “in patch.” Hence the rate of change of
migrant density m; in patch i would be

- mya+h,b+h,t+h)—mya,b,t)
Dm;(a,b,t) = lim

h—0 h

. (13)

Once again, population balance would require that this rate, when
added to death and migration factors, gives zero. The total population in
patch i would then be

U

M0=£ﬂmﬂw+LKWWLﬂ%M- (1.4)

This naturally gives rise to the notion of a “population vector” P(z), the
coordinates of this vector are the scalar quantities, P,(¢+). The population
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“velocity” or
—P =P 1.5
t t), .
it (1) (1) (1.5)

which describes the evolution of the system in terms of location, is
determined by both migration rates and patch conditions.

Other important data are birth rates of patch natives and migrants to
that patch (which could be different) and arrival rates of migrants to a
patch. These quantities are expressed as the values of /,(0, t) and m(a, 0, 1),
respectively. These quantities will be defined in terms of birth and migra-
tion factors, which should in turn depend on P. They should be population
age determined as well. Reasonable expressions for these requirements
are

1,(0, 1) =.LUB(a,t,P(0)L(a,t)da
+/0Uf0”%(a,b,t,P(t))mi(a,b,t) dbda, (1.6)

m;(a,0,t) = ). [wllj(a,t,P(t))lj(a,t)
J#Fi
+ [“my (@ bot, P(t))my(a,b, 1) db|.  (17)
o Y
B; and v, are called birth or fecundity coefficients, I, and m,, are called

the transfer or migration rates. With y, and w,, deflnlng death rates as
multiplication operators, the two balance laws may be stated as

Di(a,t) = —w(a,t,P)l(a,t) Z'n',”(a,t,P)li(a,t), (1.8)

and
Dm(a,b,t) = —,uml_(a,b,t,P)m,.(a,b,t)
- Y m,(a,b,t,Pymya,b,t). (1.9)

We add the initial conditions,

l,(a,0) =1,(a), (1.10)
m;(a, b,0) = m;,(a,b). (1.11)



64 ARINO AND SMITH

The problems (1.7)-(1.11) are studied in detail in Section 2. We give
initial hypotheses on the birth, death (for which we allow the natural
singularity at a = U), and transfer coefficients and we state the precise
setting in which solutions are to be considered. We prove that under the
given conditions on the birth, death, and transfer coefficients, a unique
solution exists which is “positive” in a certain sense. Because the case of
time-dependent coefficients is important in examples [1], we treat the
problem in this case for existence of solutions. Hypotheses sufficient for
global existence are given. The functions / and m of (1.8) and (1.9) are not
smooth in the classical sense, only the directional derivatives DI and Dm
are required. Estimates on the growth rate of solutions are given by
treating the system in terms of certain nonlinear integral equations and
existence of solutions is established by a fixed point argument using these
integral equations.

In Section 3 we study the same system under the additional hypothesis
that the coefficients are time-independent. Equilibrium solutions are con-
sidered. We will consider stability of equilibria, periodic solutions, and
delay terms (important for fisheries, for example) elsewhere.

The present extension of the theory can be applied to a number of real
species. A primary example of this is ocean fisheries. In [1] we considered
the example of the saithe. Here we can extend that model to one which
contains the so-called “fishing effort,” a nonlinear term of the form,

q(a,t, fOUj(a,t,c)k(c,P(c)) dc,

in the death rate coefficient. The mechanisms of migration differ in a
patch system depending on age, season, and other species-specific factors.
Some general mechanisms that appear important are mixtures of random
walk (in the case of some fish larvae) and atmospheric (ocean) conditions.
We intend to discuss different types of movement as a development of the
theory given here in the future.

2. EXISTENCE OF SOLUTIONS

We start by giving more precise definitions and interpretations of
guantities introduced in the previous section. Then we reformulate the
problems (1.7)-(1.11) as vector integral equations, an equivalent form
when solutions are sufficiently regular.

DEFINITIONS 2.1. N = the number of patches. Q ={(a,b) |0 <b <a
< U} is a bounded subset of R2. [,(a, t) = population (density) in patch i
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of “age” a at time ¢. 1 <i < N. my(a, b, t) = population (density) in patch
i of migrants from other patches of age «a, having lived in patch i for time
b, at time t. (b <a) 1 <i < N. 4 indicates the transpose of a matrix or
vector A. The total population in patch i is given by, 1 <i < N.

U U ra
P(t) = l(a,t)da + m;(a,b,t)dbda.
(6) = [hait)yda+ [ mi(a,b1)
The population vector is given by

P(1) ="(Py(1), Py(1), Ps(1),..., Py(1)).

When necessary to distinguish between the populations for different
densities, we shall use P with subscripts, P, to indicate population for
densities [ and m. (a t, P(¢)) = migration rate from patches j to i (in
general, population dependent) of natives from patch j. This function is
assumed to vanish at ¢ =0 and at a = U. K > m, 20 for some K.
m, =0 when i =j. 7 U(a t,b, P) = migration rate from patch j to patch
i (in general, population dependent) of migrants from patch j. This
function is assumed to vanish at a =0 and at a = U. K > =, o~ 0 for
some K. m,, = Owhen i =j. m/(a,t, P) = the matrix [7, (a LP))1<ix<
N, 1<]<N m,(a, b, t, P) = the matrix [, (atb P)] 1<i<N,1lx<j
< N. We assume 7, and m,, are uniformly (norm) bounded by some
constant. |m(a,t, P)| < Cy, I7r (a,b,t,P)| < C,. M(a,b,t) = the N-vector
‘(m(a,b,1). m;: Q x (0,2 - R". L(a,t) = the N vector ‘(I(a,1)). L:
(0,U) x (0,%) — RY. Then the population vector, P(¢), is given by

P(t) = fOUL(a,t) da + fOU/O”M(a,b,z) db da.

w(a,t, P) = mortality rate in patch i for nonmigrants. u,(a,t, P) > 0, and
,u,(a t,P) > » as a - U for each ¢, P. (Individuals die by age U.)
Mm(a b, t, P) = mortality rate in patch i for migrants. u,, (a,b,t, P) > 0
and Mnla b, t, P) >~ as a > U for each b, P, and . A/(a,t,P) =
,ul(a,t,P) + X m (a,t, P). Ala,t, P) = diag(4, (a t,P). A, (a b, t,P)=
,um(a b, t, P)+Z 7T(a b, t, P) Ala, b, t, P)—dlag(A (a, b, t, P)).
B(a,t, P) is the (average) fertility rate for present natives of patch i.
v{a,b,t, P) is the (average) fertility rate of migrants into patch i.
B(a,t, P) = diag( B,(a,t, P)), T'(a, b, t, P) = diag(yy,(a, b, t, P). We assume
that B and I" are uniformly bounded. Thus,

|B(a,t,P)|<D,, |T(a,b,t,P)|<D,.
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We assume that A,, and A, are Lipschitz in P in the following way:
Assume 0 <t < T <, and that a < ¢ < U. Then

|A,(a,b,t, P, (1)) — A, (a,b,t, Pp,.(1))] < R(c)| P (t) — Ppp(t)].

A similar statement for A; will be assumed. Likewise we assume a similar
property for 8 and , the various birth and transfer functions. Hence,

[(a,0) =1l(a), 0<ax<U,
L(a,0) = L,(a) =" (I,(a),l,,(a),....Iy,(a)), 0<a<U,
m;(a, b,0) =m;,(a,b), (a,b) € Q,
M(a,b,0) = M,(a,b) =" (my,(a,b),my,(a,b),.... my,(a, b)),
(a,b) € Q.

D = represents the (distributional) 1-V operator, 1 = (1,1) or (1,1,1)
depending on the variable number in V.,

DeriNniTiION 2.2, The space X, is the space of all functions
‘(L(a,t), M(a, b, t)) with norm,

(L, M)

v, = suple (1L 1)l + 1M+, - 1)), 0 <1 < T} (21)

We define X = X,.

DerFINITION 2.3. A solution to the migration problem up to time 7> 0
is a vector-valued function ‘(L, M) on (0,U) X (0,T) ® Q X (0, T) with
the following properties:

(@ (DL, DM) exists on (0,U) X (0,T) ® Q x (0,T) and ‘(L, M) is
in LY(0,U) ® Q) for 0 < ¢ < T, with finite norm in X,.

(b) Difa,t) = —w(a,t, P)lla,1) - Zwﬁ(a, t, P)l(a,t) and
J
Dm(a,b,t) = —p,(a,b,t,P)yma,b,r)

— Zwﬁ(a,b,t,P)mi(a,b,t),

for0<b <a,0<t<T.Hence,

li(a,0) =lp(a), (a=0),
m;(a,b,0) =m;,(a,b), (a,b) in Q.
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L = [(Ban P da

+/()U/O“%(a,b,t,P(t))mi(a,b,t) db da

m,(a,0,t) = Z'[W,U(a,t,P(t))lj(a,t)
+ [m (@b, 1, P(1)ymy(a,b,1) db|,
0 ]

for ¢t > 0.
The migration problem up to time T has another formulation which we

now give. The definitions of L and M make it apparent that (b) and (c)
are equivalent to

(d) DL(a,t) = —A(a,t)L(a,t),

DM(a,b,t) = —A,(a,b,t,P)M(a,b,t),
forO<b<a,0<t<T.

L(a,0) =Ly(a), (a=0),
M(a,b,0) = My(a,b), (a,b)in Q.

© - [7B(a,t, P(1))L(a,1) da
0

U ra
# [0 T @bt P@0)M(a,b.1) dbda,
M(a,0,t) = m(a,t,P(t))L(a,t)

+ [“m,(a.b,t, P(1))M(a, b, 1) db,
0
for t > 0. If L and M are solutions to (d) and (e) and / > 0, then

d
DL(a, + h,t, +h) = EL(aO +h,t, +h),
and (*)
d
DM(a, +h,h,t,+h) = EM(a” +h,h,t,+h).
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Because the A matrices are diagonal, it is easy to see that with a change
of variables we have

exp( —/:A,(g —t+s,s,P,(s)) ds)Lo(a —t),t<a

L(a,t) = ,
exp(—f[ Al(s—t+a,s,le(s))ds)L(O,t—a),a<t
(2.2)
exp(—ftAm(s +a—t,s+b—t,5, P(s)) ds)
XM,(a —t,b—1),t<b
M(a,b,t) = . (2.3)

exp(—ftt Am(s+a—t,s+b—t,s,P(s))ds)

-b
XM(a —b,0,t —b),b<t

L(0,1) = [“B(a,t, P(1)) L(a,1) da
0

+ [*[T(a,b,t, P(1))M(a,b,1) dbda,  (2.4)
0“0
M(a,0,t) = m/(a,t, P(t))L(a,t)
+ [ ma(a,b,t, P(1))M(a,b,1) db. (2.5)

We are now able to state

THEOREM 1. Let '(L, M) be a solution to the migration problem up to
time T > 0. Then the solutions L and M are solutions to (2.2)—(2.5).

To prove the converse of the theorem requires some smoothness as-
sumptions on the coefficients which we do not wish to make. The idea
would be to let L and M be solutions to (2.2)-(2.5). Make the change of
variables in (2.2) and (2.3) as given in (). Equation (2.2) then becomes

L(a, +h,t,+h)

eXp(_fotOMA,(ao —t,+s,5,P,(s)) dS)Lg(ao —-t,),t,<a,,

exp( —ftﬁhA,(s —t,+a,,s, P,(s)) ds)L(O, t,—a,),a,<t,

lr—a,

(2.6)
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with a similar expression for M. It is apparent that D may now be applied
to both sides of these expressions which yields (d). It is clear from (2.2) and
(2.3) that discontinuities are propagated along characteristics, and that
across t = a, or t = b, a solution may be discontinuous. Continuity across
t = a and t = b can be guaranteed by requiring that L, and M, satisfy the
compatibility conditions,

Ly(0) = fOUB(a,O,P(O))LO(a) da

+[°[T(a,b,0,P(0) M,(a.b) dbda,

and @27
M,(a,0) = m,(a,0,P(0))L,(a)

+ [“m,(a,b,0, P(0)) M, (a,b) db.
0

From (2.2) and (2.3) we see that if L, and M, are continuous, L and M
are continuous away from ¢t = a, or ¢t = b, if the coefficients have sufficient
continuity.

If we require the L and M have more regularity, then we must require
more regularity of the coefficients in the problem, i.e., the A functions, B
and I as well as L, and M,,. In addition, other identities besides (2.7) are
required. We do not pursue this here. Instead, we note we can show the
existence of a solution to the “weaker” version [(2.2)-(2.5)] of the migra-
tion problem for T > 0. We now show that a rigorous solution to (2.2)—(2.5)
exists in X. However, because boundary values like L(a,0) and M(a,0,t)
do not necessarily exist in X, we must modify the system (see (2.8)-(2.11))
using (2.4) and (2.5). This is not a difficulty, because we do not use actual
pointwise limits of these boundary values in the sequel. Any solution of the
population problem will obey the estimates derived for our weak version.

THEOREM 2. The system (2.2)—(2.5) has a unique solution in X.

Proof. We approach the proof by means of the contraction mapping
theorem. We exhibit a closed subset of a Banach space on which a certain
mapping is a strict contraction. It therefore has a fixed point there, and
this fixed point is the solution we desire. First, we introduce some notation.
We have

G(a,t,P,) =M(a,0,t) =m(a,t, P,(t))L(a,rt)
+]”7Tm(a, b.t, P, (1))M(a,b,t) db,
(2.8)
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U
C(t, Py,) = L(0,1) = ["B(a,t, P, (1)) L(a,1) da
0

+ [*[T(a,b,1, P (1)) M(a,b,1) dbda. (2.9)
0 -0
Note that the right-hand sides of G and C are defined for any M and L in
X. Then
L(a,t)
t

exp( — | Af(a—t+s,s, P,L(s)) ds)LU(a —1),t<a,
0

exp| — ' A(s—t+a,s, P,(s))ds|C(t—a, P, (t —a)),a<t
[ o )

(2.10)

exp(—'/:Am(s +a—ts+b- t75:P1m(S))dS)

XM, (a—t,b—1t),t<b,
M(a,b,t) =

exp(_ftt_bAm(S ta—ts+b _t’S’P””(S))dS)
XG(a —b’t—b,le(t—b)),b<t

(2.11)

Define the right-hand side of (2.10) and (2.11) to be I(L, M). To distin-
guish between population vectors for different densities, we write P;,,,. for
the population vector for a pair (L', M’).

We need some a priori estimates on (L, M). Using (2.8)-(2.11) and
somewhat tedious computations, we arrive at an estimate of the form,

(L)) =Ly, M)+ K[ (L M) (s) s, (212)

where K is a constant depending on the bounds of B,I', and 7, 7. To
construct such an estimate, we observe that by (2.10) and (2.11),

(L M) [1:(1)
<[
ol

da

exp(—fO’A,(a —t+5,5 P(s)) ds)Lo(a —1)

exp(—ft aAl(s —t+a,s, P,(s)) ds)C(t —a, P, (t—a))

t—

da
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exp(—fotAm(s ta—t,s+b—ts, P(s)) ds)

I

XM,(a —t,b—t)|dbda

exp(—ft bAm(S +a—t,s+b _tvslle(s))dS)
—

o)

X G(a—b,t —b,P,(t— b))‘dbda

U rt t
+ expl— [ A (s+a—t,s+b—1t5 P, (s))d
flenl-f 0w 0-rse0-nnronal

><G(a—b,t—b,P,m(t—b))‘dbda

ﬁfU|L0(a —t)|da +ft|C(t—a,P,m(t—a))|da

‘ 0

U ra

+ M,(a —t,b—1t)|dbd

[] IM(a )|abda

t ra
+f0f0 |G(a — b,t— b, P, (t — b))|dbda

+fot|G(a —b,t —b,P,(t —b))|dbda.
t 0
Now take, for example, the last integral in the preceding text,

fthOt|G(a —b,t—b, P, (t - b))|dbda

-

+[“"m(a—b,s.0 = b, P(t = b))M(a —b,s,1 — b) ds|dbda
0

m(a—b,t —b,P(t—b))L(a—0b,t—b)

U rt
</ /()CllL(a—b,t—b)ldbda

t

+[U['['C,IM(a = b,5,t — b)| dsdbda
t 070
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t rU-b
=max(c1,c2)(ff |L(k,t — b)|dkdb
0’t—b

+ft]U;bfk|M(k,s,t — b)| dsdkdb
0t— 0

IA

max(Cl,Cz)fotl(L, M) |,2(s) ds.

The other integrals involving G and C may be estimated in a similar way.
The terms involving M, and L, combine for the expression [(L,, M,)I;:.
The estimate,

(L M) La(6) <I(Lys M) s + K ['1(L M) 12(5) ds - (213)

leads to a bound on (L, M)|,:(¢) of the type [(L, M)|:«(t) < ce*', which
holds for all ¢. To see this, let y(z) be the right side of (2.13). Then
(L, M)|(¢) < y(¢), and if we substitute y for [(L, M)|;«(¢) in the right-
hand side of (2.13) we obtain

0 <y(1) <[(L,, M,) | + K[ y(s) ds. (2.14)
o
Hence, Gronwall’s inequality implies that

(L, M)|a(t) <y(t) < ce®, (2.15)

for some ¢ and k (c can be taken as [(L,, M, )|, k as K, but of course
larger values of ¢ and k£ may be used).

If we consider the map I, we see that it maps X, into X, by (2.15) but
also, if we restrict to that subset of X, determined by the inequality (2.15),
then by the same computation, we get

|[I(L, M)|.:(2)

<[(Ly M) |+ K[1(L, M) Ls(s) ds

K
S|(Lo! ]\40)|L1 + K’/‘Otceks ds :l(Lo! ]\40)|L1 + zc(ek’ - 1) (216)
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(L,, M2 < c so that

K K K
[I(L,M)|:(t) <c+ zc(ekt -1)=c- et ;cekt
K K i
= (1 - Z)C + P
< (1 - g)cek’ + gcek’
< ce*, (2.17)

for k large enough, (k > K).

Thus I maps the set of functions (L, M) satisfying [(L, M)|:(t) < ce*,
into itself, for ¢ and k sufficiently large. Such a set is a closed subset of X,
(for any r). We now assume (L, M) lies in this set. We derive estimates to

show that [ is a strict contraction on this set in X,, with the appropriate
value of r.

(L, M) = (L', M) [12(2)

s(l)ftu

exp(—fotAl(a —t+5,5,P(5)) ds)La(a —1)

—exp(—/otA,,(a —t+s,8, P,(s)) ds)LO(a —t)|da

(2) + j: exp(—ftt_aA,(s —t+a,s, P,m(s))ds)

XC(t —a, P, (t—a))

—exp(—ft A(s—t+a,s, Pp,(s)) ds)
t

—a

X C(t—a, P, (t—a))|da

@+ [

XM,(a —t,b—1)

exp(—/:Am(S +a—1t,s +b _tIS:le(S))ds)

—eXp(—fotAm(S +a—t,s+b—ts, Pzrmr(s))ds)

XM,(a—t,b—t)|dbda
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@+ [

XG(a —b,t —b, P, (t—Db))

exp(—ft bAm(S +a—t,s+b— t!slle(s))dS)
-

—exp(—f[ bAm’(s +a—t,s+b—t,5s,P(s)) ds)
t—

X G(a —b,t —b, Py, (t - b))‘dbda

(a-+[”4’

XG(a —b,t —b, P, (t—Db))

exp(—/l bAm(s +a—t,s+b—1tP,(s)) ds)
-

_exp(—ft bAm'(S +a—t,s+b _tvs:PI’m’(S))ds)
—

X G(a —b,t — b, Py,.(t —b))|dbda.

When ¢ > U, then ¢t > a and ¢ > b, so there are fewer terms in that case.
We treat each of the five integrals (two single integrals, three double
integrals) separately as problems (1)—(5). Beginning with (1), (note that to
be precisely correct in the following computation, we should integrate up
to U — £ and we should take limits on the first and last terms as ¢ — 0.
This is because the functions A in the following text are not known to be
integrable on the whole of [0,U]. In order to avoid the more complex
expressions, we assume this is done.) Thus,

j;U exp(—/otA,(a —t+s,5, P,(s)) ds)L(,(a —1)

—exp(—fOtAl,(a —t+s,8P(s)) ds)Lo(a —t)|da

U
g
t

ftA,,(a —t+s,5 P,(s))ds
0

U
< f
t

/tA,(a —t+s,5 P,(s))ds
0

|L,(a —1t)|da

/tAl(a —t+s,5 P,(s))ds
0

—/tAl,(a —t+s,5 Pp,(s))ds||L,(a—1t)|da
0
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:KU

j:A,(a —t+s,s, P,(s))

—A(a—t+s,s,P,(s))ds||L,(a—t)|da

= [ [RIPw(s) = Pro(s)]ds] Ly(a ~ 1)]da

= fofotR“L("S) —L'(,8) | +IM(-, -, 5) = M'(-,-,5) |2) ds
X|L,(a —t)|da

sfthotR(lL(-,s) — L'y 8) | ML) = ML s) )
Xe "e™ds|L,(a —t)|da

< fthOtRl(L,M) — (L', M")|x.e” ds|L,(a — t)|da

e —1

r

<

R|((L,M) — (L' M")|x,IL,|

rt

7R|(L1M) — (L', M")|x,IL,| .

IA

The computation for 3 is quite similar with the obviously similar esti-
mate. We proceed with 4 which is similar to 5. Here, we assume without
loss that ¢ < U. We have

A

exp(_/[,,Am(s ta—t,s+b— t’s’P”"(s))ds)

XG((l - b,t - b,le(t - b))

_exp(_ft Ay (sta—ts+b- t,S.PI’m’(S))dS)
.

XG(a —b,t —=b, P, (t - b))‘dbda

A (s+a—ts+b— t,s,P,m(s))ds)

exp(—fttb

X G(a—b,t —b,P,(t—Db))

Lk
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_exp(—j;tbAm,(s +a—t,s+b—ts, P;rmr(S))dS)
X G(a = b,t = b, Py, (t = b))
+exp(—ftlem,(s +a—t,s+b—t,s, Pl,m,(s)) ds)
X G(a = b,t = b, P,,(t — b))

XG(G _byt_b!le(t_b))‘dbda

eXp(—/j bAm(S + a —l,S +b _liS!le(s))ds)

X G(a—b,t —b, P, (t b))

<L,

_exp(—ft Am,(s+a—t,s+b—l‘,S:Pz'm'(s))dS)

t—>b

X G(a =b,t = b, P,(t = b))

+exp(—/t Am,(s+a—t,s+b—t,S|Pz'm'(S))ds)
t—b

XG(a—b,t—b,le(t_b))

—exp(—fl Am,(S"r(l—t,S+b_t1SlPl’m’(s))ds)
t—b

XG(a —b,t —=b, P, (t - b))‘dbda

S/:'/o '/tt_b|Am(s+a—t,s+b—t,s,P,m(s))
—A,(s+a—t,s+b—ts Pu(s))|ds
x|G(a — b,t = b, P,,(t — b))|dbda
[ a
1
X|G(a — b,t = b, P,,(t — b))
G(a —b,t — b, Py, (t —b))|dbda.

exp(—ft bAm,(S +a—t,s+b _t:SvPl’m’(S))ds)
—
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Consider these last two integrals,

ft/aft |A,(s+a—ts+b—ts, P,(s))
00 “t—b
—A,(s+a—t,s+b—ts P(s))|ds

x|G(a — b,t = b, P,,(t — b))|dbda, (2.18)
and

L

exp(—ft bAm,(S +a—t,s+b— tys:Pl’m’(S))dS)
-

X|G(a —b,t — b, P,,(t — b))
~G(a —b,t—b, P, (t —b))|dbda. (2.19)

To see how the estimate for (2.18) is done, see the computation for
integral (2) in the following text. Expression (2.19) is estimated as follows,

X|G(a —b,t — b, P, (t —b)) —G(a—b,t —b,P,,.(t —b))|dbda
s[ofo |G(a —b,t — b, P,,(t — b))

~G(a —b,t —b, P, (t —b))|dbda

exp(_ft Au(sta—tistb—t5Pp(s) ds)
.

m(a—b,t—b,P ,(t—Db))L(a—b,t—Db)

<Lk
+f0a7b7rm(a = bysyt = b, P, (1 = b))

X M(a —b,s,;,t —b)ds,
—m(a —b,t —=b, P, (t—b))L'(a—b,t—b)

_/aibﬂ-m,(a —b,s;,t —b, P, (t—b))
0

XM'(a —b,s,;,t —b)ds,|dbda

< ['["|m(a=b,t = b, P, (t = b))L(a — b,t — b)
070

—m(a—=b,t—b,P,,(t—b))L'(a —b,t —b)|dbda
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a ra—b
+ [ [ [ |m(a = b5yt = b, P (t = b))M(a = b, syt = b)
0Y0 70
— (@ —b,sy, t —b, P, (t—Db))
XM'(a —b,s;, t — b)|ds1.
These last two integrals are estimated similarly. Consider the first: we will

employ the a priori estimate on (L, M) in the previous text—recall that
t<T <o),

['[ 1ma=b.t=b, Py, (t = b))L(a = b1 —b)
00
—m(a—b,t —b,P,,.(t—b))L'(a —b,t —b)|dbda
< ['["|m(a=b,t = b, P, (t—b))L(a — b,t — b)
0-0
—m(a —b,t —b, P, (t—b))L(a—b,t—Db)
+m(a —b,t —b, Py, (t —b))L(a —b,t —b)
—m.(a—b,t —b,P,,.(t—b))L'(a —b,t —b)|dbda
< ['["|m(a=b,t = b, P, (t = b))L(a — b,t — b)
070
—m(a—b,t —b,P,,(t—b))L(a—b,t —b)|dbda
+['[“1m(a = bt = b, Pp(t = b)) L(a — bt — b)
00

—m.(a—b,t —b, P, (t —b))L'(a —b,t —b)|dbda
< ['['1Pu(t = b) = Pupu(t = b)| |L(a = b,1 = b) | dbda
0“0
+f0’/0”|w,,(a — bt —b, Py (t—b))||L(a —b.t —b)
—L'(a—b,t —b)|dbda
t a
< [ [ M) (e = b) = (I', M')(t = b) || L(a = b,t = b)| dbda
070

[ [ (= b Py (= D)L L(a = bt = )

—L'(a—=b,t —b)le """ Der"?) dbda
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< ['I(L M) (1 = b) = (L', M')(t = b) |pe "~ Pt
0
x ["|L(a—=b,t=b)|daab
b

+ tft|771'("l = b, Py (t = b))l
o’b

X|L(a —b,t —b) —L'(a—>b,t —b)|le " Pe """ dadb
<JI(L, M) = (L', M)y, ['e"=") ab
0
rt

<J|(L, M) - (L',M/)|X,67, (2.20)

for some constant J;. The other integrals deriving from (4) are estimated
similarly.
Consider the integral (2). We have

@+ [

exp(—j;t aA,(s —t+a,s, P,(s)) ds)C(t —a, P, (t—a))

da

—exp(—j;taA,,(s —t+a,s, P (s)) ds)C(t —a, P, (t—a))

t
< /
0

exp(ftta —A(s—t+a,s, P,(s)) ds)C(t —a, P, (t—a))

_exp(/t —A(s—t+a,s, P,(s)) ds)
t—a

XC(t —a,P,(t—a))

+exp(ft
t

—a

—A(s—t+a,s, P,(s)) ds)
XC(t —a,P,(t—a))

—exp(ft —A(s—t+a,s, P(s)) ds)

t—a

XC(t —a, Py, (t —a))|da
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< '/(;t'/;ia |A(s—t+a,s,P,(s)) —Au(s —t+a,s, Pu(s))|ds
X|C(t —a, P, (t—a))|da
+/0texp(/tt_u —Au(s—t+a,s, Py,(s))ds
X|C(t—a,P,(t—a))—C(t—a,P, (t —a))|da

< fotfzia | Pu(s) = Ppy(8)|ds|C(t — a, P, (t —a))|da
+/t|C(t —a,P,(t—a))—C(t—a,P,, (t—a))|da

0
< fo’f[t_ |I(L, M)(s) —I(L', M")(s)|e""¢" dsK|P,,(t — a)|da

+/I|C(t —a,P,(t—a))—C(t—a,P, (t —a))|da.
0
Recall that
C(t —a,P,(t —a))

~ ["B(s.t = a,P,,(t — a))L(s,1 — a) ds
0
+ [[T(s.b,1 = a, P, (1))M(s,b,1 — a) dbds.
0 70
Therefore,

fOt|C(t —a,P,(t—a))—-C(t—a,P,, (t— a))|da

SfothU|B(s,t—a,P,m(t—a))L(s,t—a)
—B(s,t —a, Py, (t —a))L'(s,t — a)|dsda
t (U [S
+'[o/o fo IT(s,b,t —a, P,,(t))M(s,b,t —a)

—I(s,b,t —a, P, (t))M'(s,b,t — a)|dbdsda.
Now a computation similar to that found in (2.20), gives a similar estimate.
Hence we obtain the estimates,

rt

[H(LM) = (L' M) ]s() < —=J\(L, M) = (L, M)

X,l
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for some constant J. Thus,
1
|I(L,M) —I(L’,M’)lxr < 7J|(L,M) — (L’,M’)er. (2.21)

If »>J, then I is a strict contradiction on a closed subspace of the
Banach space X, and so has a fixed point there. Consequently, there exists
a unique solution to the system in X. This completes the proof of
Theorem 2.

COROLLARY 1. The components of (L, M) are nonnegative if (L,, M)
has nonnegative components.

Proof. The result follows when we note that by the contraction map-
ping theorem, a solution to the migration problem may be obtained by
iteration of 7 on some initial value. If the initial point is chosen so that it
has nonnegative components, then the iterates clearly have nonnegative
components and so the limit also has this property.

We now derive some useful estimates on the solution of the migration
problem. We know that any solution ‘(L(a, t), M(a, b, t)) has population
vector P(t), norm bounded by ce*’ for some ¢ and «, and ¢ can be taken
as |P(0)| (see (2.17)).

Define A; = min|A,(a, ), A, = min|A,(a, b, t)). From (2.8)-(2.11),
(a>t>b),

G(a,t,Py,) = m(a,t, Pp(D)L(a,1) + [ mo(a,b,1, P(1))

X exp(_ft bAm(s ta—ts+b—ts Py(s))ds
L

X G(a —b,t —b, P, (t—b))db. (2.22)
So we can rewrite the equation for G,
G(a,t) =m(a,t, P ,)L(a,t)

+ ['K(a,b,t,P,,)G(a —b,t —b)db,  (223)
0

with the change of variables,

G(r,s) = G(s,r+s), (2.24)
we have

G(a,a) = m(a,a+a, P, ,)L(a,a+a)

+f0”1<(a,b, a+a P,)G(a,a—b)db. (2.25)
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This is a Volterra equation and hence has a unique solution in L'. K
contains the exponential part,

exp| — ' A(s+a—t,s+b—t,s, P,(s))ds|, (2.26)
(1 )«

and we assume 7, m,, are bounded by constants, C, and C,, respectively.
Then from

(5)/;U];)t

exp(—ft A(s+a—t,s+b— t,s,P,m(s))ds)
(—b
XG(a —b,t —b, P, (t—Db))
—exp(—/t A, (s+a—t,s+b—t,s, P,(s)) ds)
t—b
><G(a—b,t—b,P,,m,(t—b))‘dbda, (2.27)
we have,
|G(a,a)| < Cre™2 + szae*AZ(“*s)|5(a, s)| ds. (2.28)
0

So,

emi“(Al'Az)“|5(a, a)| <C, + szaemi”(Al'Az)‘|5(a, s)|ds. (2.29)

0

Gronwall’s inequality implies that

|G(a,a)| < C,etCammintsd2na (2.30)
or

|G(a,t)| < CpelCmmnGu e, (2.31)
this implies

|G(a —b,t — b, P, (t —b))| < CreCmmindsbala=b) (2 32)

C(1,Py) = L(0,1) = ["B(a,1, P, (1)) L(a,1) da

+/0Uf0ar(ﬂ,b,f,sz(f))M(a,b,t)dbda. (2.33)
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Therefore,

(€t P | = [ Bt P ()] 1L(a,0) | da
+f0 fo IT(a,b,t, P, (1)) |M(a,b,t)|dbda. (2.34)

We assumed that B and G were bounded by D, and D,, respectively.
Then

C(t, )| <Dy [“|L(a,1)|da+ D, [ [*|M(a,b,1)| dbda. (235)
0 0“0

Hence,
|C(t, P,,)| < max(D,, D,)P(t) < max(D,, D,)ce*, (2.36)
and so

|C(t - a, le(t - a))| = maX(Dl’ DZ)le(t - d)
< max(D,, D,)ce "9, (2.37)

Using (2.10) and (2.11) we can now write

[(L(a,t), M(a,b,1))|
<e max|L,(a —t)|+e ' max|M,(a —t,b—1)],
(t<b), (2.38)
|(L(a,t), M(a,b,1))]
<e *max|L,(a —1)]
+e %P (Kymax|L,(a — t)] + CpelCzm Mt 820,
(a>t>b), (2.39)
[(L(a,t), M(a,b,1))]
< e *“max(D,, D,)ce"
+ e 22(max( Dy, Dy)ce ™9 + CpelCamMin(An 220,

(t>a>b). (2.40)
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We can therefore state the following

THEOREM 3. If (L, M) is a solution to the migration problem, then the
estimates (2.37)—(2.40) hold.

3. EQUILIBRIUM SOLUTIONS

When the coefficients A, B, vy, and the 7 functions do not depend on
time, it is of interest to determine if equilibrium solutions (zero velocity
populations) are possible.

The time-independent equations are

Di(a,t) = —w(a,P)l(a,t) — Zﬂ-ji(a’P)li(a’t)

(Z indicates summation on j|, (3.1)
J

Dm(a,b,t) = —Mml_(a,b,P)mi(a,b,t) — Zﬂ'ji(a,b,P)mi(a,b,t).
j

(3.2)

For an equilibrium solution (L,, M,) and the associated population
vector P,, we arrive at the following equations,

e

da

= —A/(a, P,)L(a), (3.3)

L(0) = ["B(a,P)L,(a)da+ [*[T(a,b, P)M,(a,b)dbda,

(3.4a)
M,(a,0) = m(a,P)L,(a) + [ m,(a,b, P.)M(a,b)db,  (3.4b)
0
M. M _ A,(a,b,PYM,(a,b

Jda + ab - m(a’ ’ e) e(a’ ) (35)

Equation (3.3) may be solved as
L,(a) = exp([“ — A(s, P) ds)Le(O), (3.6)

0

Eq. (3.5) may be solved as

M,(a,b) = exp(fb - A, (a—=b+s,s,P) ds)ML)(a - b,0), (3.7)
0
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Egs. (3.6) and (3.7) allow us to write (3.4a, b) as a system for L ,(0), M,(a, 0),

L,(0) = fOUB(a,Pe)exp(/: — A5, P) ds) da L,(0)

+/UfaI‘(a,b,PL,)exp(/b - A, (a—b+s,5P) ds)
0o o 0

X M,(a —b,0) dbda (3.8a)

M,(a,0) = m(a, Pe)exp(foa — A5, P) ds)Le(O)

+/awm(a,b,Pe)exp(fb - A, (a—b+s,5P,) ds)
0 0

X M,(a — b,0) db. (3.8b)

0= (I - fUB(a, Pe)exp(fa - AJ(s, P) ds) da)
0 0
is invertible, then the first equation may be solved for L ,(0). Substituting

into the second equation, we have an expression containing only M,(s, 0).
Define 7 by the equation,

T= fOUanF(a,byPe)eXp(/ob — A, (a—b+s,s,P) ds)

X M,(a — b,0) dbda, (3.9)

then L,(0) = Q ', where 7= 1(M,, P,), Q = Q(P,), 7 is linear in M,.
Then we have

M,(a,0) = m(a, Pe)exp(foa — A/(s,P) ds)Ql(Pg)T(Me, P)

+fa77m(a,b,Pg)eXp(fb - A, (a—b+s,5P) ds)
0 0

X M,(a — b,0) db. (3.10)
If we consider the equation,

2(a) = mla yerp| [ = 8,(s.2) a5 0 (R

+fa7rm(a,b,PL,)exp(fb - A, (a—b+s,5P,) ds)
0 0

X Z(a — b) db, (3.11)
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we see that it is a Volterra equation. Multiplying the solution Z(a) on the
right by 7(M,, P,), we obtain M,(a,0) = Z(a)7(M,, P,). If a solution
exists, then the system has an equilibrium solution (M,(a,0) = 0 is cer-
tainly such a solution, but then (3.8a) implies that L,(0) = 0).

If however Q = 0, then we conclude from (3.8a) that M (a,0) = 0. In
that case, (3.8b) is satisfied when L ,(0) is always in the kernel of

w,(a,Pe)exp(an — A(s, P) ds). (3.12)

Therefore an equilibrium solution exists if there is such a value P, (and
essentially this says that L,(0) does not evolve to migrate to other
patches). Hence, an equilibrium solution exists when Q! exists (though
possibly only the trivial solution), and if Q = 0 for some P,, a nontrivial
equilibrium solution may exist. When Q = 0, the solution may possibly be
chosen so that L,0) # 0, but M, (a,0) = 0. It may happen that some of
the entries of Q do not vanish, while some do for any given P,. Then we
could have a solution of mixed character, but essentially the same analysis
applies in this case, coordinate by coordinate in (3.8a) because I and B
are diagonal matrices. To investigate further, define

P, = LULE(a) da, 13

U ra
P, = M (a,b) dbda,
o = [ [ M)
P=P,+P,,. (3.14)

Integrating both sides of (3.6) gives

L,(0) = ([OUexp(—fO” — A5, P) ds) da)_lPe,, (3.15)

consequently,

-1
OL,(0) = Q(erxp(—fa — A5, P) ds) da) . P,=1(M,,P,),
0 0
(3.16)
and so if Q™1 exists,

U

M,(a,0) = Z(a)Q(Pg)( 0 exp(—foa — A(s, P) ds) da)lPe,. (3.17)
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Therefore, if Q! exists, we have

L.(a) exp(foa — A5, P) ds)Le(O),

M,(a,b) = exp(fb —A,(a—b+s,sP) ds)Me(a - b,0),
0

(/OUexp(—j: - Ai(s, P) ds) da)_lPe,,

Z(a)Q(Pe)(/OUexp(—fO”G — A(s, P) ds) da)_lPe,.

(3.18)

L(0)

M,(a,0)

Because the matrices in (3.8a) are all diagonal, this (the existence of Q1)
provides a simple test to determine the existence of equilibrium solutions.
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