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Abstract

A continuous cell population model, which represents both the cell cycle phase structure a
kinetic heterogeneity of the population following Shackney’s ideas [J. Theor. Biol. 38 (1973)
333], is studied. The asynchronous exponential growth property is proved in the framework
theory of strongly continuous semigroups of bounded linear operators.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Populations of proliferating cells are characterized by cell-to-cell variability of the cell
cycle kinetic parameters. Even cell populations growing in vitro, that is in a homoge
environment, exhibit different cell cycle times because of the intrinsic variabilities in
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machinery of cell cycle progression. Both experimental and clinical tumours, as de
strated since the early studies using3H-thymidine labeling [14], show a larger extent
kinetic heterogeneity due to the possible presence of genetic heterogeneity, and to the d
ferent conditions of nutrition and oxygenation in the cell microenvironment, related to th
tumour vascularization.

In the framework of deterministic models, the kinetic heterogeneity has been m
represented by means of age-structured population models [1,2,4,15]. The age form
indeed, allows a simple representation of cell populations with variable (but uncorre
cell cycle times. Denoting bya (a � 0) the cell age and byn(a, t) the cell density with
respect to age, that is,n(a, t) da is the number of cells with age betweena anda + da at
time t , the basic model is given by

∂n

∂t
(a, t) + ∂n

∂a
(a, t) = −[

β(a) + µ(a)
]
n(a, t),

n(0, t) = 2

+∞∫
0

β(a)n(a, t) da,

whereβ(a) is the age-dependent division rate coefficient, which is related to the dis
tion of cell cycle duration, andµ(a) represents cell loss. More complex models, involv
age-structured subpopulations, are required to take into account the different cell cy
phases [5].

Another approach to represent the kinetic heterogeneity was proposed by Lebow
Rubinow [9], considering the cell population as composed by a continuous spectr
subpopulations each characterized by a given cell cycle transit timeτ . The population is
thus described by the cell densityn(a, τ, t) (a ∈ [0, τ ], τ > 0), such thatn(a, τ, t) da dτ

denotes the number of cells with age betweena anda + da and cell cycle time betweenτ
andτ + dτ at timet . The model is given by

∂n

∂t
(a, τ, t) + ∂n

∂a
(a, τ, t) = −µ(a, τ )n(a, τ, t),

n(0, τ, t) = 2

+∞∫
0

Θ(τ, τ ′)n(τ ′, τ ′, t) dτ ′,

whereΘ(τ, τ ′) is a transition kernel such thatΘ(τ, τ ′) dτ yields the probability that a
cell originated from a cell with cycle timeτ ′ will have cycle time betweenτ andτ + dτ .
We note that the dependence ofΘ on τ ′ introduces a partial heredity of the cell cyc
transit time between mother and daughter cells. The model in [9], through the va
transformationx = a/τ , can be written in terms of the cell maturityx and distributed cel
maturation rates. Because the cell maturity, as defined by Rubinow [11], is a variable ran
ing from 0 to 1 which marks the progression through the cell cycle, the maturity form
readily represents the cell cycle phases by assigned maturity intervals. It is easy to s
that the preceding model implies a strict relationship among the transit times of the c
cycle phases. We remark that both the above models exhibit the asynchronous ex
tial growth property, that is, the population asymptotically shows an exponential g
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with a steady distribution with respect to the structure variables, irrespective of the
condition [15,16].

A different model for representing the proliferative heterogeneity of in vivo tumour
populations was proposed by Shackney [12] and recently reconsidered by Shackn
Shankey [13]. This model, which is substantially based on the concept of cell ma
introduces the idea ofgrowth retardation: that is, it is assumed that cells change their r
of progression towards mitosis during their life-span, by moving from tracks with f
rate to tracks with slower rate. Whereas in [9] the cell cycle time and the phase
times are determined at birth, now the transit times also depend on the random transitio
occurring during cell life. Yet, this mechanism produces correlated transit times in
cycle phases. From the biological viewpoint, the idea of growth retardation focuses
microenvironmental origin of the tumour kinetic heterogeneity, and reflects the migrati
of cells from regions close to the vascularsupply, to regions where worse conditions
microenvironment are prevailing and slow proliferation and/or cell arrest occur.

The model proposed by Shackney [12] was originally formulated as a discrete m
In [3] we propose a continuous cell population model, based on Shackney’s ideas,
represents both the cell cycle phase structure and the kinetic heterogeneity of the
tion (see Section 2). In the present paper we will prove for this model the asynchr
exponential growth property, which guarantees that the cell population can desynch
as it is experimentally observed. The proof is developed in Sections 3 and 4, and is
on the theory of operator semigroups.

2. Formulation of the model

We start by describing, for the reader’s convenience, the model presented in [3]. L
us consider a cell population in which cells are characterized by two state variable
maturity x, 0 � x � 1, with x = 0 at birth andx = 1 at division, and a state variableT ,
0 < Tmin � T � Tmax < +∞, which identifies the rate of maturationw(x,T ), i.e., the
local rate of progression through the cell cycle, in a suitable class of functions. ForT the
following relation holds:

1∫
0

dx

w(x,T )
= T

so that, ifT does not change during cell life, the cell cycle duration is just given byT . The
definition ofT implies that, ifT increases, the maturation rate will decrease.

Hypothesis 1. The functionw(x,T ) satisfies the following:

(i) w ∈ C1([0,1] × [Tmin, Tmax]).
(ii) ∀(x, T ) ∈ [0,1] × [Tmin, Tmax], ∂w

∂T
(x,T ) < 0.

(iii) There exists a constantw∗ > 0 such that,∀x ∈ [0,1], w(x,Tmax) � w∗.
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Note that if w is independent ofx, w(x,T ) = 1/T (and Hypothesis 1 is satisfied
Moreover, in view of Hypothesis 1, the progression rate cannot vanish at any point
cell cycle and complete cell cycle arrest at some definite values ofx is excluded.

During their life span, cells can changeT at random by jump transitions toT values
larger than the starting value (growth retardation), while conserving at each jump the m
turity x. In this way, cells having the same value ofT at birth may reach division following
different tracks on the(x, T ) plane and then with differentcell cycle transit times. Th
transitions are governed by the transition rateλ(x,T ) and by the kernelK(T , τ, x), T � τ ,
Tmin � τ � Tmax, such thatK(T , τ, x) dT represents the probability that the transiti
brings into[T ,T + dT ] a cell with state variablesx andτ . Therefore,

Tmax∫
τ

K(T , τ, x) dT = 1. (1)

Because no transition is assumed to occur whenT = Tmax, it is λ(x,Tmax) = 0.
Whenx attains the valuex = 1, cells divide into two daughter cells. The daughters

cells that divide withT = τ will have at birth a value ofT distributed aroundτ according
to a given dispersion kernelΘ(T , τ) which satisfies

Tmax∫
Tmin

Θ(T , τ) dT = 1.

This dispersion reflects phenomena, such as the unequal division of cells at mitosis, whic
contribute to the intrinsic variability of theduration of cell cycle. Finally, the populatio
is affected by random cell loss according to a loss rateµ(x,T ), which may represent ce
death as well as an irreversible transition into a quiescent state.

The cell population will be described by the density functionn(x,T , t), such that
n(x,T , t) dx dT is the number of cells having(x, T ) ∈ [x, x +dx]×[T ,T +dT ] at timet .
As shown in [3], the following governing equation can be obtained:

∂n

∂t
(x,T , t) + ∂

∂x

[
w(x,T )n(x,T , t)

]

= −[
λ(x,T ) + µ(x,T )

]
n(x,T , t) +

T∫
Tmin

λ(x, τ )K(T , τ, x)n(x, τ, t) dτ. (2)

Equation (2) has to be complemented by the boundary condition

w(0, T )n(0, T , t) = 2

Tmax∫
Tmin

Θ(T , τ)w(1, τ )n(1, τ, t) dτ (3)

and by the initial condition

n(x,T ,0) = n0(x, T ). (4)

By identifying the cell cycle phases, G1, S, G2 and M, with the maturity inter
(xi−1, xi), i = 1, . . . ,4, with x0 = 0 andx4 = 1, the integral of the densityn(x,T , t) over
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these maturity intervals (and all the values ofT ) gives the number of cells in the co
responding phases at timet . We note that the model here proposed becomes equiva
whenλ(x,T ) ≡ 0, to the cell population model proposed by Lebowitz and Rubinow in
in the case of a finite range of cycle transit time.

Our goal is to show the asynchronous exponential growth (AEG) property of the
tions of (2)–(4). To this end, the above equations can be rewritten as

∂n

∂t
(x,T , t) + w(x,T )

∂n

∂x
(x,T , t)

= a(x,T )n(x,T , t) +
Tmax∫

Tmin

b(x, τ, T )n(x, τ, t) dτ, (5)

n(0, T , t) =
Tmax∫

Tmin

C̃(T , τ )n(1, τ, t) dτ, (6)

n(x,T ,0) = n0(x, T ), (7)

where we have introduced the notations

a(x,T ) := −
[
λ(x,T ) + µ(x,T ) + ∂w

∂x
(x,T )

]
,

b(x, τ, T ) := λ(x, τ )K(T , τ, x)H(T − τ ),

C̃(T , τ ) := 2

w(0, T )
Θ(T , τ )w(1, τ ),

andH is the Heaviside function:H(t) = 0 if t < 0, H(t) = 1 if t > 0.
Let us introduce a new unknown function defined by

u(x,T , t) := ξ(x,T )n(x,T , t), ξ(x, T ) := exp

(
−

x∫
0

a(s, T )

w(s, T )
ds

)
.

Multiplying both sides of Eqs. (5) and (6) byξ(x, t), straightforward calculations lead
the following formulation of the problem, for 0� x � 1, 0< Tmin � T � Tmax < +∞,
t > 0:

∂u

∂t
(x,T , t) + w(x,T )

∂u

∂x
(x,T , t) =

Tmax∫
Tmin

B(x, τ, T )u(x, τ, t) dτ, (8)

u(0, T , t) =
Tmax∫

Tmin

C(T , τ )u(1, τ, t) dτ, (9)

u(x,T ,0) = u0(x, T ), (10)

where

B(x, τ, T ) := b(x, τ, T )ξ(x,T )
, C(T , τ ) := ξ(0, T )C̃(T , τ )

.

ξ(x, τ ) ξ(1, τ )
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Recalling Eq. (1), we observe thatK(T , τ, x) becomes unbounded forτ → Tmax. Thus, to
guarantee that the integral in the right-hand side of (2) remains finite, we will requir
λ(x, τ )K(T , τ, x) be bounded. Therefore, we suppose that

Hypothesis 2. B ∈ L∞([0,1] × [Tmin, Tmax]2), C ∈ L∞([Tmin, Tmax]2).

3. The pure maturation problem

Here we start studying the associatedpure maturationproblem (obtained by setting t
zero the right-hand side of Eq. (8)), which will be formulated in the framework of s
group theory. Let us consider the problem, for 0� x � 1, 0< Tmin � T � Tmax < +∞,
t > 0,

∂u

∂t
(x,T , t) + w(x,T )

∂u

∂x
(x,T , t) = 0, (11)

u(0, T , t) =
Tmax∫

Tmin

C(T , τ )u(1, τ, t) dτ, (12)

u(x,T ,0) = u0(x, T ). (13)

After integrating along the characteristic lines, we will show that the solutions of this p
lem define a strongly continuous semigroup of bounded linear operators (C0-semigroup).
The infinitesimal generator and the resolvent of this semigroup will be also obtained

3.1. Solution of the pure maturation problem along the characteristic lines

ConsideringT as a parameter, the differential system of characteristic lines associat
to (11) is

dx

ds
= w(x(s), T ),

dt

ds
= 1, x(0) = x0, t (0) = t0,

whose solution isxT (s) = Φ(s, x0, T ), tT (s) = s + t0.
For eachx0 ∈ (0,1), let JT (x0) ⊂ R be the maximal open interval of definition of th

solutionΦ(·, x0, T ) which, as a consequence of Hypothesis 1(iii), is a bounded inte
and let us defineΩT := {(s, x) ∈ R × (0,1); s ∈ JT (x)}. Then, bearing in mind som
well-known properties of the flowΦ we have

Lemma 1. Let us define

W := {
(s, x0, T ); (s, x0) ∈ ΩT , T ∈ [Tmin, Tmax]

}
.

Under Hypothesis1 we have,∀(s, x0, T ) ∈ W , s > 0,

∂Φ

∂s
(s, x0, T ) > 0,

∂Φ

∂x
(s, x0, T ) > 0,

∂Φ

∂T
(s, x0, T ) < 0.
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Proof. The first two inequalities follow immediately by inspection of the flow map.
the third one, since∂Φ

∂s
(s, x0, T ) = w(Φ(s, x0, T ), T ), we have

∂

∂s

(
∂Φ

∂T

)
(s, x0, T ) = D1w

(
Φ(s, x0, T ), T

)∂Φ

∂T
(s, x0, T ) + D2w

(
Φ(s, x0, T ), T

)
.

Hence, bearing Hypothesis 1 in mind, fors > 0,

∂Φ

∂T
(s, x0, T ) =

s∫
0

[
e
∫ s
σ D1w(Φ(k,x0,T ),T ) dk

]
D2w

(
Φ(σ,x0, T ), T

)
dσ < 0

and the lemma is proved.�
Coming back to the problem of constructing the solution to (11)–(13) along the ch

teristic lines, let(x0, t0) ∈ (0,1) × R+ be fixed and let(xT (s), tT (s)), s ∈ JT (x0), be the
characteristic line such thatxT (0) = x0, tT (0) = t0. DefiningūT (s) := u(xT (s), T , tT (s)),
Eq. (11) gives

d

ds
ūT (s) = 0 ⇒ u

(
xT (s), T , tT (s)

) = u
(
xT (0), T , tT (0)

) = u(x0, T , t0).

With the aim of obtaining an expression foru(x,T , t), let x = Φ(t,0, T ) := ΨT (t) be the
characteristic line corresponding to the initial conditionxT (0) = tT (0) = 0. This curve is
defined fort ∈ [0, t∗T ], wheret∗T := supJT (0) < +∞ andΨT (t∗T ) = 1.

Let us denote bỹΨT the extension ofΨT to R+ defined by

Ψ̃T (t) :=
{

ΨT (t), if t ∈ [0, t∗T ],
1, if t � t∗T .

(14)

The solution in a point(x, t) with x > Ψ̃T (t) can be written in terms of the initia
conditionu(x,T , t) = u(Φ(−t, x, T ), T ,0) = u0(Φ(−t, x, T ), T ).

At a point(x, t) with x � Ψ̃T (t) the solution is given in terms of the boundary condit
u(x,T , t) = u(0, T , t − Ψ −1

T (x)).
Then, forx � Ψ̃T (t), the problem is reduced to an integral equation foru(0, T , t). To

calculateu(1, τ, t) with τ ∈ [Tmin, Tmax], we have to distinguish two situations: 1= Ψ̃τ (t)

and 1> Ψ̃τ (t). Let us definetmin := Ψ −1
Tmin

(1), tmax := Ψ −1
Tmax

(1).

Lemma 1 implies that,∀τ ∈ [Tmin, Tmax] and t � 0, we haveΨ̃Tmax(t) � Ψ̃τ (t) �
Ψ̃Tmin(t) and 0< tmin < tmax. Therefore

(a) t ∈ [0, tmin] (⇒ Ψτ(t) < 1), u(1, τ, t) = u0(Φ(−t,1, τ ), τ ).
(b) t ∈ [tmax,+∞) (⇒ Ψ̃τ (t) = 1), u(1, τ, t) = u(0, τ, t − Ψ −1

τ (1)).
(c) t ∈ [tmin, tmax]. In this case there exists a uniqueτ ∗(t) ∈ [Tmin, Tmax] such that

Ψτ∗(t)(t) = 1, so that

u(0, T , t) =
τ∗(t)∫

C(T , τ )u(1, τ, t) dτ +
Tmax∫
∗

C(T , τ )u(1, τ, t) dτ.
Tmin τ (t)
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The first integral corresponds to values ofτ such that 1= Ψ̃τ (t), and thenu(1, τ, t) =
u(0, τ, t − Ψ −1

τ (1)), while in the second one it is 1> Ψτ (t) and thereforeu(1, τ, t) =
u0(Φ(−t,1, τ ), τ ).

Summarizing,

u(0, T , t) =




∫ Tmax
Tmin

C(T , τ )u0(Φ(−t,1, τ ), τ ) dτ, if t ∈ [0, tmin],∫ τ∗(t)
Tmin

C(T , τ )u(0, τ, t − Ψ −1
τ (1)) dτ

+ ∫ Tmax
τ∗(t) C(T , τ )u0(Φ(−t,1, τ ), τ ) dτ, if t ∈ [tmin, tmax],∫ Tmax

Tmin
C(T , τ )u(0, τ, t − Ψ −1

τ (1)) dτ, if t ∈ [tmax,+∞).

Let us observe that the first line in the formula above provides the functionu(0, T , t) for
t ∈ [0, tmin] in terms of the initial datau0. Henceforth we have an explicit formula for th
solution of the pure maturation problem in the intervalt ∈ [0, tmin],

u(x,T , t) =
{

u0(Φ(−t, x, T ), T ), if x > ΨT (t),∫ Tmax
Tmin

C(T , τ )u0(Φ(−t + Ψ −1
T (x),1, τ ), τ ) dτ, if x < ΨT (t).

3.2. Semigroup associated to the pure maturation problem

We are going to define a family of operators{S0(t)}t�0 on the Banach spaceX :=
L1([0,1] × [Tmin, Tmax]) with the usual norm.

(i) t ∈ [0, tmin], u0 ∈ X,

(
S0(t)u0

)
(x, T ) :=




u0(Φ(−t, x, T ), T ), if x > ΨT (t),∫ Tmax
Tmin

C(T , τ )u0(Φ(−t + Ψ −1
T (x),1, τ ), τ ) dτ,

if x < ΨT (t).

(ii) t > tmin ⇒ t = ktmin + t̃ , with k ∈ N andt̃ ∈ [0, tmin). Then

S0(t) := [
S0(tmin)

]k
S0(t̃ ).

Our next goal is to show that{S0(t)}t�0 is aC0-semigroup onX.

Proposition 1. The family of operators{S0(t)}t�0 satisfies

∀t1, t2 � 0, S0(t1 + t2) = S0(t1)S0(t2).

Proof. Step1. Let t1, t2 � 0 be such thatt1 + t2 � tmin.
Introducing the notationu1(x, T ) := (S0(t1)u0)(x, T ), we have(

S0(t2)(S0(t1)u0)
)
(x, T ) = (

S0(t2)u1
)
(x, T )

=
{

u1(Φ(−t2, x, T ), T ), if x > ΨT (t2),∫ Tmax
Tmin

C(T , τ )u1(Φ(−t2 + Ψ −1
T (x),1, τ ), τ ) dτ, if x < ΨT (t2).

Step1.1. In the casex > ΨT (t2) we have
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• For x̃ := Φ(−t2, x, T ) > ΨT (t1),

u1(x̃, T ) = u0
(
Φ(−t1, x̃, T ), T

) = u0
(
Φ

(−t1,Φ(−t2, x, T ), T
)
, T

)
= u0

(
Φ(−t1 − t2, x, T ), T

) = (
S0(t1 + t2)u0

)
(x, T ).

In the last equality we have used{
x > ΨT (t2),

Φ(−t2, x, T ) > ΨT (t1)
⇒ x > ΨT (t1 + t2),

which can be proved easily: with the notationx∗ := Φ(t1,0, T ), we havex̃ > x∗ ⇒
Φ(t, x̃, T ) > Φ(t, x∗, T ) and then

Φ(t2, x̃, T ) = x > Φ(t2, x
∗, T ) = Φ

(
t2,Φ(t1,0, T ), T

) = ΨT (t1 + t2).

• For x̃ < ΨT (t1), we havex < ΨT (t1 + t2) and then

x = Φ(t2, x̃, T ) < Φ(t2, x
∗, T ) = ΨT (t1 + t2).

From the definition ofS0(t) for t ∈ [0, tmin], we have

(
S0(t1 + t2)u0

)
(x, T ) =

Tmax∫
Tmin

C(T , τ )u0
(
Φ

(−t1 − t2 + Ψ −1
T (x),1, τ

)
, τ

)
dτ

and also

(
S0(t2)u1

)
(x, T ) =

Tmax∫
Tmin

C(T , τ )u0
(
Φ

(−t1 + Ψ −1
T

(
Φ(−t2, x, T )

)
,1, τ

)
, τ

)
dτ.

Equating the two expressions, our goal is to check the equality−t1 − t2 + Ψ −1
T (x) =

−t1 + Ψ −1
T (Φ(−t2, x, T )) which is equivalent toΦ(−t2, x, T ) = ΨT (−t2 + Ψ −1

T (x)).
Sincex = Φ(Ψ −1

T (x),0, T ), the last equality holds.

Step1.2. In the casex < ΨT (t2), we also havex < ΨT (t1 + t2) and then

(
S0(t1 + t2)u0

)
(x, T ) =

Tmax∫
Tmin

C(T , τ )u0
(
Φ

(−t1 − t2 + Ψ −1
T (x),1, τ

)
, τ

)
dτ.

On the other hand

(
S0(t2)u1

)
(x, T ) =

Tmax∫
Tmin

C(T , τ )u1
(
Φ

(−t2 + Ψ −1
T (x),1, τ

)
, τ

)
dτ,

where

u1
(
Φ

(−t2 + Ψ −1
T (x),1, τ

)
, τ

) = (
S0(t1)u0

)(
Φ

(−t2 + Ψ −1
T (x),1, τ

)
, τ

)
.

Sincet1 + t2 < tmin < Ψ −1
τ (1) ⇒ −t2 + Ψ −1(x) + Ψ −1

τ (1) > t1 + Ψ −1(x) > t1, we have
T T
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Φ
(−t2 + Ψ −1

T (x),1, τ
) = Φ

(−t2 + Ψ −1
T (x) + Ψ −1

τ (1),0, τ
)

> Φ(t1,0, τ ) = Ψτ (t1)

and then(
S0(t1)u0

)(
Φ

(−t2 + Ψ −1
T (x),1, τ

)
, τ

)
= u0

(
Φ

(−t1,Φ
(−t2 + Ψ −1

T (x),1, τ
)
, τ

)
, τ

)
= u0

(
Φ

(−t1 − t2 + Ψ −1
T (x),1, τ

)
, τ

)
.

This proves thatS0(t2)S0(t1) = S0(t1 + t2).
Step2. Let t1, t2 � 0 be such thatt1 + t2 > tmin. We can writeti = kitmin + τi , with

ki ∈ N, τi ∈ [0, tmin), i = 1,2, and thent1 + t2 = (k1 + k2)tmin + τ1 + τ2.
Step2.1. Suppose thatτ1 + τ2 ∈ [0, tmin). Then

S0(t1 + t2) = [
S0(tmin)

]k1+k2S0(τ1 + τ2) = [
S0(tmin)

]k1S0(τ1)
[
S0(tmin)

]k2S0(τ2)

= S0(t1)S0(t2).

Step2.2. If τ1 + τ2 > tmin, we can writet1 + t2 = (k1 + k2 + 1)tmin + (τ1 − βtmin) +
(τ2 − (1− β)tmin), whereβ has been chosen so that{

τ1 − βtmin > 0,

τ2 − (1− β)tmin > 0
⇔ 1− τ2

tmin
< β <

τ1

tmin
.

Then

S0(t1 + t2) = [
S0(tmin)

]k1+k2+1
S0(τ1 − βtmin)S0

(
τ2 − (1− β)tmin

)
= [

S0(tmin)
]k1S0(βtmin)S0(τ1 − βtmin)

× [
S0(tmin)

]k2S0
(
(1− β)tmin

)
S0

(
τ2 − (1− β)tmin

)
= [

S0(tmin)
]k1S0(τ1)

[
S0(tmin)

]k2S0(τ2) = S0(t1)S0(t2). �
Bearing this proposition in mind we cannow establish the following theorem.

Theorem 1. Under Hypotheses1 and 2, the family of operators{S0(t)}t�0 is a strongly
continuous semigroup of bounded linear operators on the spaceX.

Proof. It is evident that eachS0(t) is a linear operator and thatS0(0) = Id.
Next, we prove that for eacht > 0,S0(t) ∈ L(X), i.e.,S0(t) is a bounded linear operato

It suffices to make the proof fort ∈ [0, tmin]. Let u0 ∈ X be fixed. Then

∥∥S0(t)u0
∥∥

X
�

Tmax∫
Tmin

[ ΨT (t)∫
0

( Tmax∫
Tmin

C(T , τ )
∣∣u0

(
Φ

(−t + Ψ −1
T (x),1, τ

)
, τ

)∣∣dτ

)
dx

]
dT

+
Tmax∫

Tmin

( 1∫
ΨT (t)

∣∣u0
(
Φ(−t, x, T ), T

)∣∣dx

)
dT

:= I1(t) + I2(t).
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Recalling Hypothesis 2, we have

I1(t) � ‖C‖∞
∫ ∫ ∫

V (t)

∣∣u0
(
Φ

(−t + Ψ −1
T (x),1, τ

)
, τ

)∣∣dx dT dτ, (15)

where

V (t) := {
(x,T , τ ); 0 � x � ΨT (t), (T , τ ) ∈ [Tmin, Tmax]2

}
. (16)

We perform in (15) the change of variables defined by

σ := Φ
(−t + Ψ −1

T (x),1, τ
)
, η := τ, ξ := T , (17)

under which,V (t) is transformed into

Ṽ (t) = {
(σ, η, ξ); Φ(−t,1, η) � σ � 1, (η, ξ) ∈ [Tmin, Tmax]2

}
. (18)

The Jacobian of this change of variables is given by

J = w
(
Φ

(−t + Ψ −1
T (x),1, τ

)
, τ

) 1

w(x,T )

hence, from Hypothesis 1 we haveJ−1 � ‖w‖∞
w∗ . Therefore,

I1(t) � ‖C‖∞
‖w‖∞

w∗

∫ ∫ ∫
Ṽ (t )

∣∣u0(σ, η)
∣∣dσ dη dξ � M‖u0‖X, (19)

where

M := ‖C‖∞
‖w‖∞

w∗ (Tmax− Tmin) > 0. (20)

We also have

I2(t) =
∫ ∫
W(t)

∣∣u0
(
Φ(−t, x, T ), T

)∣∣dx dT (21)

with W(t) := {(x, T ); ΨT (t) � x � 1, T ∈ [Tmin, Tmax]}.
To estimate the integral in (21) we choose the new set of variablesσ := Φ(−t, x, T ),

η := T and then, straightforward calculations lead to

I2(t) =
∫ ∫
W̃ (t)

∣∣u0(σ, η)
∣∣∣∣D2Φ(t, σ, η)

∣∣dσ dη,

whereW̃ (t) := {(σ, η); 0 � σ � Φ(−t,1, η), η ∈ [Tmin, Tmax]}. Since{
∂
∂s

(
∂Φ
∂x

)
(s, x, T ), = D1w(Φ(s, x,T ), T ) ∂Φ

∂x
(s, x, T ),

∂Φ
∂x

(0, x, T ) = 1,

we have, fors � 0,

∂Φ

∂x
(s, x, T ) = exp

( s∫
0

D1w
(
Φ(r, x,T ), T

)
dr

)

which provides the estimate sup(σ,η)∈[0,1]×[T ,T ] |D2Φ(t, σ, η)| � exp(t‖D1w‖∞).

min max
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Therefore

I2(t) � et‖D1w‖∞
∫ ∫
W̃ (t)

∣∣u(σ,η)
∣∣dσdη � et‖D1w‖∞‖u0‖X. (22)

Putting (19) and (22) together, we have‖S0(t)u0‖X � M∗(t)‖u0‖X with

M∗(t) := ‖C‖∞
‖w‖∞

w∗ (Tmax− Tmin) + et‖D1w‖∞ > 0,

which proves thatS0(t) is a bounded linear operator onX with uniform bound on bounde
subsets oft .

Finally, we have to show that,∀u0 ∈ X, limt→0+ ‖S0(t)u0 − u0‖X = 0. It is enough to
prove continuity for eachu0 ∈ C([0,1]×[Tmin, Tmax]), since this space is a dense subsp
of X. We have∥∥S0(t)u0 − u0

∥∥
X

=
Tmax∫

Tmin

( ΨT (t)∫
0

(∣∣∣∣∣
Tmax∫

Tmin

C(T , τ )u0
(
Φ

(−t + Ψ −1
T (x),1, τ

)
, τ

)
dτ

− u0(x, T )

∣∣∣∣∣
)

dx

)
dT +

Tmax∫
Tmin

( 1∫
ΨT (t)

∣∣u0
(
Φ(−t, x, T ), T

) − u0(x, T )
∣∣dx

)
dT

:= (I) + (II ).

Since∀t � 0 we haveΨT (t) � ΨTmin(t), we can write

(I) �
(
1+ ‖C‖∞(Tmax− Tmin)

)‖u0‖∞(Tmax− Tmin)ΨTmin(t) → 0 (t → 0+).

On the other hand, using the uniform continuity ofu0, for eachε > 0 there existsδ(ε) > 0
such that∣∣Φ(−t, x, T ) − x

∣∣ � δ(ε) ⇒ ∣∣u0
(
Φ(−t, x, T ), T

) − u0(x, T )
∣∣ � ε

and taking into account that limt→0+ Φ(−t, x, T ) = x uniformly on x, there exists
η(δ(ε)) > 0 such that

0 < t < η
(
δ(ε)

) ⇒ sup
x∈[0,1]

∣∣Φ(−t, x, T ) − x
∣∣ � δ(ε).

Therefore, for 0< t < η(δ(ε)),

(II ) � ε

Tmax∫
Tmin

[
1− ΨT (t)

]
dT � ε(Tmax− Tmin).

This completes the proof of the theorem.�
Some standard but lenghtly calculations lead to the following result for the infinite

generator of the semigroup.
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Proposition 2. The infinitesimal generator of the semigroup{S0(t)}t�0 is the operatorA0
defined by

(A0ϕ)(x,T ) := −w(x,T )
∂ϕ

∂x
(x,T )

with domain

D(A0) :=
{

ϕ ∈ X; ∂ϕ

∂x
∈ X, ϕ(0, ·) =

Tmax∫
Tmin

C(·, τ )ϕ(1, τ ) dτ

}
.

3.3. The resolvent ofA0

We are going to obtain the resolvent of the generatorA0, that is, the operato
(λI − A0)

−1. For each givenf ∈ X, we have to solve the equation(λI − A0)ϕ = f .
We consider: (i) the homogeneous equation(λI − A0)ϕ = 0,

∂ϕ

∂x
(x,T ) = − λ

w(x,T )
ϕ(x,T ) ⇒ ϕH (x,T ) = ϕ(0, T )e

−λ
∫ x
0

ds
w(s,T ) ,

(ii) the particular solution of the complete equation(λI − A0)ϕ = f . We look for a

solutionϕP (x,T ) := m(x,T )e
−λ

∫ x
0

ds
w(s,T ) , wherem(x,T ) should be calculated. Straigh

forward calculations lead to

ϕP (x,T ) =
x∫

0

f (s, T )

w(s, T )
e
−λ

∫ x
s

dσ
w(σ,T ) ds.

Now, we impose onϕ := ϕH + ϕP the conditionϕ ∈ D(A0),

ϕ(0, T ) =
Tmax∫

Tmin

C(T , τ )

(
ϕ(0, τ )e

−λ
∫ 1
0

ds
w(s,τ ) +

1∫
0

f (s, τ )

w(s, τ )
e
−λ

∫ 1
s

dσ
w(σ,τ ) ds

)
dτ. (23)

For eachλ ∈ C we define the two operators

(i) Lλ :L1(Tmin, Tmax) → L1(Tmin, Tmax),

Lλ(h)(T ) :=
Tmax∫

Tmin

C(T , τ )e
−λ

∫ 1
0

ds
w(s,τ ) h(τ ) dτ,

(ii) Sλ :X → L1(Tmin, Tmax),

Sλ(f )(T ) :=
Tmax∫

Tmin

C(T , τ )

( 1∫
0

f (s, τ )

w(s, τ )
e
−λ

∫ 1
s

dσ
w(σ,τ ) ds

)
dτ,

which allows us to write Eq. (23) as(I − Lλ)(ϕ(0, ·)) = Sλ(f ). Since
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∥∥Lλ(h)
∥∥

L1 =
Tmax∫

Tmin

∣∣∣∣∣
Tmax∫

Tmin

C(T , τ )e
−λ

∫ 1
0

ds
w(s,τ ) h(τ ) dτ

∣∣∣∣∣dT

� ‖C‖∞(Tmax− Tmin)‖h‖L1e
−λ

∫ 1
0

ds
w(s,Tmin) → 0 (λ → +∞),

there existsλ0 > 0 such that‖Lλ‖ < 1 for λ � λ0. This implies[λ0,+∞) ⊂ ρ(A0) (resol-
vent set ofA0) and also that(I − Lλ)

−1 exists forλ � λ0, which yields

ϕ(0, ·) = (I − Lλ)
−1(Sλ(f )

)
.

The resolvent ofA0 is, for λ > λ0,(
(λI − A0)

−1f
)
(x, T ) = e

−λ
∫ x

0
ds

w(s,T ) (I − Lλ)
−1(Sλ(f )

)
(T )

+
x∫

0

f (s, T )

w(s, T )
e
−λ

∫ x
s

dσ
w(σ,T ) ds. (24)

Our next goal is to show one of the main results of this paper, which will be an ess
piece in the proof of the AEG property for the model. This result involves the measu
noncompactnessα. We refer the reader to [15] for the general theory.

Theorem 2. Theα-growth bound of the semigroup{S0(t)}t�0 satisfies that

ω1(A0) := lim
t→+∞

log(α(S0(t)))

t
= −∞.

To prove the theorem, we need some preliminary results.
Let us consider for eacht ∈ [0, tmin], the two linear bounded operatorsN(t),K(t) :X →

X such thatS0(t) = N(t) + K(t). N(t) andK(t) are defined by

(
N(t)u0

)
(x, T ) =

{
u0(Φ(−t, x, T ), T ), if x > ΨT (t),

0, if x < ΨT (t),

(
K(t)u0

)
(x, T ) =

{0, if x > ΨT (t),∫ Tmax
Tmin

C(T , τ )u0(Φ(−t + Ψ −1
T (x),1, τ ), τ ) dτ, if x < ΨT (t).

We state now some properties of these operators.
(a)N(t) is a nilpotent operator. For eachu0 ∈ X, we have

support
(
N(t)u0

) ⊂ {
(x, T ); Ψ̃T (t) � x � 1, T ∈ [Tmin, Tmax]

}
and also

(x, T ) ∈ support
(
N2(t)u0

) ⇒ Φ(−t, x, T ) > Φ(t,0, T )

⇒ Φ
(
t,Φ(−t, x, T ), T

)
> Φ

(
t,Φ(t,0, T ), T

)
⇒ x > Φ(2t,0, T ).

Therefore support(N2(t)u0) ⊂ {(x, T ); Ψ̃T (2t) � x � 1, T ∈ [Tmin, Tmax]} and, so on

support
(
Np(t)u0

) ⊂ {
(x, T ); Ψ̃T (pt) � x � 1, T ∈ [Tmin, Tmax]

}
, p = 3, . . . .
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SinceΨTmax(tmax) = 1, there existsp0 > 1 such thatΨ̃T (p0t) � Ψ̃Tmax(p0t) = 1. Hence

∀(x, T ) ∈ [0,1] × [Tmin, Tmax],
(
Np0(t)u0

)
(x, T ) = 0,

and then∀p � p0, Np(t) = 0, that is,N(t) is a nilpotent operator.
(b) There existst∗ ∈ (0, tmin) such that∀t ∈ (0, t∗), K2(t) = 0. In fact, for eachu0 ∈ X,

we have

(
K2(t)u0

)
(x, T ) =




0, if x > ΨT (t),∫ Tmax
Tmin

C(T , τ )(K(t)u0)(Φ(−t + Ψ −1
T (x),1, τ ), τ ) dτ,

if x < ΨT (t),

and also, using the notationxτ (t) := Φ(−t + Ψ −1
T (x),1, τ ),

(
K(t)u0

)(
xτ (t), τ

) =




0, if xτ (t) > Ψτ (t),∫ Tmax
Tmin

C(T , τ )C(τ, σ )u0

×(Φ(−t + Ψ −1
τ (xτ (t)),1, τ ),1, σ ), σ ) dσ,

if xτ (t) < Ψτ (t).

We can chooset∗ > 0 small enough such thatΦ(−t∗,1, Tmin) > Φ(t∗,0, Tmin) and then
since the functions ofτ , Φ(−t∗,1, τ ) andΦ(t∗,0, τ ) are respectively increasing and d
creasing, we have∀t ∈ (0, t∗),

∀τ ∈ [Tmin, Tmax], xτ (t) > Ψτ (t).

Therefore(K(t)u0)(xτ (t), τ ) = 0, which impliesK2(t)u0 = 0. Let us notice thatt∗ satis-
fiesΦ(2t∗,0, Tmin) < 1, and hence 2t∗ < tmin.

(c) Choosingt = αtmin, α ∈ (0,1/2), then the natural numberp0 such thatNp0(t) = 0,
satisfies

p0 � tmax

t
= 1

α

tmax

tmin
.

Next, we will define the operatorKp(t) := K(t)Np(t) for each natural numberp with
1 � p < (1/α)(tmax/tmin) � p0.

For eachu0 ∈ X, we have

up(x,T ) := (
Np(t)u0

)
(x, T ) =

{
u0(Φ(−pt, x,T ), T ), if (x, T ) ∈ Sp,

0, if (x, T ) /∈ Sp,

whereSp := support(Np(t)). Then,

(
Kp(t)u0

)
(x, T ) = (

K(t)up

)
(x, T ) = H

(
ΨT (t) − x

) Tmax∫
Tmin

C(T , τ )up

(
x(τ), τ

)
dτ ,

where we have introduced the notationx(τ) := Φ(−t +Ψ −1
T (x),1, τ ). Sinceup(x(τ ), τ ) =

H(x(τ) − Ψτ (pt))u0(Φ(−(p + 1)t + Ψ −1
T (x),1, τ ), τ ), we have(

Kp(t)u0
)
(x, T )

= H
(
ΨT (t) − x

) Tmax∫
τ∗(x,T )

C(T , τ )u0
(
Φ

(−(p + 1)t + Ψ −1
T (x),1, τ

)
, τ

)
dτ,
p
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whereτ ∗
p(x,T ) is the unique solution of the equationΦ(−t + Ψ −1

T (x),1, τ ) = Ψτ (pt),

that isΦ((p + 1)t − Ψ −1
T (x),0, τ ) = 1.

The following lemma establishes an essential result for the proof of Theorem 2.

Lemma 2. Let us considert = αtmin, α ∈ (0,1/2), and letp,q be two natural number
such that1 � p,q � (1/α)(tmax/tmin). Then, the operatorKp(t)Kq(t) is a compact oper
ator onX.

Proof. For eachu0 ∈ X, let us introduce the notatioñup(x,T ) := (Kp(t)u0)(x, T ). Then,(
Kq(t)Kp(t)u0

)
(x, T ) = (

Kq(t)ũp

)
(x, T )

= H
(
ΨT (t) − x

) Tmax∫
τ∗
q (x,T )

C(T , τ )ũp

(
xq(τ ), τ

)
dτ ,

wherexq(τ ) := Φ(−(q + 1)t + Ψ −1
T (x),1, τ ). Since

ũp(xq(τ ), τ ) = H
(
Ψτ (t) − xq(τ )

)

×
Tmax∫

τ∗
p(xq(τ ),τ )

C(τ,w)u0
(
Φ

(−(p + 1)t + Ψ −1
τ (xq(τ )),1,w

)
,w

)
dw,

we have ũp(xq(τ ), τ ) = 0, ∀τ ∈ [τ̃q (x, T ), Tmax], where τ̃q (x, T ) is the solution to
Φ(−(q + 1)t + Ψ −1

T (x),1, τ ) = Φ(t,0, τ ), that is,Φ((q + 2)t − Ψ −1
T (x),0, τ ) = 1.

Straightforward calculations show thatτ̃q (x, T ) > Tmin and τ̃q (x, T ) > τ ∗
q (x, T ),

henceforth(
Kp(t)Kq(t)u0

)
(x, T )

= H
(
ΨT (t) − x

) τ̃q (x,T )∫
τ∗
q (x,T )

C(T , τ )

×
( Tmax∫

τ∗
p(xq(τ ),τ )

C(τ,w)u0
(
Φ

(−(p + 1)t + Ψ −1
τ

(
xq(τ )

)
,1,w

)
,w

)
dw

)
dτ

= H
(
ΨT (t) − x

)
×

∫ ∫
M(x,T ,t)

C(T , τ )C(τ,w)u0
(
Φ

(−(p + 1)t + Ψ −1
τ

(
xq(τ )

)
,1,w

)
,w

)
dw dτ,

where

M(x,T , t) := {
(w, τ); τ ∗

p

(
xq(τ ), τ

)
� w � Tmax, τ ∈ [

τ ∗
q (x, T ), τ̃q(x, T )

]}
.
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(11).
With the help of the change of variablesσ := Φ(−(p + 1)t + Ψ −1
τ (xq(τ )),1,w), η := w,

the expression above can be written as(
Kq(t)Kp(t)u0

)
(x, T ) = H

(
ΨT (t) − x

) ∫ ∫
M̃(x,T ,t)

C(x,T , t, σ, η)u0(σ, η) dσ dη

and making an extension by zero of the kernel to[0,1] × [Tmin, Tmax], we can express(
Kq(t)Kp(t)u0

)
(x, T ) =

∫ ∫
[0,1]×[Tmin,Tmax]

R(x,T , t, σ, η)u0(σ, η) dσ dη

which is a compact operator (see [7, Corollary 9.7.3]).�
Proof of Theorem 2. Let t ∈ (0, tmin/2) be such thatK2(t) = 0, andp0 be the small-
est integer such thatNp0(t) = 0. The iterate[S0(t)]p = [K(t) + N(t)]p consists of the
products[K(t)]p1[N(t)]p2[K(t)]p3 . . . [N(t)]p2m with p1 + p2 + · · · + p2m = p, pi � 0,
i = 1, . . . ,2m. Some of these products are equal to zero ifp2j+1 � 2 or p2j � p0. For
p big enough(p > 2p0) it can be seen that the only surviving terms are those conta
the expressionK(t)[N(t)]p2kK(t)[N(t)]p2l , with 1 � p2k,p2l < p0, which is a compac
operator in view of Lemma 2.

Henceforth, forp big enoughα([S0(t)]p) = 0. Therefore

re
(
S0(t)

) := lim sup
p→∞

p

√
α
([

S0(t)
]p) = 0.

Since∀t � 0, re(S0(t)) = etω1(A0), we can conclude thatω1(A0) = −∞. �

4. AEG property for the complete model

In this section we will show that the solutions to the problem (8)–(10) (the com
model) define aC0-semigroup{S(t)}t�0, with infinitesimal generatorA, which has the
AEG property.

Let us remember that AEG property means that there existsλ∗ ∈ R which is an eigen-
value of A and a strictly positive associated eigenfunctionϕ∗ ∈ X such that, for each
u0 ∈ X, limt→+∞ e−λ∗t S(t)u0 = C0ϕ

∗, whereC0 is a constant depending on the init
datau0.

TheMalthusian parameterλ∗ satisfies thatλ∗ = s(A) := sup{Reλ; σ(A)}.
4.1. Semigroup associated to the model (8)–(10)

In the framework of semigroup theory, we will consider Eq. (8) as a perturbation of
To this end, let us define the operatorB0 :X → X,

∀ϕ ∈ X, (B0ϕ)(x,T ) :=
Tmax∫

Tmin

B(x, τ, T )ϕ(x, τ ) dτ,

which, under Hypothesis 2 is linear bounded with‖B0‖ � ‖B‖∞.
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Then,A := A0 + B0 with domainD(A) := D(A0) is the infinitesimal generator of
strongly continuous semigroup onX, which will be denoted{S(t)}t�0. This semigroup
satisfies avariation of constants formula[8],

∀u0 ∈ X, S(t)u0 = S0(t)u0 +
t∫

0

S0(t − s)B0S(s)u0 ds. (25)

We are going to give an explicit expression of this equality fort ∈ [0, tmin]. First of all we
introduce the notations

u(x,T , t) := (
S(t)u0

)
(x, T ),

F (x,T , t) := (
B0S(t)u0

)
(x, T ) =

Tmax∫
Tmin

B(x, τ, T )u(x, τ, t) dτ .

For 0� s � t � tmin, we have

(
S0(t − s)F (· , · , s))(x, T ) =




F(Φ(s − t, x, T ), T , s), s > t − Ψ −1
T (x),∫ Tmax

Tmin
C(t, τ )F (Φ(s − t + Ψ −1

T (x),1, τ ), τ, s) dτ,

s < t − Ψ −1
T (x),

and then,(
S(t)u0

)
(x, T ) = (

S0(t)u0
)
(x, T ) + G(x,T , t) (26)

with

G(x,T , t) :=




∫ t−Ψ −1
T (x)

0

(∫ Tmax
Tmin

C(T , τ )
[∫ Tmax

Tmin
B(Φ(s − t + Ψ −1

T (x),1, τ ),w, τ)

× u(Φ(s − t + Ψ −1
T (x),1, τ ),w, s) dw

]
dτ

)
ds

+ ∫ t

t−Ψ −1
T (x)

( ∫ Tmax
Tmin

B(Φ(s − t, x, T ), τ, T )

× u(Φ(s − t, x, T ), τ, s) dτ
)
ds,

if x ∈ [0,ΨT (t)],∫ t

0

(∫ Tmax
Tmin

B(Φ(s − t, x, T ), τ, T )u(Φ(s − t, x, T ), τ, s) dτ
)
ds,

if x ∈ [ΨT (t),1].
4.2. Asymptotic behavior of the semigroup{S(t)}t�0

In this section we will establish the main result of this paper: the semigroup{S(t)}t�0
has the AEG property. We will achieve this result using the following test for AEG [6

Theorem 3. If {S(t)}t�0 is an irreducible positive semigroup with infinitesimal genera
A on a Banach latticeX and ifω1(A) < ω0(A), then{S(t)}t�0 has the AEG property.

Let us recall thatω0(A) is thegrowth boundof the semigroup, defined by

ω0(A) := lim
log‖S(t)‖

.

t→+∞ t
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Theorem 4. The semigroup{S(t)}t�0 has the AEG property.

Proof. (a)Positivity. Since the semigroup{S0(t)}t�0 is positive andB0 is a positive oper-
ator, we have positivity for the semigroup{S(t)}t�0.

(b) Irreducibility. Taking into account the variation of constants formula (25), i
enough to prove irreducibility of the semigroup{S0(t)}t�0. Since

(λI − A0)
−1 =

+∞∫
0

e−λtS0(t) dt

and using the expression (24) for the resolvent(λI − A0)
−1, we have∀ϕ ∈ X, ∀ψ ∈ X∗

(topological dual space ofX), ϕ � 0,ψ � 0 and denoting〈· , ·〉 the usual product of dualit
in X,

0 <
〈
ψ, (λI − A0)

−1ϕ
〉 =

+∞∫
0

e−λt
〈
ψ,S0(t)ϕ

〉
dt

which implies existence oft0 > 0 such that〈ψ,S0(t0)ϕ〉 > 0.
(c) Inequalityω1(A) < ω0(A). In fact, we will show thatω1(A) = −∞. First of all, we

analyze the expression of the semigroup{S(t)}t�0 in terms of{S0(t)}t�0 given in (26). Let
us consider the term

G1(x,T , t) :=
t−Ψ −1

T (x)∫
0

( Tmax∫
Tmin

C(T , τ )

[ Tmax∫
Tmin

B
(
Φ

(
s − t + Ψ −1

T (x),1, τ
)
,w, τ

)

× u
(
Φ

(
s − t + Ψ −1

T (x),1, τ
)
,w, s

)
dw

]
dτ

)
ds,

wheret ∈ [0, tmin], x ∈ [0,ΨT (t)], T ∈ [Tmin, Tmax]. With the help of the change of var
ablesη := w, ξ := Φ(s − t + Ψ −1

T (x),1, τ ), σ := s, it can be written as

G1(x,T , t) =
∫ ∫ ∫
Ω(x,T ,t)

K(x,T , t, ξ, η, σ )u(ξ, η,σ ) dξ dη dσ,

where

Ω(x,T , t) := {
(ξ, η, σ ): Φ

(
σ − t + Ψ −1

T (x),1, Tmax
)
� ξ

� Φ
(
σ − t + Ψ −1

T (x),1, Tmin
)
,

σ ∈ [0, t − Ψ −1
T (x)], η ∈ [Tmin, Tmax]

}
.

Denoting byK̃ the extension by zero of the kernelK to Q∗ × Q∗, with Q∗ := [0,1] ×
[Tmin, Tmax] × [0, tmin], we can writeG1(x,T , t) = H(u)(x,T , t), whereH :L1(Q∗) →
L1(Q∗) is the operator defined by

H(u)(x,T , t) :=
∫ ∫ ∫

∗
K̃(x,T , t, ξ, η, σ )u(ξ, η,σ ) dξ dη dσ.
Q
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Hypothesis 2 implies that̃K ∈ L∞(Q∗ ×Q∗), hence it is easy to prove thatH is a compact
operator (see [7, Corollary 9.7.3]).

Let us now consider the term

G2(x,T , t) :=




∫ t

t−Ψ −1
T (x)

[∫ Tmax
Tmin

B(Φ(s − t, x, T ), τ, T )

× u(Φ(s − t, x, T ), τ, s) dτ
]
ds,

if x ∈ [0,ΨT (t)],∫ t

0

[∫ Tmax
Tmin

B(Φ(s − t, x, T ), τ, T )u(Φ(s − t, x, T ), τ, s) dτ
]
ds,

if x ∈ [ΨT (t),1].
Extending by zero the functionB to [0,1] × [0, t], that is, introducing the function

H(x,T , t, τ, s) :=
{

B(Φ(s − t, x, T ), τ, T ), if (x, s) ∈ (I),

0, if (x, s) ∈ (II ),

with

(I) := {
(x, s); t − Ψ −1

T (x) � s � 1, 0� x � ΨT (t)
} ∪ ([

ΨT (t),1
] × [0, t]),

(II) := {
(x, s); 0� s � t − Ψ −1

T (x), 0 � x � ΨT (t)
}
,

we can define an operatorL :L1(Q∗) → L1(Q∗) by

L(u)(x,T , t) :=
∫ ∫

[Tmin,Tmax]×[0,t ]
H(x,T , t, τ, s)u

(
Φ(s − t, x, T ), τ, s

)
dτ ds

so thatL(u)(x,T , t) = G2(x,T , t).
Straightforward calculations show thatL is a bounded linear operator with‖L‖ �

‖B‖∞‖w‖∞(Tmax− Tmin). Moreover

L
(
L(u)

)
(x,T , t) =

t∫
0

( ∫ ∫ ∫
[Tmin,Tmax]2×[0,s]

H(x,T , t, τ, s)H
(
Φ(s − t, x, T ), τ, s, σ,w

)

× u
(
Φ

(
σ − s,Φ(s − t, x, T ), τ

)
, σ,w

)
dτ dσ dw

)
ds.

The change of variablesλ = Φ(σ − s,Φ(s − t, x, T ), τ ), η = σ , ξ = w, transform the
above integral into

L
(
L(u)

)
(x,T , t) =

t∫
0

( ∫ ∫ ∫
N(x,T ,t,s)

V(x, T , t, s, λ, η, ξ)u(λ,η, ξ) dλdη dξ

)
ds

with

N(x,T , t, s) = {
(λ, η, ξ): Φ

(
σ − s,Φ(s − t, x, T ), Tmax

)
� λ

� Φ
(
σ − s,Φ(s − t, x, T ), Tmin

)
,

η ∈ [Tmin, Tmax], ξ ∈ [0, s]}.
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Extending by zero the functionV to Q∗ × [0, tmin] × Q∗, we have finally

L
(
L(u)

)
(x,T , t) =

t∫
0

(∫ ∫ ∫
Q∗

Ṽ(x, T , t, s, λ, η, ξ)u(λ,η, ξ) dλdη dξ

)
ds.

This expression allows us to conclude without difficulty that the iterateL2 is a compact
operator onL1(Q∗).

Summarizing, we have transformed (26) intou = w +H(u) + L(u) with u := S(·)u0,
w := S0(·)u0, and sinceL(u) = L(w)+L(H(u))+L(L(u)), we arrive atu = w+L(w)+
H(u) +L(H(u)) +L(L(u)).

The composition of a compact operator witha bounded linear operator is also a co
pact operator, therefore we can writeS(t)u0 = S0(t)u0 + L(S0(t)u0) + U(t)u0 with U(t)

a compact operator. Henceα(S(t)) � α(S0(t)) + α(L(S0(t))) � (1 + ‖L‖)α(S0(t)) and
then, taking into account Theorem 2,

ω1(A) := lim sup
t→+∞

log(α(S(t)))

t
�

(
1+ ‖L‖) lim sup

t→+∞
logα(S0(t))

t

= (
1+ ‖L‖)ω1(A0) = −∞.

From the results obtained in the previous section we can deduce easily that the sem
{S0(t)}t�0 is irreducible, positive and eventually compact, and thenσ(A0) �= ∅, which
implies thatω0(A0) > −∞ (see [10, Theorem 3.7, p. 311]). But the perturbationB0 is a
positive operator, so thatω0(A) � ω0(A0) (see [6, p. 231]), which proves thatω0(A) >

−∞. The theorem is thus proved.�

5. Conclusion

In this paper we have studied the basic property of asynchronous exponential g
in a cell population model in which cells are characterized by two state variable
maturity and a state variable identifying the rate of maturation. Due to this structur
model can represent both the cell cycle phases and the kinetic heterogeneity wit
population. The key feature of the model is the incorporation of the concept of g
retardation [12,13], that reflects the kineticconsequences of the possible worsening
microenvironment during the life span of the cell. A partial heredity of the maturation
of the mother cell by the daughter cells was also assumed, according to [9]. The assu
of nonstrict heredity was crucial for establishing the property of asynchronous expon
growth.
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