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Abstract

A continuous cell population model, which represents both the cell cycle phase structure and the
kinetic heterogeneity of the population following Shackney'’s ideas [J. Theor. Biol. 38 (1973) 305—
333], is studied. The asynchronous exponential growth property is proved in the framework of the
theory of strongly continuous semigroups of bounded linear operators.
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1. Introduction

Populations of proliferating cells are charited by cell-to-cell ariability of the cell
cycle kinetic parameters. Even cell populations growing in vitro, that is in a homogeneous
environment, exhibit different cell cycle times because of the intrinsic variabilities in the
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machinery of cell cycle progression. Both experimental and clinical tumours, as demon-
strated since the early studies usitigrthymidine labeling [14], show a larger extent of
kinetic heterogeneity due to the possible preseof genetic heterogeneity, and to the dif-
ferent conditions of nutrition and oxygenation iretcell microenvironment, related to the
tumour vascularization.

In the framework of deterministic models, the kinetic heterogeneity has been mainly
represented by means of age-structured population models [1,2,4,15]. The age formalism,
indeed, allows a simple representation of cell populations with variable (but uncorrelated)
cell cycle times. Denoting by (a > 0) the cell age and by(a, t) the cell density with
respect to age, that is(a, t) da is the number of cells with age betweeranda + da at
time ¢, the basic model is given by

d d
(@0 + == (a.0) = —[B@ + p@]n(a.n.

+00
n(0,1) =2 / B(a)n(a,t)da,
0

whereg(a) is the age-dependent division rate coefficient, which is related to the distribu-
tion of cell cycle duration, and (a) represents cell loss. More complex models, involving
age-structured subpopulatioreze required to take into account the different cell cycle
phases [5].

Another approach to represent the kinetic heterogeneity was proposed by Lebowitz and
Rubinow [9], considering the cell population as composed by a continuous spectrum of
subpopulations each charadtzed by a given cell cycle transit time The population is
thus described by the cell densiya, t,1) (a € [0, t], T > 0), such thak(a, t,t)dadt
denotes the number of cells with age betweemda + da and cell cycle time between
andr + dt at timet. The model is given by

on on
—@a,t,)+—(a,1,1) =—ula,v)na,r,1),
ot da
+00
n(0,1,1) =2 / O, tn’', v/, 1) dt,
0

where®(z, t’) is a transition kernel such th&(z, t’) dr yields the probability that a

cell originated from a cell with cycle time’ will have cycle time between andt + dx.

We note that the dependence @fon 7’ introduces a partial heredity of the cell cycle
transit time between mother and daughter cells. The model in [9], through the variable
transformatiorr = a/t, can be written in terms of the cell maturityand distributed cell
maturation rates. Because the cell maturiydafined by Rubinow [11], is a variable rang-

ing from 0 to 1 which marks the progression through the cell cycle, the maturity formalism
readily represents the cell cycle phases bgigned maturity intervals. It is easy to see
that the preceding model implies a strict t&daship among the transit times of the cell
cycle phases. We remark that both the above models exhibit the asynchronous exponen-
tial growth property, that is, the population asymptotically shows an exponential growth
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with a steady distribution with respect to the structure variables, irrespective of the initial
condition [15,16].

A different model for representing the proliferative heterogeneity of in vivo tumour cell
populations was proposed by Shackney [12] and recently reconsidered by Shackney and
Shankey [13]. This model, which is substantially based on the concept of cell maturity,
introduces the idea agfrowth retardationthat is, it is assumed that cells change their rate
of progression towards mitosis during their life-span, by moving from tracks with faster
rate to tracks with slower rate. Whereas in [9] the cell cycle time and the phase transit
times are determined at birth, now the tritisnes also depend on the random transitions
occurring during cell life. Yet, this mechanism produces correlated transit times in cell
cycle phases. From the biological viewpoint, the idea of growth retardation focuses on the
microenvironmental origin of the tumour kitie heterogeneity, and reflects the migration
of cells from regions close to the vascukamply, to regions where worse conditions of
microenvironment are prevailing and slow proliferation and/or cell arrest occur.

The model proposed by Shackney [12] was originally formulated as a discrete model.
In [3] we propose a continuous cell population model, based on Shackney’s ideas, which
represents both the cell cycle phase structure and the kinetic heterogeneity of the popula-
tion (see Section 2). In the present paper we will prove for this model the asynchronous
exponential growth property, which guarantees that the cell population can desynchronize,
as it is experimentally observed. The proof is developed in Sections 3 and 4, and is based
on the theory of operator semigroups.

2. Formulation of the model

We start by describing, for the reader’'sneenience, the model presented in [3]. Let
us consider a cell population in which cells are characterized by two state variables: the
maturity x, 0 < x < 1, with x = 0 at birth andx = 1 at division, and a state variablg
0 < Tmin < T < Tmax < +00, which identifies the rate of maturatian(x, T), i.e., the
local rate of progression through the cell cycle, in a suitable class of functiong. frar
following relation holds:

1

/ dx
=T
w(x,T)

0

so that, ifT does not change during cell life, the cell cycle duration is just givefi bjhe
definition of T implies that, ifT increases, the maturation rate will decrease.

Hypothesis 1. The functionw(x, T') satisfies the following

(i) w e (0, 1] x [Tmin, Tmax))-
(i) V(x,T) € [0, 1] X [Tmin. Tmaxl, 3% (x,T) <O.
(iif) There exists a constant* > 0 such thatvx € [0, 1], w(x, Tmax) = w*.
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Note that if w is independent ok, w(x,T) = 1/T (and Hypothesis 1 is satisfied).
Moreover, in view of Hypothesis 1, the progression rate cannot vanish at any point of the
cell cycle and complete cell cycle arrest at some definite valuesoéxcluded.

During their life span, cells can chan@eat random by jump transitions tb values
larger than the starting value (growth retatite), while conserving at each jump the ma-
turity x. In this way, cells having the same valueloat birth may reach division following
different tracks on théx, 7)) plane and then with differergtell cycle transit times. The
transitions are governed by the transition rate, 7) and by the kernek (T, 7, x), T >,

Timin < 7 < Tmax Such thatK (T, t, x) dT represents the probability that the transition
bringsinto[T, T + dT] a cell with state variables andt. Therefore,

Tmax
/ K(T,7,x)dT = 1. 1)

Because no transition is assumed to occur Whea Tmax, it is A(x, Tmax) = 0.

Whenx attains the value = 1, cells divide into two daughter cells. The daughters of
cells that divide withT = = will have at birth a value of" distributed arouna according
to a given dispersion kerné) (T, ) which satisfies

Tmax
/ O(T,7)dT =1.
Tmin
This dispersion reflects phenomena, such astiequal division of cells at mitosis, which
contribute to the intrinsic variability of thduration of cell cycle. Finally, the population
is affected by random cell loss according to a loss rate, 7), which may represent cell
death as well as an irreversible transition into a quiescent state.
The cell population will be described by the density functiow, 7, ¢), such that

n(x,T,t)dxdT isthe number of cells having, T) € [x,x +dx] x [T, T +dT] attimet.
As shown in [3], the following governing equation can be obtained:

M Tt i[ T T,1)]
2 (x, T, )+8x w(x, T)n(x, T, 1)
T
:—[k(x,T)+u(x,T)]n(x,T,t)+/A(x,r)K(T, 7, x)n(x, T, 1) dr. (2)

Tmin

Equation (2) has to be complemented by the boundary condition

Tmax
w(0, T)n(0,T,t)=2 / (T, 1w, t)n(l, T, 1) dt )
Timin
and by the initial condition
nx,T,0 =no(x,T). 4)

By identifying the cell cycle phases, G1, S, G2 and M, with the maturity intervals
(xi—1,x),i=1,...,4,withxo =0 andx4 = 1, the integral of the density(x, T, r) over
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these maturity intervals (and all the valuesTf gives the number of cells in the cor-
responding phases at timeWe note that the model here proposed becomes equivalent,
wheni(x, T) = 0, to the cell population model proposed by Lebowitz and Rubinow in [9],
in the case of a finite range of cycle transit time.

Our goal is to show the asynchronous exponential growth (AEG) property of the solu-
tions of (2)—(4). To this end, the above equations can be rewritten as

an on
—x,T,)+wx,T)—x,T,1)
ot ax

Tmax
=a(x,T)n(x,T,t)+ / b(x,t,T)n(x,t,t)dr, (5)
Tmin
Tmax
n(0,T,1) = / C(T,t)n(l, 7,1 dr, (6)
Tmin
n(x,T,0 =no(x,T), 7

where we have introduced the notations

ow
a(x,T):= —[k(x, T)+ux,T)+ a(x, T)i|,

b(x,t,T) =Ax,0)K(T,t,x)H(T — 1),

C(T,7):= O, Hw(l, 1),

w(0, T)
andH is the Heaviside functionff (1) =0ifr <0, H(#)=11if t > 0.
Let us introduce a new unknown function defined by

w(s, T)
0
Multiplying both sides of Egs. (5) and (6) y(x, ¢), straightforward calculations lead to
the following formulation of the problem, for & x < 1, 0 < Tinin < T < Tmax < 400,
t>0:

( r a(s, T) )
ulx,T,t)y:=&x,Tnx,T,t), &x,T):=exp —/ ds |.

Tmax
a—u()c, T,t)+w(x, T)a—u(x, T, t)= / B(x,t, Tu(x,t,t)dr, (8)
dat 0x
Tmin
Tmax
u,T,1) = / C(T,tHull,t,t)dr, 9)
Tmin
u(x,T,0)=uo(x,T), (10)
where
B 7. T) = b(x,t, TE(x, T)’ C(T.v) = £O, T)C(T, 1)
E(x, 1) £(1, 1)
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Recalling Eq. (1), we observe th&t(T, 7, x) becomes unbounded for— Tmax. Thus, to
guarantee that the integral in the right-hand side of (2) remains finite, we will require that
Ax, T)K(T, 7, x) be bounded. Therefore, we suppose that

Hypothesis2. B € L>([0, 1] x [Tmin, Tmaxl2), C € L ([Tmin, Tmax]?)-

3. The pure maturation problem

Here we start studying the associapade maturatiorproblem (obtained by setting to
zero the right-hand side of Eq. (8)), which will be formulated in the framework of semi-
group theory. Let us consider the problem, fok& < 1, 0 < Thin < T < Tmax < +00,

t >0,

u u
—x, T,)+wkx, T)— (&, T,t)=0, (12)
Jat ax
Tmax
u©,T,1)= / C(T,vu, t,t)dr, (12)
Tmin
u(x,T,0 =ug(x,T). (13)

After integrating along the characteristic lines, we will show that the solutions of this prob-
lem define a strongly continuous semigroup of bounded linear operatgisemigroup).
The infinitesimal generator and the resolvent of this semigroup will be also obtained.

3.1. Solution of the pure maturation problem along the characteristic lines

Consideringl’ as a parameter, the differential systef characteristic lines associated
to(11)is

d d
Y w7, L o1 x@=x0, 10 =10,
ds ds

whose solution isz (s) = @ (s, xo, T), t7(s) = 5 + 1o.

For eachxg € (0, 1), let J7(xp) C R be the maximal open interval of definition of the
solution @ (-, xp, T') which, as a consequence of Hypothesis 1(iii), is a bounded interval,
and let us define2r := {(s,x) € R x (0,1); s € Jr(x)}. Then, bearing in mind some
well-known properties of the flow we have
Lemma 1. Let us define

W= {(s,xo, T); (s,x0) € 27, T €[Tmin, Tmax]}-

Under Hypothesid we havey(s, xo, T) € W, s > 0,

Lo Lo Lo
— (s, x0,T) >0, —(s5,x0,T)>0, —(s,x0,T)<Q0.
as 0x aT
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Proof. The first two inequalities follow immediately by inspection of the flow map. For
the third one, sincd? (s, xo, T) = w(® (s, xo, T), T), we have

9 (22 ( T) = Diw(®( T) T)w( T) 4+ Dow(®P( 7),T)
8s 8T s?‘x01 - lw s1x07 bl aT s1x07 Zw s?‘xO! 9 .

Hence, bearing Hypothesis 1 in mind, fos 0,

9P 5
ﬁ(s, xo0, T) = /[efﬂ Dlw(¢(k’x°’T)’T)dk]D2w(Q§(cr, xo0, T), T) do <0
0
and the lemma is proved.O

Coming back to the problem of constructing the solution to (11)—(13) along the charac-
teristic lines, let(xg, o) € (0, 1) x R4 be fixed and le{x7 (s), t7(s)), s € Jr(x0), be the
characteristic line such that (0) = xq, t7(0) = to. Definingiuy (s) := u(xy(s), T, t7(s)),

Eq. (11) gives

d
%zzT(s) =0 = u(xr(s),T.17(s)) =u(xr(0), T, 17(0)) = u(xo, T, t0).

With the aim of obtaining an expression fo¢x, T, t), letx = @(¢,0, T) := ¥r(¢) be the
characteristic line corrg®nding to the initial condition7 (0) = ¢7(0) = 0. This curve is
defined forr € [0, 171, wherer}. := supJr (0) < 400 and¥r(t7) = 1.

Let us denote bjﬁT the extension o to R defined by

1 *
=[O 122

The solution in a pointx, t) with x > () can be written in terms of the initial
conditionu(x, T,t) =u(®(—t,x,T),T,0) =ug(®(—t,x,7),T).

At a point(x, t) with x < Y7 (1) the solution is given in terms of the boundary condition
u(x, T,1) =u(0, T, 1 — Wy t(x)).

Then, forx > ¥ (1), the problem is reduced to an integral equationf@, 7', t). To
calculateu (1, , t) with T € [Tmin, Tmaxl, We have to distinguish two situations=1Y, (1)
and 1> ¥, (1). Let us definemin := ;| (1), fmax:= ¥y - (1).

Lemma 1 implies that¥z € [Tmin, Tmad and > 0, we havedr, (1) < ¥ (1) <
P, (t) and 0< fmin < tmax. Therefore

(@) t €0, tminl (= ¥:(t) <1),u(d, 7, t) =uo(P(~t,1,7),7).
(b) t € [tmax, +0) (= ¥ (t) =1),u(d,t,t) =u(0,1,t — llf;l(l)).
(€) t € [tmin, tmax]- In this case there exists a uniqué&(z) € [Tmin, Tmax] such that
lI/T*(t)(l‘) =1, so that
(1) Tmax
u,T,1)= / C(T,vud,t,t)dt + / C(T,vu(l,t,t)dr.

Tmin )
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The first integral corresponds to valuesra§uch that 1= ¥, (1), and thenu(1, 7, 1) =
u©, 1, — gll;l(l)), while in the second one itis2 ¥, (¢) and therefore (1, z,1) =
ug(®(—t,1, 1), 1).

Summarizing,

X C (T, Duo(@ (~1, 1. 7). 1) T, if £ €10, tminl,
u,7T,t) = ;m*i:) CT, u®, 7,1 = W;l(l)) dr
+/{€ngf;<c(T’ Duo(®(—t,1, 1), 7)dt, if t € [tmin, fmaxl,
I C(T, Tu(0, 7,1 — WD) d, if 1 € [fmax, +00).

Let us observe that the first line in the formula above provides the funet@s, r) for
t € [0, tmin] in terms of the initial datao. Henceforth we have an explicit formula for the
solution of the pure maturation problem in the intemval[O0, tmin],

MO((p(_taxaT)aT)a Ifx>lI’T(t),
ute. 1.0 = {fTTn:;jx C(T, Duo(@(—t + ¥ x), 1, 1), 1) dr, if x < ¥r(t).

3.2. Semigroup associated to the pure maturation problem

We are going to define a family of operatdisy(¢)};>0 on the Banach spack :=
L1([0, 1] X [Tmin, Tmax]) With the usual norm.

(i) 7 €10, tminl, uo € X,
ug(®@(—t,x,7),T), ifx>wr(),
(So(t)uo)(x, T) := [ T C(T, Tyug(@(—1 + W M (x), 1,7), T) d,
if x <Wr ().
(i) t> tmin = t = ktmin+ 1, with k € N and7 € [0, fmin). Then

So(t) := [ So(tmin) |* So(?).
Our next goal is to show th&Sg(#)},>0 is aCo-semigroup orx.

Proposition 1. The family of operator§So(r)}; >0 satisfies
Vi1, 1220,  So(tr 4+ 12) = So(t1) So(t2).

Proof. Stepl. Letty, 2 > 0 be such that; + 2 < tmin-
Introducing the notation1(x, T) := (So(t1)uo)(x, T), we have

(So(t2)(So(t1)uo))(x, T) = (So(t2)u1)(x, T)
ur(®@(—t2,x,T),T), if x > Wr(r),
- {fTTr:i‘:XC(T, Dur(@(—12 + ¥ 1), 1, 1), ) dr, i x < ¥r(r2).

Stepl.l. In the case > Y7 (r2) we have
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o Forx =& (—12,x,T) > ¥r (1),
ur(x, T) =uo(®(—11,%,T), T) = uo(®(—t1, @(—12,x,T),T), T)
=uo(@(—t1 — t2,x,T), T) = (So(t1 + t2)uo) (x, T).
In the last equality we have used

x > ¥r(t2),
{ D(—t2,x,T) > V(1) = x>Yr(1+12),

which can be proved easily: with the notatioh:= & (1, 0, T), we havex > x* =
D(t,x,T)> d(t,x*, T) and then

(12, %, T) =x > D(t2,x*, T) = P(12, @ (11,0, T), T) = ¥r (11 + 12).
e Forx < ¥r(ry), we havex < ¥r(r1 + t2) and then
x=@(2,%,T) < D(t2,x*, T) =¥r (11 + 12).

From the definition ofSg(¢) for ¢ € [0, tmin], We have

Tmax
(So(r1 + t2)ug) (x, T) = / C(T, Duo(®(—t1 — t2 + ¥ 1 (x), 1, 7), 7) dT
Tmin
and also
Tmax
(So(t2)u1)(x, T) = / C(T, Yuo(® (—t1 + ¥ (@ (~12,x, T)), 1, 7), 7) d.
Tmin

Equating the two expressions, our goal is to check the equalify- > + lI/T_l(x) =
—11 4 ;Y (@ (12, x, T)) which is equivalent t@ (—1p, x, T) = W (—tp + ¥ *(x)).
Sincex = & (¥, (x), 0, T), the last equality holds.

Stepl.2. In the case < Y7 (r2), we also have < Wr(t1 + r2) and then

Tmax
(So(tl + tz)uo)(x, T)= / C(T, r)uo(QD (—t1 — 1+ lI/T_l(x), 1, 'C), r) dr.
Tmin
On the other hand
Tmax
(So(t2)u1)(x,T) = / C(T, Dur(®(—t2+ ¥, 1(x), 1, 1), 7) d,
Tmin

where
ur (@ (=12 + w7 H(x), 1, 7), 1) = (Sotv)uo) (P (—12 + ¥, 2(x), 1, 7), 7).

Sincer + 12 < tmin < ¥, (1) = —t2 4+ Y7 Hx0) + ¥ HD) > 11+ W H(x) > 11, we have
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O (—tp+ (), 1, 1) = &(—t2+ ¥, (x) + ¥ 1(D), 0, 7)
> (p(tla 07 t) = lI/.[ (tl)
and then

(So(t)uo) (®(—t2+ W (x),1,7), 7)
=uo(®(—11, @ (~t2+ ¥; 1 (x), L, 7). 7)., 7)
=ug(®(—t1 — 12+ ¥; 2(x), 1, 7), 7).
This proves thaso(t2) So(f1) = So(t1 + 12).
Step2. Letr, 12 > 0 be such that; + 2 > tmin. We can writet; = k;tmin + 7, With
ki €N, 7; € [0, tmin), i = 1, 2, and then1 + 12 = (k1 + k2)tmin + 71 + 2.
Step2.1. Suppose that + 12 € [0, fmin). Then
So(r1 + 12) = [Soltmin) |+ T2 So(z1 + 2) = [ So(tmin) |* So(x1) [ So(rmin) % So(72)
= So(t1) So(#2)-

Step2.2. If t1 + 2 > fmin, We can writet1 + t2 = (k1 + k2 + Dtmin + (t1 — Btmin) +
(2 — (1 — B)tmin), Wwhereg has been chosen so that

71— ﬁtmin > O, T2 T1
& 1-— —.
{ 72— (1= B)tmin >0 Imin <p< Imin

Then

So(t1 + 12) = [Soltmin) |* T2 So (1 — Btmin) So(v2 — (L — B)tmin)

= [SO(tmin)]klSO(,Btmin)SO(Tl — Btmin)
x [So(tmin |2So((1 = B)tmin) So(z2 — (1 — B)imin)
= [SoCtmin) | So(x1) [So(tmin | 2S0(t2) = So(t1)So(t2). O

Bearing this proposition in mind we carow establish the following theorem.

Theorem 1. Under Hypothese$ and 2, the family of operator$So(7)};>0 is a strongly
continuous semigroup of bounded linear operators on the space

Proof. Itis evident that eaclip(z) is a linear operator and th&g(0) = Id.
Next, we prove that for eaah> 0, So(r) € L(X), i.e.,So(¢) is a bounded linear operator.
It suffices to make the proof fare [0, fmin]. Letug € X be fixed. Then

Tmax Y1 (1) , Tmax
| So()uo|, < / [/ ( / C(T,r)|uo(q>(—t+wT1(x),1,r),z)\dz)dx]dT
Tmin 0 Tmin

Tmax 1
+/ /|uo(q5(—t,x,T),T)|dx>dT
Tmin "Y1 (1)

= I1(t) + D(t).
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Recalling Hypothesis 2, we have

() < ||C||Oo///|uo(q>(—t+u/;1(x),1, 7),7)|dxdT dx,
V(1)
where
V(@)= {x,T,1); 0<x <¥r(@), (T,7) € [Tmin, Tmaxl’}.
We perform in (15) the change of variables defined by
o:=(—t+ lI/Tfl()c), 17), n:=1, £:=T,
under which,V (¢) is transformed into
V(t)—{(a n,6); @(=t,1,n) <o <1, (1,8) € [Tmin, Tmaxl }
The Jacobian of this change of variables is given by

1
J:w( ( lll_l(.x) 1 7,') )ﬁ

hence, from Hypothesis 1 we have® < % Therefore,

lwll
10 < 1€l [ [ [luoto.m]do ande < Miuoll
V()
where
flwll
M :=||Cllso °°(Tmax Tmin) > 0.

We also have

Iz(t)=//\uo(q>(—t,x,T),T)\dxdT
W(t)
with W(t) := {(x, T); ¥7(t) <x <1, T € [Tmin, Tmaxl}-

To estimate the integral in (21) we choose the new set of variables® (—¢, x,

n := T and then, straightforard calculations lead to

126 = [ [ luoto )| D20 ¢.0:m) do d,
W (1)
whereW () :={(0,n); 0< 0 < ®(—t,1,1n), 1€ [Tmin, Tmax}. Since
(52)(s.x,T), = Drw(@(s, x, T), T) @5 x,T),
{W(O,x,T)z 1,
we have, fors > 0,

s

oD
a(s,x, T)= exp(/ Dlw(CP(r,x, 1), T) dr)

0

531

(15)

(16)

(17)

(18)

(19)

(20)

(21)

T),

which provides the estimate SYR) [0, 11 % [ Tin, Tmad | P2P (& 0, M) | < €Xpit || D1w loc) -
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Therefore

In(t) < 1Pl / / (o, m| dodn < 1P ]l (22)
W(t)
Putting (19) and (22) together, we hal&y()uollx < M™*(t)|uoll x with

M*(t) := ||C||oo”l:;$(rmax— Tiin) + €' 1Pl ~ 0,
which proves thaso(z) is a bounded linear operator ghwith uniform bound on bounded
subsets of.
Finally, we have to show tha¥ug € X, lim;_.o, [|So(*)uo — uollx = 0. Itis enough to
prove continuity for eachg € C([0, 1] x [Tmin, Tmax]), Since this space is a dense subspace
of X. We have

[ So(t)uo — uol

Tmax , ¥7(®) ,; Tmax
= / ( / ( / C(T,‘L’)Lto(q)(_t+lI,T—l(x)’1’ T),‘L’)dt
0

Tmin Tmin
1

Tmax
—uo(x,T)>dx>dT+/< /|uo(q>(—t,x,T),T)—uo(x,T)\dx)dT

Tmin Y (1)
=)+ ).
Sincevr > 0 we havedr (1) < ¥, (¢), we can write
) < (1+ IC lloo (Tmax — Tmin))”MO”oo(Tmax— Tmin)‘l’Tmin(t) -0 (—04).

On the other hand, using the uniform continuitygf for eachs > 0 there exists(e) > 0
such that

|@(—t,x,T)—x|<8() = |uo(P(—1,x,T),T) —uolx,T)|<¢

and taking into account that limo, ®(—¢,x,T) = x uniformly on x, there exists
n(8(g)) > 0 such that

0<r<n(8(e)) = sup|@(—t,x,T)—x|<3(@).
x€[0,1]

Therefore, for O< t < n(8(¢)),
Tmax
(I <e / [1—¥r(1)]dT < e(Tmax— Tmin)-
Tmin

This completes the proof of the theorenta

Some standard but lenghtly calculations lead to the following result for the infinitesimal
generator of the semigroup.
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Proposition 2. The infinitesimal generator of the semigrofffa(r)}; >0 is the operatordg
defined by

d
(Aog) (. T) i=—w(x, T) 5 (. T)
X
with domain
Tmax
dg
D(Ag) := {(p e X; O eX, 90,)= / C(,1)e(l, ‘L’)dt}.

Tmin
3.3. The resolvent ofg

We are going to obtain the resolvent of the generatgr that is, the operator
(LI — Ag)~L. For each givery € X, we have to solve the equatidh/ — Ag)p = f.
We consider: (i) the homogeneous equati®h — Ag)g =0,

I A
—x,T)=-

ax w(x,T)
(i) the particular solution of the complete equatioty — Ag)p = f. We look for a

"X ds
solutiongp (x, T) := m(x, T)e’”0 ws.T) , wherem(x, T) should be calculated. Straight-
forward calculations lead to

X
s T) _,; x _do
(pP(_x,T): Me )‘j:v w(o,T) ds.
w(s,T)
0
Now, we impose ofp := ¢y + ¢p the conditionp € D(Ao),

X ds
0(x,T) = @u(x.T)=¢(0,T)e "o wism,

Tmax
1 _ds
90, T)= / Cc(T, t)((p(o, z)e_)‘fo % +

Tmin

1
FG O ot gtes ds) dr. (23)
w(s, T)

For eachh € C we define the two operators

@) Lj: Ll(Tmin, Tmax) —> Ll(Tmin, Tmax),
Tmax
,)\fl _ds _
L,(h)(T):= C(T,t)e /0w h(r)dr,
Tmin

(i) $5.:X — LY(Tmin, Tmaw,

Tmax 1
Sy (f)(T) == / C(T,r)< Mﬂﬁ%@ dr,
0

w(s, 1)
Tmin

which allows us to write Eq. (23) a3 — L,)(¢(0, -)) = S).(f). Since
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Tmax; Tmax
,)\fol _ds
|Lr)]|, 1= C(T,1)e w60 h(t)dt|dT
Tmin  Tmin

Y __ds
<N Clloo (Trmax — Trim) 1]l e 0 ToTmm 0 (A — +00),

there exists.o > 0 such thaf|L; || < 1 for A > Ag. This implies[Ag, +00) C p(Ag) (resol-
vent set 0fAg) and also that/ — L; )~ exists fori > Ag, which yields
9(0,) = (I — L) X (Sx(/)).
The resolvent ofdg is, for A > Ag,
(I = A) L) (x, T) = e 0 767 (1 = 1,) (8, ) (T)
[ 6T g im
s w(o, ) dg. 24
+ w(s, T)e 5 (24)
0

Our next goal is to show one of the main results of this paper, which will be an essential
piece in the proof of the AEG property for the model. This result involves the measure of
noncompactness. We refer the reader to [15] for the general theory.

Theorem 2. Thea-growth bound of the semigroygo (1)}, >0 satisfies that

log(a(So))) _
t

w1(Ap) := IHTOO

To prove the theorem, we need some preliminary results.
Let us consider for eaahe [0, tmin], the two linear bounded operatavs:), K (1) : X —
X suchthatSo(r) = N(t) + K(¢). N(¢t) andK (¢) are defined by

u0(®(_t7va)sT)v |f.x>l1/T(t),

(N(I)MO)(LT): {0, |f.x <l1/T(t)1

0, if x > Wr(),
(K(t)uo)(x, = { fTT,:::X C(T, Dupg(d(—t + lI/T_l(x), 1,7),t)dt, if x <¥r().

We state now some properties of these operators.
(a) N(¢) is a nilpotent operator. For eaap € X, we have

supportN (tuo) C {(x, T); ¥r(t) <x <1, T € [Tmin, Tmaxl}
and also
(x,T) € supporfN2(Hug) = @(—t,x,T) > &(t,0,T)
= &, @(-1t,x,T),T)>®(t,0(,0,7),T)
= x>&(2,0,7).
Therefore suppo(er(t)uo) c{(x,T); ¥r2t) <x <1, T €[Tmin, Tmax]} and, so on
supporfN? (tHyug) C {(x,T); ¥r(pt) <x <1, T €[Tmin, Tmaxl}, P =3,....
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Since¥r, . (fmax) = 1, there existgo > 1 such thatr (por) > ¥, (pot) = 1. Hence
V(-xv T) € [Os 1] X [Tmina Tmax]a (Npo(t)uo) (-xs T) = 07
and therWp > po, N?(t) =0, that is,N (¢) is a nilpotent operator.
(b) There exists* € (0, min) such thawr € (0, r*), K2(t) = 0. In fact, for eachig € X,
we have
0, ifx>wyr(r),
(K20uo)(x, T) = { [ C(T, 1)(K (uo) (@ (—t + ¥ (x), 1, 7), ) dT,
if x <Wr (),
and also, using the notation (1) := & (—t + lI/T‘l(x), 1, 1),
0, if xc(t) > (1),
1 C(T, 1)C(x, 0)ug
X(®(—t + ¥ Hx: (1)), 1.7),1,0),0) do,
if xp(£) < W, (1).
We can choose* > 0 small enough such tha (—t*, 1, Tin) > @ (¢*, 0, Tmin) and then
since the functions of, @ (—t*, 1, ) and®(t*, 0, T) are respectively increasing and de-
creasing, we haver € (0, t*),
VT € [Tmin, Tmaxl,  x:(t) > W7 (1).
Therefore(K (1)uo)(x; (1), T) = 0, which impliesk 2(r)ug = 0. Let us notice that* satis-
fies® (2t*, 0, Tmin) < 1, and hence2 < fmin.

(c) Choosing = atmin, « € (0, 1/2), then the natural numbeiy such thatvo(r) =0,
satisfies

(K (t)uo) (x: (1), T) =

o > max_ 1 imax
t o Imin
Next, we will define the operatdt, (1) := K (1) N”(¢) for each natural number with
1< p < (1/a)(tmax/ tmin) < po.
For eachug € X, we have

D(—pt,x, T), T), if(x,T)eS,,
= s =[SO LT

whereS,, := suppor{N”(¢)). Then,
Tmax
(Kp@uo)(x, T) = (K @)up)(x,T)=H(¥r (1) — x) / C(T, Dup(x(1), 7)dr,
Tmin
where we have introduced the notatiofr) := ¢(—t+l1/,;l(x), 1, 7).Sinceu,(x(r), 7) =
H(x(t) = ¥ (pt)uo(@(—(p + Dt + ¥ 1(x), 1. 1), 7), we have

(Kp(Duo)(x, T)

Tmax
=H(¥r@t) —x) / C(T, Dyug(®(—(p + Dt + ¥, 1(x), 1, 7), 7) dr,

r;(x,T)
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Wherer;(x, T) is the unique solution of the equati@(—¢ + w;l(x), 1, 1t) =Y (pt),

thatis® ((p + 1)t — ¥, *(x),0,7) = 1.
The following lemma establishes an essential result for the proof of Theorem 2.

Lemma 2. Let us consider = afmin, @ € (0,1/2), and letp, g be two natural numbers
such thatl < p, g < (1/)(tmax/ tmin). Then, the operatok , (1) K, (¢) is a compact oper-
ator onX.

Proof. Foreachug € X, let us introduce the notation, (x, T) := (K, (t)uo)(x, T). Then,

(Kq(t)Kp(t)uo)(x, T)= (Kq(t)ﬁp)(x, T)
Tmax
= H(lI/T(t) —x) / C(T, t)ﬁp(xq(t), 'C) dr,

i (x.T)
wherex, (¢) := & (—(q + Dt + ¥, 1(x), 1, 7). Since

ip(xg(r),7)= H(lI/r () —xq4 (r))
Tmax
X / C(z, w)uo(P(—(p + Dt + ¥, Hxy (1)), 1, w), w) dw,
75 (xq(7),7)
we havei,(x4(r),7) =0, VT € [T;(x, T), Tmaxl, Where 7,(x, T) is the solution to
O(—(q+ D1+ ¥, (x), 1, 1) =@(1,0, 7), thatis, @ (g + 2t — ¥; 1 (x),0,7) = 1.

Straightforward calculations show thaj(x, T) > Tmin and 7,(x,T) > t;(x, 7),
henceforth

(Kp()Ky(uo)(x, T)
7, (x,T)

= H(¥r(t) —x) / C(T, 1)
T3 (x,T)
Tmax
x / C(r, wyuo(®(—(p + Dt + ¥, H(x4()), L, w), w) dw) dt
75 (xq(7),7)
=H(¥r(t) —x)
x // C(T, 7)C(z, wyuo(® (—(p + Dt + ¥, (x4(v)), L w), w)dwdr,
Mx,T,t)

where

Mx,T,1):={(w,1); t;‘(xq(r), T) <w< Tmax T € [r;(x, T),%,(x, T)]}.
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With the help of the change of variables= @ (—(p + 1)t + ¥ 1(x,(1)), L, w), n := w,
the expression above can be written as

(Kqg () K p(tuo)(x, T) = H(¥r (1) — x) // C(x,T,t,0,nuo(o,n)do dn

M(x,T,1)
and making an extension by zero of the kerngltal] x [Tmin, Tmax], We can express
(Kq(O)K p(0uo)(x, T) = // R(x,T,t,0,nuo(o,n)do dn

[0,1]%[Tmin, Tmax]
which is a compact operator (see [7, Corollary 9.7.311

Proof of Theorem 2. Let 7 € (0, 1min/2) be such thak2(r) = 0, and pg be the small-
est integer such thaV”o(t) = 0. The iterateSo(z)]”? = [K (t) + N(¢)]? consists of the
products[ K (1) ]P*[N (t)1P2[ K (t)]73 ... [N ()12 with p1+ p2 + -+ + pam = p, pi 2 0,
i=1,...,2m. Some of these products are equal to zerpsif,1 > 2 or p; > po. For
p big enough(p > 2pg) it can be seen that the only surviving terms are those containing
the expressioK (1)[N (1)17% K (t)[N ()12, with 1 < pax, pa < po, Which is a compact
operator in view of Lemma 2.

Henceforth, forp big enoughu([So(2)]?) = 0. Therefore

re(So(®) :=lim sup {/a([So(H]") =0.
p—>00

SinceVr > 0, r.(So(1)) = ¢'®1(40)  we can conclude thad; (Ag) = —co. O

4. AEG property for the complete model

In this section we will show that the solutions to the problem (8)—(10) (the complete
model) define aCo-semigroup{S(s)};>o, with infinitesimal generatoA, which has the
AEG property.

Let us remember that AEG property means that there existsR which is an eigen-
value of A and a strictly positive associated eigenfunctighe X such that, for each
uo € X, lim;_ o0 e 1S (Hug = Cogp™, whereCy is a constant depending on the initial
dataug.

TheMalthusian parametek™ satisfies thak* = s(A) :=supgRex; o(A)}.

4.1. Semigroup associated to the model (8)—(10)

In the framework of semigroup theory, we will consider Eq. (8) as a perturbation of (11).
To this end, let us define the operaRy: X — X,

Tmax
VoeX, (Bop)(x,T):= / B(x,t, T)p(x, 1)dr,
Tmin

which, under Hypothesis 2 is linear bounded wijiBy || < || B|lco-
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Then, A := Ag + Bp with domainD(A) := D(Ap) is the infinitesimal generator of a
strongly continuous semigroup ax, which will be denoted S(¢)};>0. This semigroup
satisfies avariation of constants formulgg],

t

Yupe X, S®)ug= So(t)uo+ / So(t — s)BoS(s)uods. (25)
0

We are going to give an explicit expression of this equalitytfar{0, tmin]. First of all we
introduce the notations

u(lx,T,t):= (S(t)uo)(x, T),
Tmax
F(x,T,1):=(BoS(uo)(x, T) = / B(x, 7, Tu(x, 7, 1)dr.
Tmin
For 0< s <1 < tmin, We have
F(@(s—1,x,T),T,s), s>t—¥  x),
(So(t —=)F(-,-,9))x,T)= fTTn:;jX Ct,D)F(®(s —t +¥; 1 (x), 1, 1), 7,5) dr,
s <t—wrt(),

and then,
(Suo)(x, T) = (So(t)uo) (x, T) + G (x, T, 1) (26)
with
-1
Jo T (e, o [ B (s — 1+ W), L), w, 1)
Xxu(®@(s—t+ lI/T_l(x), 1,7),w,s) dw] dt) ds
+ [ g (i B(@(s —t,x,T), 7, T)
G(x,T,t):= !

Xxu(®@s—t,x,T),1,5) dr) ds,
if x € [0, ¥r ()],

fé(/‘TTn:;jXB(cp(s —1,%,T), 7, T)u(®(s —1,x, T), 7, 5)dr) ds,
if x e [¥r (), 1].

4.2. Asymptotic behavior of the semigroi§jgs)}; >0

In this section we will establish the main result of this paper: the semig®up};>o
has the AEG property. We will achieve this result using the following test for AEG [6].

Theorem 3. If {S(#)}; >0 is an irreducible positive semigroup with infinitesimal generator
A on a Banach lattic&X and if w1(A) < wo(A), then{S(¢)}; >0 has the AEG property.

Let us recall thatyp(A) is thegrowth bounddf the semigroup, defined by

wo(A) = lim 2I5OI

t——400 t
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Theorem 4. The semigrouS(1)};>o0 has the AEG property.

Proof. (a) Positivity. Since the semigroufSo(r)}: >0 is positive andBo is a positive oper-
ator, we have positivity for the semigro@(z)};>o.

(b) Irreducibility. Taking into account the variation of constants formula (25), it is
enough to prove irredudility of the semigroup(So(#)},>0. Since

+00
(M —Ag)~t= / e M So(r)dt
0
and using the expression (24) for the resolvert— Ag) 1, we havevyp € X, Vi € X*
(topological dual space df), ¢ > 0,y > 0 and denoting-, -) the usual product of duality
in X,
+00
0 < (¥, A — Ag)Yg)= / e My, So(t)g)dt
0

which implies existence af > 0 such thaty, So(fo)¢) > 0.

(c) Inequalityw1(A) < wo(A). In fact, we will show thatv1(A) = —oo. First of all, we
analyze the expression of the semigr¢sify)}; >o in terms of{So(#)}; >0 given in (26). Let
us consider the term

=¥ o) Tmax Tmax
Gi(x,T,1):= / (/C(T,t)|: / B(@(s —t + ¥ (x), 1, 7), w, )
0 Tmin Tmin

X u(¢(s —t+ lI/T_l(x), 1, r), w, s) dw] dl’) ds,

wherer € [0, tmin], x € [0, Y7 (1)], T € [Tmin, Tmaxl- With the help of the change of vari-
ablesn :=w, & =P —1t + lI/T‘l(x), 1,1), 0 :=s, it can be written as

Gi1(x,T,t)= /// Kx,T,t,&,n,0)u(&,n,o)dédndo,
2(x,T,t)
where
Q,T,t):={(n,0) ®(0 —1t+ W (x), 1, Tmay) <&
< @(6 —t+ lI’T_l(x), 1, Tmin),
o €[0,1— ¥ (x)], 1 € [Tmin, Tmaxl}-

Denoting byK the extension by zero of the kernélto Q* x Q*, with Q* := [0, 1] x
[Timin, Tmax X [0, fmin], we can writeG1(x, T, 1) = H(u)(x, T, t), whereH : L1(Q0*) —
L1(0*) is the operator defined by

Hw)(x, T, 1) :=f///€<x,T,r,s,m)u(s,n,a)dsdnda.
Q*
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Hypothesis 2 implies that € L®(0* x 0*), hence it is easy to prove thAtis a compact
operator (see [7, Corollary 9.7.3]).
Let us now consider the term

t T;
j;fwgl(x)[frn:::xB(q)(S —t,x,T7),7,T)

xu(®(s—1,x,T),7,s)dt]ds,
Go(x,T,t):= if x € [0, ¥r(0)],
JoLSime B(@(s —t,x,T), 7. T)u(®(s —t,x, T). 7.5) d7ds,
if x e[¥Yr(),1].
Extending by zero the functioB to [0, 1] x [0, ¢], that is, introducing the function

HOTo1t.5) = {B(q)(s —t,x,T),t.T), if(x,s)e(l),

0, if (x,s)el),
with
(D= {(x,9); =W (0) <s <L, 0<x < W0} U ([wr(0), 1] x [0, 1),
() :={(x,5); 0<s <1 =W (x), 0<x <Wr()},

we can define an operatgr. L1(Q*) — L(Q*) by

Lw)(x,T,t):= // H(x,T,t,t,s)u(@D(s—t,x,T),t,s)dtds
[Tmin, Tmax] x[0,¢]

sothatC(u)(x,T,t) =Ga(x,T,1).
Straightforward calculations show th&t is a bounded linear operator withZ| <
| Blloo lwlloo (Tmax — Tmin). Moreover

t

C(ﬁ(u))(x,T,t):/( /// Hx,T,t,t,)H(P(s —1,x,T),7,5,0,w)
]

O [Timin. TmaxI?x[0,s

X u(@(a -5, P —t,x,T), t),cr, w) dtdo dw) ds.

The change of variables = ® (o — s, ®(s —t,x,T),1), n = o, € = w, transform the
above integral into

t
E(E(u))(x,T,t):/( /// V(x,T,t,s,)»,r],E)u(A,n,%‘)dldndé)ds
0 ‘N®,T.t,s)
with
N, T.t,5)={(n.8): &(0c —s5, (s —1,x,T), Tmax) < A
<P(o—s5,P(s —1,x,T), Tmin),
1N € [Tmin, Tmaxl, & € [O,S]}~
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Extending by zero the functior to Q* x [0, fmin] x Q*, we have finally

t
£(ew)e .0 = [ (///ff(x, Tot,5, 0, O)ulh, 1, smxdnds) ds.
0 0*
This expression allows us to conclude without difficulty that the itettftés a compact
operator on.1(Q*).
Summarizing, we have transformed (26) imte=- w + H(u) + L(u) with u := S(-)uog,
w := So(-)ug, and sincel(u) = L(w) + L(H(u)) + L(L(u)), we arrive aiz = w + L(w) +
H@w) + L(H(u)) + LIL(®w)).
The composition of a compact operator witbounded linear operator is also a com-
pact operator, therefore we can wr€)uo = So(t)uo + L(So(t)uo) + U (t)ug with U (¢)
a compact operator. HenegS(1)) < a(So(1)) + a(L(So(1))) < (1 + [[£]Dee(So(2)) and
then, taking into account Theorem 2,
log(a(5®)
t

w1(A) :=limsup
t—>400

= (1+I£])w1(A0) = —c0.

< (14 1£]l) limsup

t——+00

loga (So(1))
t

From the results obtained in the previous section we can deduce easily that the semigroup
{So(t)};>0 is irreducible, positive and eventually compact, and thg€Ag) # @, which

implies thatwp(Ag) > —oo (see [10, Theorem 3.7, p. 311]). But the perturbaiigris a
positive operator, so thatg(A) > wo(Ag) (see [6, p. 231]), which proves thab(A) >

—o00. The theorem is thus provedD

5. Conclusion

In this paper we have studied the basic property of asynchronous exponential growth
in a cell population model in which cells are characterized by two state variables, the
maturity and a state variable identifying the rate of maturation. Due to this structure, the
model can represent both the cell cycle phases and the kinetic heterogeneity within the
population. The key feature of the model is the incorporation of the concept of growth
retardation [12,13], that reflects the kinetionsequences of the possible worsening of
microenvironment during the life span of the cell. A partial heredity of the maturation rate
of the mother cell by the daughter cells was also assumed, according to [9]. The assumption
of nonstrict heredity was crucial for establishing the property of asynchronous exponential
growth.
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