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Abstract. In this paper, we discuss the fundamental linear theory for
ordinary differential equations with impulses. We show, using the gen-
eral theory of integrated semigroups, that we can associate a strongly
continuous semigroup with any ordinary differential equation with im-
pulses.

1 Introduction

Differential equations with impulses were considered for the first time by Mil-
man and Myshkis (see [22], [23]). They formalized the situation when the state of
a system changes as a result of jumps occurring at different moments of time. The
times at which jumps occur may be known and form a sequence of times with or
without a certain pattern, or may be determined in terms of the state itself. Ex-
amples of equations with impulses can be found in various contexts: in the periodic
treatment of some diseases, impulses correspond to administration of a drug or a
missing product; in environmental sciences, seasonal changes of the water level of
artificial reservoirs, as well as under the effect of floodings, can be modeled as im-
pulses. Ordinary differential equations with impulses have already been considered
extensively in the literature (see the monographs [15], [31]). In the recent years,
differential equations with impulses have flourished in several contexts, notably in
the modeling of the effects of repeated drug treatment, see [32]. In this paper we
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consider ordinary differential equations with impulses. By an impulse, we mean a
sudden change of the state of a system: at each moment of a possibly unbounded
sequence of moments, the state jumps from one position to another, as a conse-
quence of a transformation which depends only on the moment of the impulses. We
remark that the problem with impulses is no more an autonomous problem., the
prototype of ordinary differential equation with impulses as follows:





du

dt
= Au(t), t > σ, t 6= ti, i ∈ Z, σ ∈ R (DE)

u(σ) = ξ ∈ X, (IC)
u(t+i ) = Biu(t−i ), u(t−i ) = u(ti), ti ≥ σ, i ∈ Z, (IMC)

(1.1)

X is any Banach space. The operator A is a bounded linear operator; the last
equation introduces the jumps, which make necessary to working on a natural
space in the context of impulses, which is the space of regulated -we say that the
function f is regulated if f has left and right limits at every point (the limit here
is not uniform but only a pointwise limit)-, and we denote by lim

<
resp. lim

>
, the

pointwise limit to the right, resp. to the left, see [8], [12]. Our purpose is to
provide a linear theory for such equations in Banach spaces. There are two main
challenges: the first one is set by the jump discontinuities which make necessary to
extend the usual state space of continuous functions to a space of functions having
some discontinuities; the second one is the time-dependence of the system, arising
implicitly from the time jumps. The method used to overcome these two problems
is two-fold:
1) Time-dependence will be eliminated by a recurse to extrapolation theory, see
[10] [21] [24] [30] [26] [28] [27] [38].
2) Integration will be used to smooth down the discontinuities. This goes through
the now well-known integrated semigroup theory, see [1] [2] [3] [4] [5] [6] [7].

We will now describe the main results and the main steps to be accomplished in
order to derive these results. Throughout the paper, we denote U(t, s) the evolution
operator which maps initial values, given at time s, to the solution at any future
time t, and T (t) the operator defined as following

(T (t)f)(s) = U(s, s− t)(f(s− t)), (1.2)

where f ∈ BR(R, X), s ∈ R, t ≥ 0, where BR(R, X) is the space of bounded
regulated functions R→X continuous to the left.
The operator T (t) defined by formula (1.2) associated with delay differential equa-
tions with impulses (1.1), in subsection 5.1, can be writhed as:
¨If [s− t, s[ ∩D = ∅

(T (t)f)(s) = etAf(s− t), (1.3)
¨If [s− t, s[ ∩D = {tn}

(T (t)f)(s) = e(s−ti)A ◦Bi ◦ e(ti−(s−t))Af(s− t), (1.4)

¨If [s− t, s[ ∩D = {ti, i = n, n + 1, ..., m; m > n, (n,m) ∈ Z2}
(T (t)f)(s) = e(s−tm)A ◦Bm ◦ e(tm−tm−1)A ◦ ... ◦Bn ◦ e(tn−(s−t))Af(s− t). (1.5)

Our first result states that :

Theorem 1.1 (T (t))t≥0 is a pointwise regulated semigroup of bounded linear
operators on BR(R, X).
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Then, we introduce the following family of operators

(S(t)f)(s) =
∫ t

0

(T (τ)f)(s)dτ, (1.6)

for f ∈ BR(R, X), s ∈ R, t ≥ 0, and we have the followings theorem:

Theorem 1.2 (S(t))t>0 defined by formula (1.6) is a norm continuous inte-
grated semigroup on BR(R, X).

An important feature revealed by next Theorem 1.3 is the fact that the inte-
grated semigroup takes its values in the space of functions whose discontinuities
are concentrated in the set D the set of times of jumps. This weak regularizing
property is the analog of what happens in integrated semigroups.

Theorem 1.3 Let S be given by (1.6), and f ∈ BR(R, X). Then, s →
(S(t)f)(s) is continuous at each s /∈ {ti} and all t > 0 fixed, and we have

lim
s→ti

>

(S(t)f)(s) = Bi lim
s→ti

<

(S(t)f)(s).

Finally, Theorem 1.4 describes the infinitesimal generator associated with the
semigroup T (t):

Theorem 1.4 The operator A defined by

D(A) =





f ∈ BR(R, X) : singf ⊂ {ti}i∈Z , lim
s→ti

>

f(s) = lim
s→ti

<

Bif(s),

and
∂f

∂s
∈ BR(R, X), sing

∂f

∂s
⊂ {ti}i∈Z ,





.

(Af)(s) = Af(s)− f
′
(s)

and, we suppose that

sup
i∈Z

‖Bi‖ < e (1.7)

is the generator of locally Lipschitz continuous integrated semigroup S(t) on BR(R, X),
which satisfies S(t)(BR(R, X)) ⊂ C(R− {ti}i∈Z, X) and

(S(t)f)(s) =
∫ t

0

(T (τ)f)(s)dτ, for f ∈ BR(R, X),

where T (t) is defined by (1.3)-(1.5).
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2 Notation index.

We denote by

BR(R, X) : space of bounded regulated functions continuous on
the left from R into X

BC(R, X) : space of bounded continuous functions from R into X

BUC(R, X) : space of bounded uniformly continuous functions from R
into X

R(λ,A) : resolvent of A in λ

D(A) : domain of A

D(A) : closure of D(A)
A|Y : part of A in Y

(ti)i∈Z : increasing family of real numbers, support of the impulses
δ : inf

i∈Z
(ti+1 − ti)

(T (t))t≥0 : semigroup of linear operators with impulses
(S(t))t≥0 : integrated semigroup of linear operators associated

with (T (t))t≥0

3 Extrapolation space and integrated semigroup

The solution of a non-autonomous linear Cauchy problem on a Banach space
X is given, under appropriate conditions, by an evolution family, namely, a family
(U(t, s))t≥s of linear bounded operators on a Banach space X (U ∈ L(X)), for
which the following properties hold :
(i) U(t, r)U(r, s) = U(t, s), for all t ≥ r ≥ s ∈ R, U(t, t) = IdX ;
(ii) the map (t, s) 7→ U(t, s) from D̃ :=

{
(t, s) ∈ R2 | t ≥ s

}
into L(X) is strongly

continuous;
(iii) ‖U(t, s)‖ ≤ Meω(t−s) for some M ≥ 1, ω ∈ R and all t ≥ s.
A family (U(t, s))t≥s in L(X) satisfying (i)-(iii) is called an evolution family (see
e.g. [11] [14] [33] [41]).
To an evolution family U(t, s)t≥s, it is useful to associate a semigroups of operators
on a Banach space of functions (see e.g. [13] [17] [19] [20] [25] [29] [34] [35] [37] [39]
[36]). Denote with B the Borel algebra of subsets of R, λ the Lebesgue measure
on R, and X a Banach space of real-valued Borel-measurable functions on R -for
example L1(R)- (over (R,B, λ)).
We set

F(R, X) = {f : R→ X | f is strongly measurable and ‖f(.)‖X ∈ X} ,

then F(R, X) is a vector space, and for the norm

‖f‖F(R,X) = ‖‖f(.)‖X‖X , f ∈ F(R, X),

F(R, X) is a Banach space.

Definition 3.1 [30]To every evolution family U(t, s)t≥s on the Banach space
X, we associate the following family of operators on F(R, X):

(T (t)f)(s) := U(s, s− t)f(s− t), (3.1)
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for f ∈ F(R, X), s ∈ R and t ≥ 0.

We call F(R, X) the extrapolation space and (T (t))t≥0 the extrapolated semi-
group. Notice that the translation is a positive, thus bounded, operator on the
Banach lattice X , and we have the following lemma ( see [40] in II.5.3 and [36]).

Lemma 3.2 (T (t))t≥0 defined by (3.1) is an algebraic semigroup of bounded
linear operators on F(R, X).

If (T (t))t≥0 defined by (3.1) is strongly continuous ( see details in [24] [30] [26]
[28] [27] [38]...), then we can define a Hille-Yosida operator (A, D(A)) on F(R, X)
associated to (T (t))t≥0, with constants M ≥ 1 and ω ∈ R, i.e A is linear, (ω,∞) is
contained in the resolvent set ρ(A) of A and

sup {‖(λ− ω)nR(λ,A)n‖ : λ > ω; n ∈ N} < M, (HY)

where R(λ,A) := (λI − A)−1 is the resolvent operator of A at λ. The following
result is well-known

Lemma 3.3 ([16], Theorem 12.2.4)
The part (A0, D(A0)) of A in X0 := D(A) given by

A0x := Ax, D(A0) := {x ∈ D(A) : Ax ∈ X0}

generates a C0-semigroup (T0(t)) on X0. Moreover, ρ(A) ⊆ ρ(A0) and

R(λ,A0) = R(λ,A)|X0 for λ ∈ ρ(A).

The following definitions can be found in Arendt [5].

Definition 3.4 Let E be a Banach space. An integrated semigroup (S(t))t≥0

is a family of bounded linear operators S(t) on E, with the following properties:
(i) S(0) = 0;
(ii) for any y ∈ E, t → S(t)y is strongly continuous with values in E;
(iii) S(t)S(s) =

∫ s

0
S(r + t)dr − ∫ s

0
S(r)dr, for all t, s ≥ 0.

Theorem 3.5 An operator A is called the generator of an integrated semi-
group, if there exists ω ∈ R such that (ω, +∞) ⊂ ρ(A), and there exists a strongly
continuous exponentially bounded family (S(t))t≥0 of linear bounded operators such
that S(0) = 0 and R(λ,A) = (λI −A)−1 = λ

∫ +∞
0

e−λtS(t)dt for all λ > ω.

An important special case is when the integrated semigroup is locally Lipschitz
continuous (with respect to time), that is to say:

Definition 3.6 [7] An integrated semigroup (S(t))t≥0 is called locally Lipschitz
continuous if, for all τ > 0, there exists a constant k(τ) ≥ 0 such that

‖S(t)− S(s)‖ ≤ k(τ) |t− s| , for all t, s ∈ [0, τ ] .

Theorem 3.7 [18] Assertions (i) and (ii) are equivalent :
(i) A is the generator of a locally Lipschitz continuous integrated semigroup,
(ii) A satisfies the condition (HY).
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4 semigroup associated to a nonautonomous ordinary differential
equation

In this section, we recall the construction of an extrapolation space introduced
by Da Prato-Grisvard [10] and Nagel [21], which makes it possible to go from a non-
autonomous equation to an autonomous one. We will point out the construction and
properties of the semigroup (T (t))t≥0 associated with an evolution family arising
from a nonautonomous ordinary differential equation. This notion will be useful in
the sequel.

We now consider a nonautonomous Cauchy problem in a Banach space X
{

d

dt
u(t) = A(t)u(t)

u(s) = x ∈ X
(4.1)

for t ≥ s ∈ R. A(t) is assumed to be a bounded linear operator, such that for
t → A(t) is continuous, from R into L(X).
We denote

BUC(R, X) ={f : R→ X : f is uniformly continuous and bounded.},
with the norm

‖f‖ = sup
x∈R

|f(x)| .

We consider the operator A on UBC(R, X) associated with equation (4.1), defined
by :

(Af)(s) = −f
′
(s) + A(s)f(s)

with domain

D(A) =
{

f ∈ BUC(R, X), f is differentiable and f
′ ∈ BC(R, X)

}
.

Theorem 4.1 We suppose that for any t, A(t) is a linear bounded operator,
such that t → A(t) is continuous and uniformly bounded, from R into L(X). Then,
the operator A generates a strongly continuous semigroup T (t) in BUC(R, X).

Proof : In order to determine the resolvent operator, we must solve the equa-
tion {

(λI −A)−1f = w
w ∈ D(A)

where f ∈ BUC(R, X).
Clearly, w depends on λ. Occasionally, we will use the notation wλ.
The following formula can be obtained by standard computations

wλ(s) =
∫ s

−∞
U(s, t)f(t)eλ(t−s)dt,

where (U(s, t))s≥t is an evolution family satisfying

‖U(s, t)‖ ≤ Meω(s−t) for some M ≥ 1, and λ ≥ ω ∈ R.

To show the Hille-Yosida property, it is necessary here to consider the nth iterates
of (λI −A)−1.
We can show that

[(λI −A)−nf ](s) =
∫ s

−∞
U(s, σ)f(σ)eλ(σ−s) (s− σ)n

n!
dσ,
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from which we deduce, for λ > ω

∥∥(λI −A)−nf
∥∥ ≤ M

(λ− ω)n
‖f‖ .

To conclude the proof of theorem 4.1, it remains to be proven that D(A) is dense
in BUC(R, X). But, D(A) contains obviously C1

b (R, X), the space of differentiable
functions which are bounded from R into X, (since any function in BUC(R, X) is
transformed into such an element by convolution with a function in D(R, X), the
space of functions infinitely many times differentiable from R into X with bounded
support), and this set is obviously dense in BUC(R, X).¤

5 Ordinary differential equation with impulses

We first consider an ordinary differential equation with impulses




du

dt
= Au(t), t > σ, t 6= ti, i ∈ Z, σ ∈ R (DE)

u(σ) = ξ ∈ X, (IC)
u(t+i ) = Biu(t−i ), u(t−i ) = u(ti), ti ≥ σ, i ∈ Z, (IMC)

(5.1)

where
(H1)-A is a bounded linear operator,
(H2)-(Bi)i∈Z is a family of uniformly bounded linear operators, (‖Bi‖ ≤ M, ∀i, M
is a constant)
(H3)-(ti)i∈Z is an increasing family of real numbers, and there exist δ > 0 and
T < ∞, such that for any i ∈ Z,

0 < δ ≤ ti+1 − ti ≤ T < ∞. (5.2)

We first introduce the index function i(σ) = min{j : tj ≥ σ} where, for each σ, the
impulse condition reads in terms of i(σ) as

u(t+i ) = Biu(ti), i ≥ i(σ)

If σ = ti(σ), that is to say, if we start from an impulse time point, then we use u(σ)
for u(σ−).
We denote

BR(R, X) =
{

f : R→ X, f is regulated, continuous to
the left and bounded in R.

}
. (5.3)

We consider the family U(t, s)t≥s associated to (5.1) defined as follows:

U(t, s) =





e(t−s)A if [s, t[ ∩D = ∅,
e(t−ti)A ◦Bi ◦ e(ti−s)A if [s, t[ ∩D = {ti} ,
Id if t = s,

(5.4)

Remark 1: U(t, s) is not fully defined by (5.4). Extension of U(t, s) over the whole
set W is obtained by using the chain rule property. For arbitrary t, s, t ≥ s we
define U(t, s) as a finite product of operators U(τj+1, τj), where s = τ0 < τ1 < ... <
τj < τj+1 < ... < τN+1 = t and U(τj+1, τj) is given by formula (5.4), for each j,
0 ≤ j ≤ N.

The following lemmas will be needed to proof Theorem 1.1 in the next subsec-
tion, and Theorem 1.2 in subsection 5.2.
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Lemma 5.1 The evolution family U(t, s), for all t ≥ s associated to (5.1), can
be represented by the product of all U(τj+1, τj), τj < τj+1, 0 ≤ j ≤ N, (p, q) ∈ Z2,
and we have:
¨If [s, t[ ∩D = ∅,

U(t, s) = e(t−s)A (5.5)

¨If [s, t[ ∩D = {tp} ,

U(t, s) = e(t−tp)A ◦Bp ◦ e(tp−s)A (5.6)

¨If [s, t[ ∩D = {ti, i = p, p + 1, ..., q; q > p, (p, q) ∈ Z2},
U(t, s) = e(t−tq)A ◦Bq ◦ e(tq−tq−1)A ◦ ... ◦Bp ◦ e(tp−s)A. (5.7)

Proof: We consider the general case when [s, t[∩D has q−p+1 elements with
q > p, then we have

[s, t[ ∩D = {ti, i = p, p + 1, ..., q; q > p, (p, q) ∈ Z2},
and if we consider a finite family (τl)0≤l≤N+1, such that τl < τl+1 s = τ0, τN+1 = t.
In order for U(τl+1, τl) to be defined by (5.4), it is necessary that if for some l and
p we have: tp ∈ [τl, τl+1[ , then, for this l, [τl, τl+1[∩D = {tp} . So, in view of (5.4),
we will have:
if [τl, τl+1[ ∩D = ∅

U(τl+1, τl) = e(τl+1−τl)A,

or, if [τl, τl+1[ ∩D = {tp}
U(τl+1, τl) = e(τl+1−tp)A ◦Bp ◦ e(tp−τl)A.

Taking the product of U(τl+2, τl+1) and U(τl+2, τl+1), we obtain:
if [τl, τl+2[ ∩D = {tp}

U(τl+2, τl+1) = e(τl+2−τl+1)A,

or
if [τl, τl+2[ ∩D = {tp, tp+1}

U(τl+2, τl) = e(τl+2−tp+1)A ◦Bp+1 ◦ e(tp+1−tp)A ◦Bp ◦ e(tp−τl)A.

We can similarly represent the product of all the (U(τl+1, τl))0≤l≤N . We arrive at

U(t, s) = e(t−tq)A ◦Bq ◦ e(tp−tp−1)A ◦ ... ◦Bq ◦ e(tq−s)A.

Obviously, this expressions independent on the family (τl)0≤l≤N+1, and we obtained
doubly indexed family of operators U(t, s) satisfies the chain rule property

U(t, s) = U(t, r) ◦ U(r, s),

for all t, r, s such that t ≥ r ≥ s.¤
We note in this section, that the limit is not uniform but, is only a pointwise

limit.

Lemma 5.2 Consider equation (5.1) with (Bi)i∈Z and D satisfying assump-
tions (H2) and (H3), and U(t, s) given as said above (5.5)-(5.7). Then, t → U(t, s)
is continuous at any point t /∈ D, and continuous to the left at any ti, and we have

lim
t→ti
t>ti

U(t, s) = Bi lim
t→ti
t<ti

U(t, s) = BiU(ti, s). (5.8)
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Proof: Let U(t, s) be the evolution family associated to (5.1), and suppose
first that s, t ∈ R, be such that 0 < t− s < δ. Then :
•If s < t and ti /∈ [s, t[ then : U(t, s) = exp((t− s)A). Consequently, t → U(t, s) is
continuous.
•If ti ∈ [s, t[ , in view of (5.2), it is the only point of the set {ti : i ∈ Z}. Then

U(t, s) = exp((t− ti)A) ◦Bi ◦ exp((ti − s)A).

Thus,
lim
t→ti
t>ti

U(t, s) = Bi lim
t→ti
t<ti

U(t, s) = BiU(ti, s).

In order to extend the property to an arbitrary pair (t, s), t > s, we just have to
express U(t, s) a product

U(t, s) = U(t, τ∗) ◦ U(τ∗, s)

where we assume that 0 < t − τ∗ < δ. Then, the first step yields continuity of
t → U(t, τ∗) at any t /∈ D, and

lim
t→ti
t>ti

U(t, τ∗) = Bi lim
t→ti
t<ti

U(t, τ∗) = BiU(ti, τ∗).

Taking the product of the above with U(τ∗, s), formula (5.8) extends to any pair
(t, s), t > s.¤

5.1 Pointwise regulated semigroup. We give the following definition.

Definition 5.3 Let X be a Banach space. A one parameter family (T (t))t≥0,
of bounded linear operators on BR(R, X) is a pointwise regulated semigroup if :
(i) (T (t))t≥0 is an algebraic semigroup.
(ii) for any fixed f ∈ BR(R, X), s ∈ R and t ≥ 0, both the maps :

and
t → (T (t)f)(s)
s → (T (t)f)(s)

}
are regulated.

We will now show that the semigroup (T (t))t≥0 defined by (3.1) associated
with the evolution family U(t, s), defined by formula (5.5)-(5.7) in lemma 5.1, is
pointwise regulated. We have (T (t))t≥0 defined, for any f ∈ BR(R, X), s ∈ R,
t ≥ 0, (n,m) ∈ Z2 as follows :

From the expression (1.5) and (H1)− (H3), we have the following estimation:

‖T (t)f‖ = sup
s
|(T (t)f)(s)|

≤ et‖A‖ sup
s

(
∏

s−t<ti<s

‖Bi‖) sup
s

( sup
s−t<τ<s

|f(τ)|)

‖T (t)f‖ ≤ Mte
t‖A‖ ‖f‖ (5.9)

where Mt = sup
s

(
∏

s−t<ti<s
‖Bi‖), ‖f‖ = sup

s
( sup
s−t<τ<s

|f(τ)|).
We are now in position to prove the first main result of this work, namely, Theorem
1.1 (stated in the Introduction):
Proof of Theorem 1.1: We first point out that -due to semigroup properties-
(T (t))t≥0 being pointwise regulated is equivalent to (T (t)f)(s) being separately
regulated in t and s, for 0 ≤ t < τ, and all s ∈ R, for some τ > 0.
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So, we will assume for the rest of the proof that 0 ≤ t < δ (where δ is as in (H3)).
For f ∈ BR(R, X), we have

(T (t)f)(s) = U(s, s− t)[f(s− t)], ∀t ≥ 0.

•We fix t ≥ 0, then we have for : ti − δ < s ≤ ti,

(T (t)f)(s) = etAf(s− t).

In view of (H1), then s → (T (t)f)(s) is regulated.
For : s− t ≤ ti < s, we have

(T (t)f)(s) = e(s−ti)A ◦Bi ◦ e(ti−(s−t))Af(s− t).

From this expression we can using (H1) and (H2) that s → (T (t)f)(s) is regulated
at every s 6= ti. We now consider the situation at s = ti

lim
s→ti
≤

(T (t)f)(s) = etA lim
s→ti
≤

f(s− t)

and
lim
s→ti

>

(T (t)f)(s) = Bie
tA lim

s→ti
>

f(s− t).

Therefore, s → (T (t)f)(s) is regulated over R.
•In the same way, for fixed s, we have

(T (t)f)(s) =
{

eAtf(s− t), if [s− t, s[ ∩D = ∅,
e(s−ti)A ◦Bi ◦ e(ti−(s−t))Af(s− t) if [s− t, s[ ∩D = {ti} .

Then, t → (T (t)f)(s) is regulated, for all 0 ≤ t < δ.
By using propriety of algebraic semigroup, for fixed t ∈ [0, δ] , and for small h, we
have

(T (t + h)f)(s) = (T (t)T (h)f)(s), for f ∈ BR(R, X),

since, from the first step yields that, for small h, T (h) is a pointwise regulated
semigroup of bounded linear operators on BR(R, X).
Then, we have the result for all t ≥ 0.

Remark 2: The map (t, s) → (T (t)f)(s) is continuous at any point (t, s),
t ≥ 0, s ∈ R, such that neither s nor s − t is in the set Df ∪ {ti} , where Df is
the set of the points of discontinuity of f. Then, (t, s) → (T (t)f)(s) is continuous
outside of a negligible set in R+ × R.

5.2 Integrated semigroup. We showed in Theorem 1.1 that the map t →
(T (t)f)(s) is regulated for every s. As a consequence, we can integrate the function
in t for, each fixed s. This yields an operator S(t) on BR(R, X) given by

(S(t)f)(s) =
∫ t

0

(T (τ)f)(s)dτ,

for t ≥ 0, f ∈ BR(R, X), and T (t) given by (1.3) or (1.5) for all s ∈ R.
S(t)f is well defined by formula (1.6). We note that this expression is not defined
as a vector integral on BR(R, X) but as a function defined at each point s as the
integral of a regulated function. We will now prove the Theorem 1.2 (stated in the
Introduction):
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Proof of Theorem 1.2: Let f ∈ BR(R, X), then for small h, we have for any
t ∈ R+

S(t + h)f − S(t)f =
∫ t+h

t

T (τ)fdτ. (5.10)

From (5.9), we have,

‖T (τ)f‖ ≤ Mt+1e
(t+1)‖A‖ ‖f‖ , for any τ ∈ [t, t + h] ,

where Mt = sup
s

(
∏

s−t<ti<s
‖Bi‖).

Thus,
‖S(t + h)f − S(t)f‖ ≤ Mt+1e

(t+1)‖A‖h ‖f‖ ,

which shows the norm continuity.
For the algebraic formula, we have for any f ∈ BR(R, X), η ∈ R,

∫ s

0

(S(τ + σ)− S(σ))(f)(η)dσ =
∫ s

0

((S(t + σ)− S(σ))f)(η)dσ

=
∫ s

0

(
∫ t+σ

0

(T (τ)f)(η)dτ −
∫ σ

0

(T (τ)f)(η)dτ)dσ

=
∫ s

0

(
∫ 0

σ

(T (τ)f)(η)dτ +
∫ t+σ

0

(T (τ)f)(η)dτ)dσ

=
∫ s

0

∫ t+σ

σ

(T (τ)f)(η)dτdσ

=
∫ s

0

∫ t

0

(T (τ + σ)f)(η)dτdσ

=
∫ s

0

∫ t

0

(T (τ)T (σ)f)(η)dτdσ

=
∫ s

0

(T (τ)
∫ t

0

T (σ)f)(η)dσdτ

=
∫ s

0

(T (τ)S(t)f)(η)dτ

=
∫ s

0

T (τ)S(t)(f)(η)dτ

= (S(s)S(t)f)(η).

Then

S(s)S(t) =
∫ s

0

(S(t + σ)− S(σ))dσ,

and
S(0) = 0.

Consequently, S(t) is a norm continuous integrated semigroup on BR(R, X).¤
We are now in position to prove the first main result of this work, namely,

Theorem 1.3 (stated in the Introduction):
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Proof of Theorem 1.3: Let f ∈ BR(R, X). For t fixed such that 0 ≤ t < δ,
we have

(S(t)f)(s) =
∫ t

0

(T (τ)f)(s)dτ.

There are 2 cases to consider :
a) If ti < s < ti + δ and s− t ≤ ti, we have

(S(t)f)(s) =
∫ s−ti

0

(T (τ)f)(s)dτ +
∫ t

s−ti

(T (τ)f)(s)dτ

=
∫ s−ti

0

eτAf(s− τ)dτ +
∫ t

s−ti

e(s−ti)A ◦Bi ◦ e(ti−(s−τ))Af(s− t)dτ.

b) If s < ti+1 and s− t > ti, then

(S(t)f)(s) =
∫ t

0

(T (τ)f)(s)dτ

=
∫ t

0

eτAf(s− τ)dτ.

We notice that :

lim
s→ti

>

(S(t)f)(s) =
∫ t

0

Bi exp(τA) lim
s→ti

>

f(s− τ)dτ

and

lim
s→ti

<

(S(t)f)(s) =
∫ t

0

exp(τA) lim
s→ti

<

f(s− τ)dτ.

Then, s → (S(t)f)(s) is continuous at each point s /∈ {ti}i∈Z and thus has possible
discontinuities only at points tk. By (5.10) in Theorem 1.2, we have

(S(t + h)f)(s) = (S(t)f)(s) +
∫ h

0

(T (τ + t)f)(s)dτ

= (S(t)f)(s) +
∫ h

0

(T (τ)T (t)f)(s)dτ

= (S(t)f)(s) + (S(h)T (t)f)(s).

By using Theorem 1.1, t → T (t)f is regulated, for any f ∈ BR(R, X).
Then, we have the result for all t ≥ 0.¤

We remark that the integration of the semigroup made it possible to eliminate
all discontinuities due to the data, except at points s = ti, i ∈ Z.

6 Generator and domain of the integrated semigroup

We denote the set singularities of a function f, (i.e the points of discontinuity of
f on R) by sing(f). In Theorem 1.4, described in Introduction , we will show that
the operator A defined hereafter is the infinitesimal generator of the continuous
integrated semigroup S(t) :

(Af)(s) = Af(s)− f
′
(s)
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D(A) =





f ∈ BR(R, X) : singf ⊂ {ti}i∈Z , lim
s→ti

>

f(s) = lim
s→ti

<

Bif(s),

and
∂f

∂s
∈ BR(R, X), sing

∂f

∂s
⊂ {ti}i∈Z ,





.

Proof of Theorem 1.4: We will show that A is a Hille-Yosida operator. For
this, we first have to determine the resolvent operator:

R(λ,A) = (λI −A)−1.

Given f ∈ BR(R, X), the equation reads as (with v ∈ D(A))

λv(s)−Av(s) = f(s). (6.1)

Then,
λv(s)−Av(s) + v

′
(s) = f(s),

and by integration, we respect to s ∈ ]ti, ti+1[

v(s) = exp((A− λ)(s− ti))v(t+i ) +
∫ s

ti

exp((A− λ)(s− σ))f(σ)dσ. (6.2)

For i ∈ Z, let Vi = v(ti), be a sequence determine by

Vi = exp((A− λ)(ti − ti−1))Bi−1Vi−1 +
∫ ti

ti−1

exp((A− λ)(ti − ti−1))f(σ)dσ. (6.3)

As a Hypothesis (H1)− (H3). Then for λ > 0 large enough, the first expression of
equation (6.3) :

∆I : V → (exp((A− λ)(ti − ti−1)) ◦Bi−1Vi−1)i∈Z

is a strict contraction in the space l∞(Z) and consequently from (6.3) we have :

V = (I −∆I)−1(
∫ ti

ti−1

e(A−λ)(ti−ti−1)f(σ)dσ)i∈Z,

and thus

‖V ‖ ≤ e(‖A‖−λ)(ti−ti−1)

1− ‖∆I‖ (ti − ti−1) ‖f‖ . (6.4)

Consequently for s ∈ R, and from (6.2),

‖v‖ ≤ e(‖A‖−λ)(s−ti) ‖Bi‖ e(‖A‖−λ)(ti−ti−1)

1− ‖∆I‖ (ti − ti−1) ‖f‖

+ ‖f‖
∫ s

ti

e(‖A‖−λ)(s−σ)dσ

≤ e(‖A‖−λ)(s−ti) ‖Bi‖ e(‖A‖−λ)(ti−ti−1)

1− ‖∆I‖ (ti − ti−1) ‖f‖

+
‖f‖

λ− ‖A‖ (1− e(‖A‖−λ)(s−ti))

≤ e(‖A‖−λ)(s−ti)

[
‖Bi‖ e(‖A‖−λ)(ti−ti−1)

1− ‖∆I‖ (ti − ti−1)− 1
λ− ‖A‖

]
‖f‖

+
‖f‖

λ− ‖A‖ .

Let

Φ(z) =
1
z
− e−zα α ‖Bi‖

1− ‖∆I‖ , with α, z > 0.
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From (1.7), we have for α, z > 0,

Φ(z) ≥ 1
z
− e−zα αe

1− ‖∆I‖
≥ 1− ‖∆I‖ − αze−zααe

z(1− ‖∆I‖) ,

and for λ > 0, large enough, we have ‖∆I‖ small, and
1
e
≥ αze−zα, then

Φ(z) ≥ 0.

Consequently, for λ > ‖A‖ we have :

e(‖A‖−λ)(ti−ti−1)
(ti − ti−1) ‖Bi‖

1− ‖∆I‖ ≤ 1
λ− ‖A‖ .

Finally

‖v‖ ≤ ‖f‖
λ− ‖A‖ , λ ≥ ‖A‖

In generally, we have
∣∣(λI −A)−nf

∣∣ ≤ ‖f‖∞
1

(λ− ‖A‖)n
.

Thus, A is a Hille-Yosida operator, and therefore it determines an locally Lipschitz
continuous integrated semigroup (S(t)f) on BR(R, X).¤

From the theory of integrated semigroup (Lemma 3.3 and Theorem 3.5), see the
literature [1] [2] [3] [4] [5] [6] [7], it is known that T (t)|D(A)

, t ≥ 0, constitutes a C0-

semigroup on D(A), with the same infinitesimal generator A. For delay differential
equation, we can see [9].
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