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Abstract-In the modelisation of the dynamics of a sole population, an interesting issue is the 
influence of daily vertical migrations of the larvae on the whole dynamical process. As a first step 
towards getting some insight on that issue, we propose a model that describes the dynamics of an 
age-structured population living in an environment divided into N different spatial patches. We 
distinguish two time scales: at the fast time scale, we have migration dynamics and at the slow time 
scale, the demographic dynamics. The demographic process is described using the classical McK- 
endrick model for each patch, and a simple matrix model including the transfer rates between patches 
depicts the migration process. Assuming that the migration process is conservative with respect to 
the total population and some additional technical assumptions, we proved in a previous work that the 
semigroup associated to our problem has the property of positive asynchronous exponential growth 
and that the characteristic elements of that asymptotic behaviour can be approximated by those of 
a scalar classical McKendrick model. In the present work, we develop the study of the nature of 
the convergence of the solutions of our problem to the solutions of the associated scalar one when 
the ratio between the time scales is E (0 < E < 1). The main result decomposes the action of the 
semigroup associated to our problem into three parts: 

(1) the semigroup associated to a demographic scalar problem times the vector of the equilibrium 
distribution of the migration process; 

(2) the semigroup associated to the transitory process which leads to the first part; and 

(3) an operator, bounded in norm, of order E. 
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1. INTRODUCTION 

Many fish, especially flatfish, spawn offshore but early juveniles develop inshore and several 

mechanisms may be involved in the transport of larval and early juvenile stages from spawning 

grounds to nurseries. In the case of the sole, Solea solea, active vertical migrations are involved 

during the larval stage, see [1,2]. These migrations are provoked by light; the lack of light 

is followed by upward movements and vice versa. Thus, the process of vertical migration is 

performed daily, which is a fast time scale in comparison with that of the demographic process. 

F’rom a theoretical point of view, Arino et aI. 131 proposed a model which takes account of the 

main features of the dynamics of the Sole population of the Bay of Biscay. Nevertheless, they 

did not observe the daily migrations of larvae. 

In [4], the authors proposed a model which includes the influence of vertical migrations in 

the demography of larvae. It is a model of an age-structured population divided into N spatial 

patches that d~ti~uish~ two time scales: the fast dynamics represents the migration process 

between patches, and it is considered linear and independent of age, the slow dynamics describes 

the demographic process by means of the McKendrick model with different age-specific mortality 

and fertility rates for every patch. The existence of two time scales suggests the extension of the 

aggregation methods, already developed in discrete models of structured populations (see [5,6]), 

to the present case where time and age are continuous variables. Models for the continuous 

time dynamics of populations structured by continuous structuring variables can be described by 

means of mass balance equations [7]? which, in simpler cases, assume the form of the McKendrick 

equation. 

Aggregation methods, as well as other reduction methods, associate to a system where two 

processes are acting at different time scales a reduced system. This aggregated system is obtained 

by supposing that the fast process i~~tan~usly attains its equilibrium. A second task of the 

method is to determine the distance between the results obtained from the reduced system and the 

real ones. In [4], an aggregated system has been constructed which is associated to the initial one 

by assuming that the fast dynamics reaches constant equilibrium frequencies in every patch. The 

initial and the aggregated systems (a classical McKendrick model) share the property of positive 

asynchronous exponential growth, with their dominant eigenvalues close enough. Moreover, the 

dominant eigen~nction of the initial system is approximated by the product of the dominant 

eigenfunction of the aggregated one and the vector of equilibrium frequencies of the fast dynamics. 

The aim of this work is to complete the study of the model presented in [4]. From a mathe- 

matical point of view the model is a linear system of partial differential equations where the state 

variables are the population densities in each spatial patch, together with a boundary condition 

of integral type, the birth equation. Due to the two different time scales, the system depends 

on a small parameter e and can be thought of as a singular perturbation problem. We study 

the nature of the convergence of the approximate solutions obtained through the aggregated sys- 

tem towards the real solutions of the model when E tends to zero. The parameter E could be 

interpreted as the time needed for a single patch migration. 

2. THE MODEL 

We consider an age-structured population, with continuous age a and time t. The population 

is divided into N spatial patches. The evolution of the population is due to the migration process 

between the different patches at a fast time scale, and to the demo~aphic process at a slow time 

scale. 

Let ni(a, t) be the population density in patch i (i = 1 , . . . , N), so that Jay ni (a, t) da represents 
the number of individuals in patch i with age a E [al, az] at time t, and 

n(att) = (m(a,t),. . . ,w(a,t)lT. 
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Let ~~(a) and &(a) be the patch and age-specific mortality and fertility rates, respectively, and 

M(a) = d&&(a), . . . avf4), B(a) = diag(Pl(4,. . . ,Pda)). 

Let kij be the migration rate from patch j to patch i, i # j, and 

K = (kcj)l<i,j<N, 

with kii = - j’Jfel,j+i kji. 
The model based upon the classical McKendrick model for an age-structured population reads 

as follows. 

Balance Law 

f3n @n 
z+x= -M(u) f ;K 1 n(u, t), (a>O, t>O), 

where 0 < tt << 1 describes the fact that the migration process evolves at 
compared to the demographic process. 

Birth Law 

J 
00 

n(O,t) = JXa)n(a, t) da, (t > 0). 
a 

Initial Age Distribution 

(1) 

a fast time scale 

(2) 

n(a, 0) = +(a), (t > 0). (3) 

The matrix K has nonnegative off-diagonal elements and the sum of its columns is equal to zero. 
If we assume that K is irreducible, then Theorem 2.6 of (8, pp. 46-473 applies and we have that 0 
is a simple eigenvalue, larger than the real part of any other eigenvalue, with strictly positive left 
and right eigenvectors. Henceforth, we assume the following. 

HYPOTHESIS H 1. The matrix K is irreducible. 
The left eigenspace of the matrix K associated to the eigenvalue 0 is generated by vector 

1= (l,..., l)T E RN, and the right eigenspace is generated by a vector V, which is unique if we 
choose it having positive entries and verifying lTv = 1. 

To assure the existence and uniqueness of the solution of systems (l)-(3), we assume Hypoth- 
esis H2, where we use the notation 

P*(U) = $ &(a)~ = lTM(u)v, (4 
i=l 

P*(u) = 5 &(a)~+ = lTB(a)v. (5) 
i=l 

HYPOTHESIS HZ. 

(i) pj,Pj E Lm(R+), ~lj(~) 2 0, Pj(a) 2 0, a.e., u E R+, j = 1,. . . ,N. 
(ii) inf,>o p*(a) = CL* > 0. 

(iii) There exists so E R, so > -p, such that s,‘” e-r~op+(u)e-~“(u’db~u > 1 and 
lim sup__ e80~llB(~)~l < +m. 
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Now, Proposition 3.2 of [9, p. 761 applies. System (l)-(3) h as a unique solution for every initial 
age distribution 4 E L1 (R+, RN), and we can associate to it a strongly continuous semigroup of 
bounded linear operators 

qt) : L’ (R+,R~) - L1 (R+@), 

(b - T,(t)4 = %(*9q, 

where n,(*,t) is the solution of (l)-(3) corresponding to the initial age distribution 4. 
Under some additional gumption, Arino et al. [4] h s ow that the semigroup T,(t) exhibits 

positive asynchronous exponential growth. 

3. THE AGGREGATED MODEL 

The so-called aggregated system, constructed in detail in [4], is a scalar classical McKendrick 
model which approximates the dynamics of the total population, henceforth called global variable 

N 

n(a,t) = z Tli(U, t). 
i=l 

Mathemati~~ly, it reads 

(a > 0, t > O), (6) 

s +m 
n(O,t) = p’~U)~(U, t> f-h @ > 01, (7) 

nffh 0) = 4?4, (a > 0). (8) 

The general theory applies here [9], proving the existence of exponential asynchronous behaviour 
in the cases where the characteristic equation associated to the problem possesses a unique real 
simple root which is strictly dominant. In the following, we denote {Sa(t))~o the semigroup 
associated to the aggregated model. 

4. DECOMPOSITION OF THE SEMIGROUP 

In this section, we will establish the main result of this paper: the semigroup {TE(t))t>~ 
associated to the perturbed problem (l)-(3) can be decomposed into a stable part which is 
precisely Se(t)v and a perturbation of order O(E). 

With the aim of studying the behaviour of the semigroup {T’(t)} ~0, we consider the following 
direct sum decomposition of the space RN, whose existence is assured by Hypothesis Hl: 

RN = [Y] CB S, 

where [v] is the subspace of dimension 1 generated by vector Y and S = {v E RN; lTv = 0). 

Observe that KS, the restriction of K to S, is an isomorphism on S with spectrum o(Ks) c 

{XEC;Ftf?X<o}. 
We decompose the solutions of system (l)-(3) according to the projections onto the sub- 

spaces (v] and S. Set 

n&, t> = p(a, t>~ + s(el t), 

where we drop the E under p and q, whenever no confusion is to be expected. The projec- 
tion onto [Y] is obtained by left multiplication by 1; the complementary projection (onto S) is 
denoted TI. 
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Substituting in (l),(2), we obtain the following equations for the components p(a, t) and q(a, t) 

of n,(a, t): 

ap %J x+z= -l~M(U)~~(U, t) - lTM(u)q(u, t>, 

aq z+z= -Ms(a)v(a, t) + f KS - MS(~) q(a, t), 
I 

(91 

(10) 
+CQ 

Pto,t) = J 
+03 

lTB(a)vp(a, t) da + 
J 

lT‘B(ufs(ut t) da, (11) 
0 0 
4-m +oO 

a@, t) = 
J 

Bs(a)w(a, t) da + 
J 

Bs(a)sfa, t) da, 02) 
0 0 

where MS(U) = II*M(u) and B,(u) = II.B( a ) are the projections of M(u) and B(a), respectively, 

onto S. 

The general solution of that system can be expressed in terms of the resolvent operators of 

certain associated problems. From that, we can deduce the dependence of the solution on E. 

LEMMA 1. Let &(a, a) (a > a), with &(a, a) = I, be the fundamental matriv of the homoge- 

neous differential system 

v’(u) = 
[ 
;KS - MS@) v(a). 1 (13) 

Then, there exist constants kl > 0, kz > 0, and kg > 0 such that 

PROOF. See [4, Lemma 11. 

From equations (10),(12), we can obtain the function q in terms of p. Then substituting 

in (9),(11), we obtain a problem in p. To this end, let us consider the nonhomogeneous problem 

- MS(U) I sfa, 4 + Ftu, 9, (14 

do, t) = I’” Bs(ah(a, t) da + G(t), 

4(% 0) = so(a). 

(15) 

(16) 

LEMMA 2. There exists a action Q c = (P&Q), a 2 0, with mhes f t(S), such that 

@:(a) = aKS - MS(~) 1 *e,(a), a 2 0, 
J 

+m 
*m - Bs(u)~~(u) da = Id, 

0 

PROOF. We can write 

where R, is the fundamental matrix in Lemma 1. Then, we obtain for aE(0) the equation 

[I 

+m 
wa - B&z)R,(u, 0) da !B,(O) = Id, 

0 I 

which has a solution for E, small enough, in view of the bound of RE in Lemma 1. Let us notice, 

moreover, that lii,,~, qi,(O) = Id. 8 
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Now, we can perform the change of unknown function 

s1(a,t) = sbt) - *E(Q)Gt% 

which transforms problem (14)-(16) * t m o a nonhomogeneous problem, with homogeneous condi- 
tion for a = 0 

C!C+$$ 
[ 
;I& - W(o)] ql(o,t) + F(o,t) - *@G’(t), 

qr (0, t> = 
s 

+O” Bs(o)qi (a, t) de, 

qi(o, 0) = t(o) - *E(o)G(O). 

The solution of this problem can be expressed with the help of the variation-of-constants formula 

in terms of the semigroup (Z&(t)} ~a which gives the solution in L’(R+, RN) of the homogeneous 

problem 

aq aq 
aa’at= & [ 

A&(o) - MS(~) 1 q(o, t>, (17) 
q(O* $1 = J,‘” &(ah(~> 9 da, (1% 
da, 0) = sob) - ~=(~)G~O). (19) 

To be specific, 

J 

t 
sl(.,t) = &@>[qo(.) - *e(.)GtO)j + Wt - T)P’(*,T) - WP’(dl dr. 

0 

In order to eliminate G’ in the expression for 41, we integrate by parts. Finally, we obtain an 

expression for q 

q(-, t) = &(t)qo(w) + ltu,(t - T)F(., 7) d7 + Jd’ Wt - T@(T) dr, (20) 

where 

am = 
I 1 $+% (4 (a > 0, t z 0). (21) 

In our case, 

I+, t) = -Ms(o)~(o, t), 
+a, 

G(t) = 
J 

&fukp(u, tl da. 
0 

Now, we substitute solution (20) of q(*, t) into equations (9),(11), obtaining the following system 

for p(a, t): 

- lTM(a) J’ ve(t - T)(a) (J+m Bs(a)v(a, t) da) d7 
0 0 

- lTM(+f&)qob)> 

PC-4 t) = I” ~(u)p(u, t) da - 1’” lTB(u) (J,‘&(t - ~)Ms(u~~p(u,~) dr) du 

+03 
+ 

J 
lTB(a) ( Jt w - r)(a) (J’” Bs(a)vp(a, T) da d7 da 

0 0 0 > 1 

+ 
J 

+oC 
lTW Mtkio) (4 da 

0 
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With the aim of simplifying the notations, we define, for each t > 0 fixed, the following two 

operators: 

W) : C ([W]J1 CR+)) - L’ CR+), 

K(t) : C ([O,tlJ1 CR+)) - R 

DE(t)(p)(a) = lTM(u) it &(t - ~)Msta)v~(a,~) d7 
Jo 

-lTM(a) 1” V,(t - ~)(a) (I’” Bs(a)vp(a, t) do) dT, 

4-00 t 
&(t)P = - J lTB(a) (/ &(t - ~)Ms(a)~p(a, T) dr da 

0 0 > 

J 
+m 

+ lTB(a) BS(~)q(q T) da 
0 

Let us denote 

fda,t> = -lTM(4 W(t)qo) (a), 

J 

00 

!Jdt) = lTBb) Wdtho) (a) da. 
0 

Finally, we can write the system verified by p(a, t) in the form 

g+!& -d-J* (a)p(a, t> + ('D,tt)P) (4 + fda, 4, (a > 0, t > O), 

p(o, t) = /‘” P*(a)p(a,t) da + att>p + gc(t)> (t > 01, 

P(U, 0) = Pzi4 (a > 0). 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

Integrating system (26)-(28) along the characteristic lines of the operator (6) + (&), we can 

formulate the problem in terms of proving existence of a fixed point for an operator. 

Lemma 1 and straightforward calculations yield the bounds established in the following lemma. 

LEMMA 3. 

(a) The semigroup {Z&(t)} ~0 satisfies the following estimate, for some positive constants 

kq, kg, and the constant kl given in Lemma 1: 

Ilue(t)(l 5 k5e(k4-k1’E)t, (t L 0). 

(b) The function Vc(t)(.) : R+ -+ C(RN), defined in (211, satisfies the following estimate, 

for some positive constants ks, k7: 

IIW)llL~ I be (ks-hle)t I (t L 0). 

(c) The operators DDE(t),&(t) defined in (22),(23) satisfy the following estimates for some 

positive constants ks , kg : 

ll’D,(th4l~~(~+) 5 Tics [ e(ka-kl/b)t - 1 1 TyftI llp(., T)IIL~, 

I&(tM S 6 [e(kz-klia)t - 1] TzitI IIP(., T)IIL~, (t 2 0). 
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Denote by po(a, a) the m&vent function of the problem 

dz 
- = -p*(a)z(a), 
da 

po(Q,a) = 1. 

Observe that po(a, 0) = e-c M*(s)ds is the resolvent associated to the aggregated problem 
(6)-(8). After standard calculations, we obtain the following equations. 

(i) For a > t, 

z-+, t> = pota, a - tb0(a - t> 

J 

t 

+ pij(a, a - t + u)~(~e(u)p)(a - t + a) + fe(a - t + 0, u)] da. 
0 

(ii) For a < t, 

[s 
+a, 

PC% 4 = Potat 0) P*(a)p(ck,t - a) da + &(t - a)p + g& - a) 
0 1 

+ 
J 
oa Potw4K’Dt~ - a + u)p)(o) + fe(u, t - a f u)] da. 

Both equations (29) and (30) can be collected in a single equation of the form 

P = 3(GP)t 

(29) 

(36) 

(31) 

where the operator 7(s,p) can be decomposed into the sum of three terms. 

(j) A term 7fs, independent of E, 

0, (a > t), 
%0Ma, t) = 

potal 0) + 
J 
+O” P*(a)p(a, t - a) dcr, (t > a). 

0 

(jj) A term d(E,p), dependent on E and linear in p, 

4wW t) = J 

t 
po(a,a - t + u)(~e(u)p)(a - t + Q) da, a > t, 

Oa 

J 
o ~0(a,4tW - a + +)(4 h + pota, WW - ah t > a. 

(jjj) A nonhomogeneous term J(e,po,qs)(a, t), only dependent on the initial conditions 

J 

t 
PO@, a - %(a - t) + po(a,a-t+o)f,(a-t+a,a)da, (a>$ 

37(w0,q0)(ayt) = 
0 II 

~0(a,O)g=(t - a) + J ~(a,~)~~(~,t-a+~)~, (t > a). 
0 

Therefore, we have 

I = ‘Ho(P) + d(e, p) + J(s,po, qo). 

It is possible to choose an exponential norm in C = C([O,T];Ll(R+)) (2’ > 0), such that the 
operator ‘Ho + d(e, .) is a strict contraction in C for every E 5 ~0. We can write the solution p 
of equation (31) in the form 

P = (Id- ‘Ho - d(e,.))-‘[r7(e,~,qo)l. (32) 
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Let us define 

We can then write the following asymptotic expression for the solution p of equation (32): 

p = [Id - ‘Ho]-‘(J(0 ,PO,O)) + NE,Po,qo), (33) 

where B is an operator such that, for some constant Cl > 0, 

ll~(~,P0,90)(.,t)ll~l(R+) 5 Cle-~'tll(p0,90)ll~1(R+). (34) 

The term (Id - XO)-~[J(O,~O, 0)] is the solution of equations (26) and (27) for E = 0, which is 

just the aggregated model (6),(7) with initial age distribution PO(U). Then, it can be expressed 

in terms of the semigroup {So(t)}t20, as So(t)po. 

The main result of this paper is stated in terms of the perturbed semigroup {T,(t)}t>o in the 

following theorem. 

THEOREM 1. For every E > 0, small enough, and some constant CZ > 0, it is verified that 

(TE(t)+)(a) = (So(t)po)(a)Y+U,(t)qo(a) +EB(~po,qo)(a,4 + 0 (=(CZ+iE)t) , (35) 

where {S~(t)}~~o is the semigroup associated to the aggregated model (S)-(s) and 4 = pou + qo, 

with qo E S, is the initial age distribution. 

COROLLARY 1. For each t > 0, we have 

where the limit is taken in L1(R+, RN). 

From Lemma 3, we can obtain the convergence in t and E 

Therefore, the convergence is uniform if t E [b, +m[ for each b > 0, but is not, uniform in [0, +oo[. 

In fact, for t = 0 and each initial age distribution 4, we have 

whereas if the limit (35) were uniform, 

which yields a contradiction if 4 4 [v]. 

5. CONCLUSION 

Let us interpret formula (35). The components of v are positive and sum up to one, and 

they represent a distribution of individuals in the patches. (So(t)po)(a) gives the total number 

of individuals of age a. Conditions stated in [4] ensure that the semigroup So(t) has a positive 

asynchronous exponential growth. For each t > 0, the above formula yields that TE(t)c$ + 

(So(t)po)v, in L’, as 6 ---* 0. But the convergence is not, uniform in t. For E = 0, that is to say, if 

we assume that the transition time between any two patches is zero (or say, infinitely small), the 

equation reduces to Kn(a, t) = 0, with the same boundary condition at a = 0. In this case, the 



26 R. BRAVO DE LA PARRA et al. 

population moves in such a way that it instantly occupies the patches according to the desired 
distribution. In practice, some time is needed for individuals to jump between two patches, and 
formula (35) tells us how long it takes for any given distribution to reach a neighborhood of the 
desired distribution. It yields the following: for every 0 < q < (ICl/kd) (kl and kq given in the 
bound of Lemma 3a), there exists IE > 0 such that for every 0 < E < v/(C + 1) (C given in 
bound (34)) and t 2 m, and every initial value 4, we have IITe(t)q5 - So(t)povJI I ~&$11. The 
solution So(t)pov is typically the outer solution in the singular perturbation theory, while So(t)po 

is the solution of the aggregated system in the sense of aggregation theory; a = 0 plays the role of 
the boundary layer associated with a singular perturbation, and the above estimate of the region 
of nonuniform convergence indicates that the boundary layer has a thickness of the order of E. 

We conclude from our results that the vertical migrations of the sole larvae could be included 
approximately in a scalar model by a sort of averaging of the fertility and mortality rates by means 
of the equilibrium frequencies of the migration process. This approximation lacks the possibility 
of measuring the time spent in the transitory state as mentioned in the above paragraph. In the 
future, we intend to obtain the same type of results when the migration matrix is age and/or 
time dependent, and when the slow dynamics not only represents the demographic process but 
also diffusion and transport processes. 
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