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Abstract

The paper provides a mathematical study of a model of urban dynamics, adjusting to an ecological model proposed by Lotka
and \olterra. The model is a system of two first-order non-linear ordinary differential equations. The study proposed here
completes the original proof by using the main tools such as a Lyapunov fun€taite this article: J. EI Ghordaf et al.,

C. R. Biologies 327 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Etude mathématique d’un modéle de croissance de la population de deux régions. Cet article propose un modéle ma-
thématique de dynamique urbajrajusté au modele écologique de Lotka et Volterra. Ce modéele constitue un systéeme de deux
équations différentielles ordinaires non linéaires du premier ordre. La présente étude compléte la preuve originale par I'utili-
sation d’outils principaux tels que la fonction de LyapunBour citer cet article: J. EI Ghordaf et al., C. R. Biologies 327
(2004).
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1. Introduction

- In a world of fast growing population and intercon-
Y The present work was started with Professor Ovide Arino. tinental trade relations, the local emergence of new
Ovide died before finishing this work, we dedicated it to his mem- . '
ory. economic centres, on the one hand, and the global
" Corresponding author. competition of existing emnomic centres, on the other
E-mail address: hbid@ucam.ac.m@V.L. Hbid). hand, have a major impact on the socioeconomic and
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political stability of our future world1]. So, in the pleting the mathematical study made by Y. Miyata et
last twenty years, thereals been an important change al., who used the method of perturbations, which gives
in the way geographers and planners have begun tono convincing results. The main tools in our study are
think about the growth and form of cities. The con- a Lyapunov function, application of the principle of
cept of self-organization by which global structures LaSalle and the discussion of the phase portraits.
emerge from local actions has gained populajity

3, etc.]and the reason for the application of this con-

cept is its ability to indicate explicit interdependent 2. The model

relationships between factors of complicated regional

systems and to clarify new ordering derived from a 2.1. Presentation of the model

fluctuation in this system. Mathematical and computer

models have started to flourish. Such models have the  Miyata et al. present this simple example in order
ability to capture the essentials of forces’ ‘attractive- to describe the essence of the theory of dynamic self-
ness’ and relationships in effect between two cities organization. So they consider a two-regional popula-
or between clusters inside cities and to simulate the tion growth model.

way these quantities change with time. Analogies with The model is represented as follows:
some ecological models are, in some cases, relevant: e

for example, when two or more species live in proxim- & = kixa(N1 — x1 — Bxz) —dixy

ity and share the same basic requirements, they usually | &2 — g0 (N, — x5 — x1) — daxz

compete for resources, habitat, or territory. Such an @ ] ]
analogy has been hardly used in a pioneering model Where the parameters are defined in the authored paper

1)

by P. Allen[4]. as follows:
The Hokkaido prefecture has encoded a serious x; population of region;
socio-economic situation, under this problem. Y. Miy- N; carrying capacity of regiof
ata and S. Yamaguchi adapted Allen’s model in order k; birth and immigration rate in regian
to discriminate between a number of roadway systems S parameter of interdependence between the re-
connecting the main towns with a regi{@], so they gioni andj;
investigated the possibility of regional redistribution of  d; death and emigration rate in regibn

the population of the Hokkaido prefecture based upon

the theory of dynamic self-organization of population 2.2. Remarks

distribution. As an illustration of the power of math-

ematical methods, they consider, in the first part of  We have some remarks about interpretation given
their work, a simplified system with two towns, ad- by the authors concerning the parameters of the model.
justing to model proposed by Lotka and Voltef8, A better understanding, for us, of the parameters is
when the competition between two species is depicted given as follows:

without direct reference to the resources they share. The general form of an equation describing the evo-
The difference of the interpretation between Miyata et lution of regioni, is:

al’'s model and the classical Lotka—Volterra model is .

in the fact that each region has its own potential of — = rix; — d;x;

resources used by inhabitants of two regions, and the

resources are interpreted as services and goods offeredvhere:

in the region. Our purpose here is to revisit this sim- r;x; is the growth term;

ple system; in the next section, we will describe the d;x; is the decrease term;

model emphasizing its relevance with urban dynamics; r; is a growth rate, which is not constant and de-
in Section3, we present a complete study of the sys- pends on the two population in a symmetric
tem, based on the already existing method®]rand way:

[7], depending on the location parameters and we will
discuss the relevance of the results to the subject com- ri = ki(Ni = xi — pxj)
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In the expression aof;, Hypothesis. Fori = 1, 2, the parameters, N; andd;
satisfy.
N; stands for the resources of regiQexpressed
in terms of the maximum of individuals that ki Ni > di
the region can sustain;
ki is an efﬁciency parameter that expresses the This hypothESiS has an interpretation in the model:
interaction between the potential of the re- kiNi is the crude growth rate of populationvhen the
gion and the population growth; potential is at its maximum value, namely when the
B represents the intensity of resources (namely Potentialis almost zero.
services and goods) offered in a region used ~ The hypothesis means that this maximum crude
by inhabitants of the other regions; growth rate is bigger than the mortality and outmigra-
N; —x; — Bx; isthe part of resources of regiomhat tion rate.
is unemployed. It represents the potential of ~ Classical theorems apply, providing existence and
the regioni, determining the growth of the ~ uniqueness to the initial-value problem associated to
populationy; through the efficiency parame-  (2) with initial value (x2, x9), with x? > 0, fori = 1, 2.
terk;. Furthermore, the solutions remains non-negative and
exist for allr > 0 (se€6]).
We suppose, taking the sangein both equations,
that an individual divides his consumption in a pro- 3.1. Asymptotic behaviour of the solutions of
portion that is always even between what exists and System (2)
what is imported. This hypothesis is obviously ques-
tionable. 3.1.1. Sationary solutions
The stationary solutions of syste(®) satisfy the
system:

{ kix1(P1—x1— Bx2) =0
kox2(P2 — x2 — Bx1) =0

3. Mathematical study of the model

This section is devoted to the asymptotic behaviour

of the solution describing the systt). which gives four equilibrium points:

System(1) can be written as a classical competition
model: Eo=(0,0), E1=(P1,0), E2=(0,P2) and

49— yxy(Py— x1 — Bx2) o E3z=((PL— BP2)/(1—B?), (P — BP1)/(1— B?))

% =kox2(P2 — x2 — Bx1) Our goal is to study the stability of these points and in
where we have introduced the notations the end, we establish the following important result.
P, =N; — % i=12 3.1.2. Sudy of the stability

i In the addition to existence of the equilibrium
P; is the potential of the regiohtaking into account points, we can prove that it is 0n|y one g|oba||y as-
the mortality rate and the emigration related to this re- ymptotically stable point in the positive domain.
gion. Notice that if one of the populations is equal to 0
atsome instant, then itis remains equal to O atall times | emma 1. The w-limit set of each non-negative solu-
t > 0. In this case, the equation for the other popula- tjon of system (2) is reduced to one equilibrium point.
tion is just a logistic that can be written as
dx; . Proof. Itis a straightforward application of the princi-
a kixi(Pi —xi), i=12 ple of LaSallg8], considering the Lyapunov function
So, the paramete®; can be considered as carrying ca-
pacities of regiori. Then, in order to have; > 0, we
should make the following assumption (see alsg6, p. 270]and[7, p. 28).

1.2 1.2
Q(x1, x2) = 5x7 + Bx1xz + 5x5 — P1x1 — Pax2
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Let us define:

V(1) = Q(x1(r), x2(1))

which implies:

V() = —kixa(x1 + Bxz — P1)?
— koxp(x2 + Bx1 — P2)?

SO

V() <0 and

V()=0 only at stationary pointg;, i=0,1,2,3

Since the solutions of the system are boundedgqthe
limit set of each solution is non-empty, compact, con-
nected, and invariant by the system.

By applying the principle of LaSalle, one has:

w(x) C{E;,i=0,123}

But w(x) is a connected set, therefore it is necessarily
reduced to one stationary point. So:

o(x)=1{E;} O
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and therefore we are obliged to consider different
cases, since for some values of the parameiarand
R> do not intersect i R?..

Due to the symmetry of syste(R), we can suppose
that P, > P1 without any loss of generality.

We will make the study of the asymptotic behaviour
of solutions in terms of parametgr which is signifi-
cant for the model.

Theorem 3. 1f0< 8 < %, we have:

(a) each solution of system (2) corresponding to an
initial value (x, 0), with x? > 0, converges to-
wards the stationary point E1;

(b) each solution of system (2) corresponding to an
initial value (0, x9), with x3 > 0, converges to-
wards the stationary point E2;

(c) each solution of system (2) corresponding to an
initial value (x2,x9), with x? > 0 and x2 > 0,
converges towards the stationary point E3.

Proof. In this case, the isocline®; and R» intersect
in IR_% and therefore the equilibrium poit; should

As a consequence of this lemma, each non-negativebe taken into account.

solution of systen(2) approaches asymptotically for
t — 400 one of the equilibrigt;, i =0, ...,3 and in
what follows we will locate which of the four equilib-
ria is the limit point.

First of all, let us consider the equilibrium poifp.
The linearized system @R) around this point is:

dx
A
dr *
where
_ T [ kiN1—d1 0
x=(x1,x2) and A= ( 0 kaNo — do

Since the matrixA has two positive eigenvalues, we
can conclude the following lemma:

Lemma 2. The stationary point Eg = (0, 0) is repul-
sive.

Let us observe that the equilibrium poifsg is the
intersection of the two isoclines

Ri:=P1—x1—Bx2=0
Ry:=Pr—x2—Bx1=0

We obtain the stability of equilibria by linearisa-
tion of the systen(2) around each equilibrium point
Ei,i =1, 2,3, so thatF, and E» are saddle points
and straightforward calcuiians show that their sta-
ble manifolds areS; = {(x1,0),x1 > 0} and S =
{(0, x2), x2 > 0}, respectively, this proves (a) and (b).
FurthermoreEs is asymptotically stable. Bearing in
mind Lemma landLemma 2 assertion (c) holds. O

Moreover, we have the following result:

Lemma 4. For eachi =1, 2, there is a paving of re-
pulsiveness around E;.

Proof. With the aim of constructing a paving of repul-
siveness around1, letn > 0 be fixed and consider

Py ={(x1,x2)/Ix1— Pl <1, 0< x2 <
Then

d
=2 :kzxz(Pz —BPL—x2—B(x1— Pl))

dr
> (P2— BPL—n(B+1D)kax2
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Choosing

P,—BP1

0<
TS"518

<

X

we have

dxo
o = nkaxz
and then, if a solution is i, at some instan, there
existst; > rg for which such solution will be outside
P, for eachr > 1;.

In the same way, we can construct a paving of re-
pulsiveness around,. 0O

Theorem 5. 1f £ < g < 22, we have:
2 1

(a) each solution of system (2) corresponding to an
initial value (x, 0), with x? > 0, converges to-
wards the stationary point Eq;

(b) each solution of system (2) corresponding to an
initial value (x?,x2), with x? > 0 and x9 > 0,
converges towards the stationary point E>.

Proof. In this case, isocline®, and R, do not inter-
sect in IR_2F and therefore there exist three equilibria
Ep, E1 andE>. The linearized systems aroufid and

E> prove thatE is a saddle point with stable manifold
S1 and E> is locally asymptotically stable. Bearing in
mind Lemma 1 assertion (b) follows. O

Moreover, a paving of repulsivity arourfth can be
constructed in the same way adiemma 4

Finally, for the third case, similar calculations and
standard arguments that can be founf{binead to:

Theorem 6. If 8 > %, the equilibrium point Ez isin
IR? and we have:

(a) Episunstable;
(b) E1 and E; arelocally asymptotically stable;
(c) Esisasaddlepoint.

Moreover, the stable manifold associated to E3 con-
sists of two orbits converging to E3, which divides the
positive quadrant into two basins of attraction £2; and
£22. All solutions starting in 21 tend to E1 and all so-
lutions starting in 22 tend to Eo.
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4, Conclusion

We said that the model presented in SecRomas
proposed first by Lotka and Volterra, who described
the competition between two species for resources
they share rather; it is assumed that the presence of
each population leads to a depression of its competi-
tor’s growth rate. Later on, this model was adjusted in
urban dynamics by changing the meaning of the mod-
el's variables and parameters. It is now necessary to
make an urban interpretation of the results obtained so
far.

HypothesisP1 < P> means that region 2 still the
region that has the bigger potential, taking into account
the mortality and emigration rate in this region.

When the intensity of resources used by inhabitants
of two regions is less strong,Q 8 < %, we have an
interior steady state, whidk stable and which means
that each population manages to live in its region and
to benefit from the services offered in the other region.
But when the intensity is much strong%, <B< %,
then the solution with initial valuex?, x39), with x? >
0 andxg > 0 converges towards the stationary point
E>. That is the region with the higher potential will be
dominant for any initial situation.

For % < B, we have three non-trivial steady state,
with two points which are stable. In this case, itis very
difficult to verify which one of the populations leaves
its area; it depends crucially on the starting advantage
each population has. If the initial condition lies in do-
main 21, then eventually population 2 leaves to region
1, thus the competition for the use of resources elimi-
nated region 2 and the saifi¢he initial condition lies
in domains2.

As stated above, it has been shown that all solutions
of the systen{l) converge, depending on the intensity
of the competition parametgrand the initial value, to
one equilibrium point; from urban interpretation, we
conclude that a small change in the quantity of the in-
tensity of competition influences the result.

This study is the commencement of a large and
complete mathematical alysis of a complex models
initiated by P. Allen et al. and Myata et al. These mod-
els concerm regions and consider that the potentials
of each region are variable in time with respect to the
global population and its distribution between regions.



982 J. El Ghordaf et al. / C. R. Biologies 327 (2004) 977-982

Acknowledgements [2] Y. Miyata, S. Yamaguchi, A study on evolution of regional pop-
ulation distribution based on the dynamic of self-organization
This work was partially supported by the program theory, Environ. Sci., Hokkaido University 13 (1) (1990) 1-33.
‘Action integrée 212 MA 00 and the JER-IRD". [3] G. Nicalis, I. Prigogine, SélOrganization in Nonequilibrium

The authors are grateful to J.-P. Treuil and Eva . Systems. John Wiley and Sons, Inc., 1977. .
. . . . . [4] P.M. Allen, M. Sanglier, A dynmic model of growth in a central
Sanchez for discussions leading to the rewriting of this ™~ 3ce system, Geogr. Anal. 11 (1979) 256-272.
paper. [5] L. Edelstein-Keshet, Mathematical Models in Biology,
Birkh&duser Mathematics Series, 1988.
[6] M.W. Hirsch, S. Smale, Differential Equations, Dynamical Sys-

References tem and Linear Algebra, Academic Press, 1974.
[7] J. Hofbauer, K. Sigmund, Evetionary Games and Population
[1] F. Schweitzer, Brownian Agents and Active Particles, Collective Dynamics, Cambridge University Press, 1998.
Dynamics in the Natural and Soti8iences, Springer-Verlag, [8] J.K. Hale, Ordinary differential equations, Wiley and Sons,

2003. 1969; Kierger, 1980.



	A mathematical study of a two-regional population growth model
	Introduction
	The model
	Presentation of the model
	Remarks

	Mathematical study of the model
	Asymptotic behaviour of the solutions of system (2)
	Stationary solutions
	Study of the stability


	Conclusion
	Acknowledgements
	References


