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Abstract

The paper provides a mathematical study of a model of urban dynamics, adjusting to an ecological model proposed
and Volterra. The model is a system of two first-order non-linear ordinary differential equations. The study propos
completes the original proof by using the main tools such as a Lyapunov function.To cite this article: J. El Ghordaf et al.,
C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Étude mathématique d’un modèle de croissance de la population de deux régions. Cet article propose un modèle m
thématique de dynamique urbaine, ajusté au modèle écologique de Lotka et Volterra. Ce modèle constitue un système
équations différentielles ordinaires non linéaires du premier ordre. La présente étude complète la preuve originale p
sation d’outils principaux tels que la fonction de Lyapunov.Pour citer cet article : J. El Ghordaf et al., C. R. Biologies 327
(2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

In a world of fast growing population and interco
tinental trade relations, the local emergence of n
economic centres, on the one hand, and the gl
competition of existing economic centres, on the oth
hand, have a major impact on the socioeconomic
hed by Elsevier SAS. All rights reserved.
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political stability of our future world[1]. So, in the
last twenty years, there has been an important chan
in the way geographers and planners have begu
think about the growth and form of cities. The co
cept of self-organization by which global structur
emerge from local actions has gained popularity[2,
3, etc.]and the reason for the application of this co
cept is its ability to indicate explicit interdepende
relationships between factors of complicated regio
systems and to clarify new ordering derived from
fluctuation in this system. Mathematical and compu
models have started to flourish. Such models have
ability to capture the essentials of forces’ ‘attractiv
ness’ and relationships in effect between two cit
or between clusters inside cities and to simulate
way these quantities change with time. Analogies w
some ecological models are, in some cases, relev
for example, when two or more species live in proxi
ity and share the same basic requirements, they us
compete for resources, habitat, or territory. Such
analogy has been hardly used in a pioneering mo
by P. Allen[4].

The Hokkaido prefecture has encoded a seri
socio-economic situation, under this problem. Y. M
ata and S. Yamaguchi adapted Allen’s model in or
to discriminate between a number of roadway syste
connecting the main towns with a region[2], so they
investigated the possibility of regional redistribution
the population of the Hokkaido prefecture based u
the theory of dynamic self-organization of populati
distribution. As an illustration of the power of mat
ematical methods, they consider, in the first part
their work, a simplified system with two towns, a
justing to model proposed by Lotka and Volterra[5],
when the competition between two species is depic
without direct reference to the resources they sh
The difference of the interpretation between Miyata
al.’s model and the classical Lotka–Volterra mode
in the fact that each region has its own potential
resources used by inhabitants of two regions, and
resources are interpreted as services and goods of
in the region. Our purpose here is to revisit this si
ple system; in the next section, we will describe
model emphasizing its relevance with urban dynam
in Section3, we present a complete study of the s
tem, based on the already existing methods in[6] and
[7], depending on the location parameters and we
discuss the relevance of the results to the subject c
:

d

pleting the mathematical study made by Y. Miyata
al., who used the method of perturbations, which gi
no convincing results. The main tools in our study
a Lyapunov function, application of the principle
LaSalle and the discussion of the phase portraits.

2. The model

2.1. Presentation of the model

Miyata et al. present this simple example in ord
to describe the essence of the theory of dynamic s
organization. So they consider a two-regional popu
tion growth model.

The model is represented as follows:

(1)

{
dx1
dt

= k1x1(N1 − x1 − βx2) − d1x1

dx2
dt

= k2x2(N2 − x2 − βx1) − d2x2

where the parameters are defined in the authored p
as follows:

xi population of regioni;
Ni carrying capacity of regioni;
ki birth and immigration rate in regioni;
β parameter of interdependencebetween the

gion i andj ;
di death and emigration rate in regioni.

2.2. Remarks

We have some remarks about interpretation gi
by the authors concerning the parameters of the mo
A better understanding, for us, of the parameter
given as follows:

The general form of an equation describing the e
lution of regioni, is:

dxi

dt
= rixi − dixi

where:

rixi is the growth term;
dixi is the decrease term;
ri is a growth rate, which is not constant and d

pends on the two population in a symmet
way:

ri = ki(Ni − xi − βxj )
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In the expression ofri ,

Ni stands for the resources of regioni, expressed
in terms of the maximum of individuals tha
the regioni can sustain;

ki is an efficiency parameter that expresses
interaction between the potential of the r
gion and the population growth;

β represents the intensity of resources (nam
services and goods) offered in a region us
by inhabitants of the other regions;

Ni − xi − βxj is the part of resources of regioni that
is unemployed. It represents the potential
the regioni, determining the growth of th
populationxi through the efficiency parame
ter ki .

We suppose, taking the sameβ in both equations
that an individual divides his consumption in a pr
portion that is always even between what exists
what is imported. This hypothesis is obviously qu
tionable.

3. Mathematical study of the model

This section is devoted to the asymptotic behavi
of the solution describing the system(1).

System(1) can be written as a classical competiti
model:

(2)

{
dx1
dt

= k1x1(P1 − x1 − βx2)

dx2
dt

= k2x2(P2 − x2 − βx1)

where we have introduced the notations

Pi = Ni − di

ki

, i = 1,2

Pi is the potential of the regioni taking into accoun
the mortality rate and the emigration related to this
gion. Notice that if one of the populations is equal to
at some instant, then it is remains equal to 0 at all tim
t > 0. In this case, the equation for the other popu
tion is just a logistic that can be written as

dxi

dt
= kixi(Pi − xi), i = 1,2

So, the parameterPi can be considered as carrying c
pacities of regioni. Then, in order to havePi > 0, we
should make the following assumption
Hypothesis. For i = 1,2, the parameterski , Ni anddi

satisfy:

kiNi > di

This hypothesis has an interpretation in the mod
kiNi is the crude growth rate of populationi when the
potential is at its maximum value, namely when t
potential is almost zero.

The hypothesis means that this maximum cru
growth rate is bigger than the mortality and outmig
tion rate.

Classical theorems apply, providing existence a
uniqueness to the initial-value problem associate
(2)with initial value(x0

1, x0
2), with x0

i � 0, for i = 1, 2.
Furthermore, the solutions remains non-negative
exist for all t � 0 (see[6]).

3.1. Asymptotic behaviour of the solutions of
system (2)

3.1.1. Stationary solutions
The stationary solutions of system(2) satisfy the

system:{
k1x1(P1 − x1 − βx2) = 0

k2x2(P2 − x2 − βx1) = 0

which gives four equilibrium points:

E0 = (0,0), E1 = (P1,0), E2 = (0,P2) and

E3 = (
(P1 − βP2)/(1− β2), (P2 − βP1)/(1− β2)

)
Our goal is to study the stability of these points and
the end, we establish the following important result

3.1.2. Study of the stability
In the addition to existence of the equilibriu

points, we can prove that it is only one globally a
ymptotically stable point in the positive domain.

Lemma 1. The ω-limit set of each non-negative solu-
tion of system (2) is reduced to one equilibrium point.

Proof. It is a straightforward application of the princ
ple of LaSalle[8], considering the Lyapunov functio

Q(x1, x2) = 1
2x2

1 + βx1x2 + 1
2x2

2 − P1x1 − P2x2

(see also[6, p. 270]and[7, p. 28]).
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Let us define:

V (t) = Q
(
x1(t), x2(t)

)
which implies:

V̇ (t) = −k1x1(x1 + βx2 − P1)
2

− k2x2(x2 + βx1 − P2)
2

so

V̇ (t) � 0 and

V̇ (t) = 0 only at stationary pointsEi, i = 0,1,2,3

Since the solutions of the system are bounded, thω-
limit set of each solution is non-empty, compact, co
nected, and invariant by the system.

By applying the principle of LaSalle, one has:

ω(x) ⊂ {Ei, i = 0,1,2,3}
But ω(x) is a connected set, therefore it is necessa
reduced to one stationary point. So:

ω(x) = {Ei} �
As a consequence of this lemma, each non-nega

solution of system(2) approaches asymptotically fo
t → +∞ one of the equilibriaEi , i = 0, . . . ,3 and in
what follows we will locate which of the four equilib
ria is the limit point.

First of all, let us consider the equilibrium pointE0.
The linearized system of(2) around this point is:

dx

dt
= Ax

where

x = (x1, x2)
� and A =

(
k1N1 − d1 0

0 k2N2 − d2

)
Since the matrixA has two positive eigenvalues, w
can conclude the following lemma:

Lemma 2. The stationary point E0 = (0,0) is repul-
sive.

Let us observe that the equilibrium pointE3 is the
intersection of the two isoclines

R1 := P1 − x1 − βx2 = 0

R2 := P2 − x2 − βx1 = 0
and therefore we are obliged to consider differ
cases, since for some values of the parameters,R1 and
R2 do not intersect inIR2+.

Due to the symmetry of system(2), we can suppos
thatP2 > P1 without any loss of generality.

We will make the study of the asymptotic behavio
of solutions in terms of parameterβ , which is signifi-
cant for the model.

Theorem 3. If 0 � β < P1
P2

, we have:

(a) each solution of system (2) corresponding to an
initial value (x0

1,0), with x0
1 > 0, converges to-

wards the stationary point E1;
(b) each solution of system (2) corresponding to an

initial value (0, x0
2), with x0

2 > 0, converges to-
wards the stationary point E2;

(c) each solution of system (2) corresponding to an
initial value (x0

1, x0
2), with x0

1 > 0 and x0
2 > 0,

converges towards the stationary point E3.

Proof. In this case, the isoclinesR1 andR2 intersect
in IR2+ and therefore the equilibrium pointE3 should
be taken into account.

We obtain the stability of equilibria by linearisa
tion of the system(2) around each equilibrium poin
Ei , i = 1, 2, 3, so thatE1 andE2 are saddle point
and straightforward calculations show that their sta
ble manifolds areS1 = {(x1,0), x1 > 0} and S2 =
{(0, x2), x2 > 0}, respectively, this proves (a) and (b
FurthermoreE3 is asymptotically stable. Bearing i
mindLemma 1andLemma 2, assertion (c) holds. �

Moreover, we have the following result:

Lemma 4. For each i = 1,2, there is a paving of re-
pulsiveness around Ei .

Proof. With the aim of constructing a paving of repu
siveness aroundE1, let η > 0 be fixed and consider

Pη = {
(x1, x2)/|x1 − P1| � η, 0 � x2 � η

}
Then

dx2

dt
= k2x2

(
P2 − βP1 − x2 − β(x1 − P1)

)
�

(
P2 − βP1 − η(β + 1)

)
k2x2
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Choosing

0 < η � P2 − βP1

2+ β

we have

dx2

dt
� η k2 x2

and then, if a solution is inPη at some instantt0, there
existst1 > t0 for which such solution will be outsid
Pη for eacht � t1.

In the same way, we can construct a paving of
pulsiveness aroundE2. �
Theorem 5. If P1

P2
< β < P2

P1
, we have:

(a) each solution of system (2) corresponding to an
initial value (x0

1,0), with x0
1 > 0, converges to-

wards the stationary point E1;
(b) each solution of system (2) corresponding to an

initial value (x0
1, x0

2), with x0
1 � 0 and x0

2 > 0,
converges towards the stationary point E2.

Proof. In this case, isoclinesR1 andR2 do not inter-
sect inIR2+ and therefore there exist three equilib
E0, E1 andE2. The linearized systems aroundE1 and
E2 prove thatE1 is a saddle point with stable manifo
S1 andE2 is locally asymptotically stable. Bearing
mindLemma 1, assertion (b) follows. �

Moreover, a paving of repulsivity aroundE1 can be
constructed in the same way as inLemma 4.

Finally, for the third case, similar calculations a
standard arguments that can be found in[6] lead to:

Theorem 6. If β > P2
P1

, the equilibrium point E3 is in

IR2+ and we have:

(a) E0 is unstable;
(b) E1 and E2 are locally asymptotically stable;
(c) E3 is a saddle point.

Moreover, the stable manifold associated to E3 con-
sists of two orbits converging to E3, which divides the
positive quadrant into two basins of attraction Ω1 and
Ω2. All solutions starting in Ω1 tend to E1 and all so-
lutions starting in Ω2 tend to E2.
4. Conclusion

We said that the model presented in Section2 was
proposed first by Lotka and Volterra, who describ
the competition between two species for resour
they share rather; it is assumed that the presenc
each population leads to a depression of its comp
tor’s growth rate. Later on, this model was adjusted
urban dynamics by changing the meaning of the m
el’s variables and parameters. It is now necessar
make an urban interpretation of the results obtaine
far.

HypothesisP1 < P2 means that region 2 still th
region that has the bigger potential, taking into acco
the mortality and emigration rate in this region.

When the intensity of resources used by inhabita
of two regions is less strong, 0� β < P1

P2
, we have an

interior steady state, whichis stable and which mean
that each population manages to live in its region
to benefit from the services offered in the other regi
But when the intensity is much stronger,P1

P2
< β < P2

P1
,

then the solution with initial value(x0
1, x0

2), with x0
1 �

0 andx0
2 > 0 converges towards the stationary po

E2. That is the region with the higher potential will b
dominant for any initial situation.

For P2
P1

< β , we have three non-trivial steady sta
with two points which are stable. In this case, it is ve
difficult to verify which one of the populations leave
its area; it depends crucially on the starting advant
each population has. If the initial condition lies in d
mainΩ1, then eventually population 2 leaves to reg
1, thus the competition for the use of resources eli
nated region 2 and the sameif the initial condition lies
in domainΩ2.

As stated above, it has been shown that all solut
of the system(1) converge, depending on the intens
of the competition parameterβ and the initial value, to
one equilibrium point; from urban interpretation, w
conclude that a small change in the quantity of the
tensity of competition influences the result.

This study is the commencement of a large a
complete mathematical analysis of a complex model
initiated by P. Allen et al. and Myata et al. These mo
els concernn regions and consider that the potenti
of each region are variable in time with respect to
global population and its distribution between regio
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