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Ratio-dependent predator–prey models set up a challenging issue regarding their
dynamics near the origin. This is due to the fact that such models are undefined
at (0,0). We study the analytical behavior at (0,0) for a common ratio-dependent
model and demonstrate that this equilibrium can be either a saddle point or an
attractor for certain trajectories. This fact has important implications concerning
theglobal behavior of themodel, for exampleregarding theexistenceof stablelimit
cycles. Then, weproveformally, for ageneral classof ratio-dependent models, that
(0,0) has its own basin of attraction in phase space, even when there exists anon-
trivial stableor unstableequilibrium. Therefore, thesemodelshaveno pathological
dynamics on the axes and at the origin, contrary to what has been stated by some
authors. Finally, we relate thesefindings to somepublished empirical results.
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1. INTRODUCTION

Continuous predator–prey models have been studied mathematically since publi-
cation of the Lotka–Volterra equations. The principles of this model, conservation
of mass and decomposition of the rates of change into birth and death processes, have
remained valid until today and many theoretical ecologists adhere to these principles.

Modifications were limited to replacing the Malthusian growth function, the
predator per capita consumption of prey or the predator mortality by more complex
functions such as the logistic growth, Holling type I, II and III functional responses
or density-dependent mortality rates.

The mentioned functional responses all depend on prey-abundanceN only, but
soon it became clear that predator abundanceP can influence this function (Curds
and Cockburn, 1968; Hassell and Varley, 1969; Salt, 1974) by direct interference
while searching or by pseudo-interference [in the sense of Freeet al. (1977)] and
models were developed incorporating this effect (Hassell and Varley, 1969; DeAn-
geliset al., 1975; Beddington, 1975).

However, these models usually require more parameters and their analysis is
complex. Therefore, they are, on one side, rarely used in applied ecology and, on
the other side, have received little attention in the mathematical literature.

A simple way of incorporating predator dependence into the functional response
was proposed by Arditi and Ginzburg (1989) who considered this response as a
function of the ratioN/P.

Interesting properties of this approach have emerged that are in contrast with pre-
dictions of models where the functional response only depends on prey abundance
[e.g., Arditi et al. (1991), Ginzburg and Ak¸cakaya (1992), Arditi and Michalski
(1995)]. Two principal predictions for ratio-dependent predator–prey sytems are:
(1) equilibrium abundances are positively correlated along a gradient of enrichment
(Arditi and Ginzburg, 1989) and (2) the ‘paradox of enrichment’ (Rosenzweig, 1971)
either completely disappears or enrichment is linked to stability in a more complex
way. However, we will not discuss here the general ecological significance of this
class of models but rather study a particular mathematical feature of this model:
the behavior around the point(0,0) (where the models are not directly defined)
and its implications on global behavior. Interesting dynamic behaviors such as
deterministic extinction and multiple attractors can occur.

There are only few mathematical publications that study ratio-dependent models.
Many of them use logistic-type models where density dependence in the growth
equation is proportional to the ratio consumer/resource [e.g., the popular Holling–
Tanner model (Tanner, 1975)]. However, these models do not abide by the conser-
vation of mass rule [reproduction rate of predators is a function of the consumption
rate, Ginzburg (1998)]. We are rather interested in ratio-dependent models that
respect this conservation of mass (or energy) as an important aspect of ecological
modelling. This further reduces the available literature on this class of models.
Cosner (1996) developed floor and ceiling functions to understand the behavior of
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complex systems that include temporal variability, and ratio-dependent formulations
proved to be more adapted to this kind of study. Beretta and Kuang (1998) studied
the influence of delays on the stability behavior of the non-trivial equilibrium.

Freedman and Mathsen (1993) studied conditions for persistence of a specific
ratio-dependent predator–prey model. They restricted their analysis to parameter
values that ensure that the equilibrium(0,0) behaves like a saddle point. They
based this restriction on the assertion that attractivity of this trivial equilibrium is
possible only with parameter values for which the predator abundanceP(t) increases
without bound as a function of time. In this paper, we will show that this assertion
is erroneous and we will reanalyse the general stability behavior of a typical ratio-
dependent model around the equilibrium(0,0). Furthermore, we will give a formal
proof (for a general ratio-dependent model) that this point can become attractive
for all initial conditions sufficiently close to the predator axis, while the non-trivial
equilibrium remains either locally stable or becomes unstable. This gives rise to
global behaviors that range from global attractivity of the non-trivial equilibrium,
coexistence of two different attractors (each with its own basin of attraction) to
global attractivity of the equilibrium(0,0).

Extinction is a frequent outcome in simple laboratory predator–prey systems
(Gause, 1935; Luckinbill, 1973) and biologists had to modify conditions in order to
obtain (cyclic) coexistence [e.g., spatial heterogeneities (Huffaker, 1958) or viscous
medium to slow down the predators (Veilleux, 1979)]. Since traditional predator–
prey models predict cyclic dynamics, extinction has been explained as the result of
stochasticity occurring when the trajectories come close to the axes. In this paper
we show that, for some region in the parameter space of a ratio-dependent model,
multiple attractors can appear, one of them being the origin. Therefore, extinction
can be explained as a simple deterministic process.

2. THE MODEL AND ITS EQUILIBRIA

A predator–prey system that incorporates conservation of mass and division of
population rates of change into birth and death processes has the following canonical
form:

d N

dt
= f (N)N − g(N, P)P (1)

d P

dt
= eg(N, P)P − µP (2)

with prey abundanceN(t) and predator abundanceP(t), conversion efficiencye
and predator death rateµ. We will use the traditional logistic form for the growth
function f with maximal growth rater and carrying capacityK :

f (N) = r

(
1− N

K

)
.
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The functional responseg (prey eaten per predator per unit of time), that in general
depends on both prey and predator density, will be considered as a (bounded)
function of the ratio prey per predator,

g := g

(
N

P

)
= αN/P

1+ αhN/P
= αN

P + αhN
∀(N, P) ∈ [0,+∞)2\(0,0) (3)

with total attack-rateα and handling timeh. Note that the second equality is
strictly correct only forP > 0. In the case ofP = 0 andN > 0 we can define
g(N,0) := 1/h (the limit of g(x) for x→∞).

In a first step we simplify this model by non-dimensionalisation. Let

N̂ = αhN

eK
, P̂ = αh P

e2K
, R= rh

e
,

Q= hµ

e
, S= αh

e
and t̂ = et

h
.

In these new variables the system becomes

dN̂

dt̂
= R

(
1− N̂

S

)
N̂ − SN̂

P̂ + SN̂
P̂ (4)

dP̂

dt̂
= SN̂

P̂ + SN̂
P̂ − QP̂ (5)

with initial conditionsN̂(0) = n0, P̂(0) = p0. For simplicity we will not write the
hat(ˆ) in the rest of this paper.

This system has at most three equilibria in the positive quadrant:(0,0), (S,0)
and a non-trivial equilibrium(n?, p?) with

n? = S(R+ (Q− 1)S)

R

p? = S(1− Q)

Q
n?.

A simple calculation shows thatn? is positive for allS< R/(1−Q), which implies
Q < 1 and therefore ensures the positivity ofp?.

To see why(0,0) is indeed an equilibrium (despite the fact thatg is undefined in
that case) note that for anyg that is a non-negative bounded function in its domain
(such as (3)) the right-hand sides of system (1), (2) become 0 at this point, which is
the definition of an equilibrium (boundedness ofg is a sufficient condition, but not
a necessary one).

Figure 1 shows the possible isoclines of the system. ForS> R, the prey isocline is
a humped curve through the origin and the point(S,0). ForS< R, the denominator
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Figure 1. The three general types of isoclines that can occur: (a) the non-trivial equilibrium
is stable and(0,0) behaves like a saddle point (R = 0.5, Q = 0.3, S = 0.4); (b) both
equilibria can be attractive or repelling, creating dynamics that are illustrated in Figs 2–5;
(c) the equilibrium(0,0) is globally attractive (R = 0.5, Q = 0.79, S= 3.0). The lines
with arrows are examples of trajectories, Ison is the prey isocline and Isop the predator
isocline.

of the prey isocline can become 0 for someN ∈ (0, S). The part of the isocline
that remains in the positive quadrant becomes in this case a strictly monotonically
descending curve through the point(S,0). The predator isocline is always a straight
line through the origin. See Arditi and Ginzburg (1989) for more details. While the
cases of Fig. 1(a) and (c) do not raise mathematical difficulties, the case of Fig. 1(b)
presents interesting and unexpected mathematical properties that will be studied
below.

3. STABILITY OF THE EQUILIBRIA

The community matrix (Jacobian at the equilibrium) at the point(S,0) is[−R −1
0 1− Q

]
and therefore, if the non-trivial equilibrium exists (H⇒ Q < 1), this point is always
a saddle point.

The community matrix at(n?, p?) has the form[−R+ S− Q2S −Q2

(Q− 1)2S (Q− 1)Q

]
.

Applying the Routh–Hurwitz criterion shows that this equilibrium is stable when-
ever

S< min

{
R

1− Q
,

Q− Q2+ R

1− Q2

}
. (6)

Note that, if
R

1− Q
<

Q− Q2+ R

1− Q2
(⇐⇒ R+ Q < 1),
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then the non-trivial equilibrium is always stable (if it exists). This is possible with
two types of isoclines, Fig. 1(a) and (b). The case of Fig. 1(b) together with this
condition (allowing arbitrarily low stable equilibrium densities of both prey and
predator) is particularly interesting in the context of biological control where the
interest is in non-trivial stable equilibria withn? � S. The non-trivial equilibrium
in Fig. 1(a) is also always stable (independently of the above criterion), because its
existence ensures thatQ < 1, therefore, ifS< R, thenSalso fulfills criterion (6).
However, this case is less interesting because it requires high predator densities to
keep the prey density low.

At the equilibrium(0,0) the community matrix cannot be calculated directly
because the ratioN/P is not defined at this point. To understand the stability
behavior of this point we must expand it on a whole axis by studying the transformed
systems(N/P, P) and(N, P/N). SettingL := N/P, then we have the system

dL

dt
= L

(
R+ Q− R

S
L P

)
− S

L(1+ L)

1+ SL

d P

dt
= S

L

1+ SL
− Q P.

There are two equilibria on theL-axis,(0,0) and( S−Q−R
S(Q+R−1) ,0). (0,0) is a saddle

point forS< Q+R (eigenvalues of the community matrix are−Q andQ+R−S),
otherwise it is attractive. The latter equilibrium has the eigenvalues

λ1 = S(1− Q)− R

S− 1
, λ2 = SQ+ R− S+ Q+ SR− (R+ Q)2

S− 1

and it is unstable whenever a non-trivial equilibrium exists.

Proof. Let S < 1. If the non-trivial equilibrium exists (S < R/(1− Q)) then
λ1 > 0, therefore the equilibrium is unstable.

Now let S> 1. The existence of the non-trivial equilibrium ensures in this case
thatR+Q > 1. Furthermore, S−Q−R

S(Q+R−1) must be positive to be of interest, therefore

S> Q+ R (7)

and

λ2 = 1

S− 1
(S(Q− 1)+ (Q+ R)− (R+ Q)2+ SR

(7)
>

1

S− 1
((Q+ R)(Q− 1+ 1− R− Q)+ SR

= 1

S− 1
(R(S− (Q+ R))

(7)
> 0.

This equilibrium is therefore unstable. 2
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Finally, we need the stability behavior of(0,0) for the system(N,M) with
M := P/N,

d N

dt
= N

(
R− N R

S
− K S

K + S

)
d M

dt
= M(S(N R− (Q+ R− 1)S)+ M(N R+ S(S− Q− R)))

S(M + S)
.

The community matrix at(0,0) has the eigenvaluesλ1 = 1− R− Q, λ2 = R and
the point(0,0) is therefore always unstable.

Summarizing we can conclude for the original system(N, P) that forS< Q+R
the equilibrium(0,0) behaves like a saddle point. ForS> Q+Rwe have seen that
the system(N/P, P) has an attractive equilibrium at its origin(0,0). Interpreted
in the original state variablesN andP this point can only be attained by a trajectory
for which ‘N goes faster to 0 thanP’. Below, we will discuss the existence of such
trajectories. Freedman and Mathsen (1993), who studied in their paper the same
model (4) and (5), excluded the latter case (S > Q + R) from their persistence
analysis of ratio-dependent models by stating (p. 823) that ‘this implies that there
are solutions(N(t), P(t)) −→ (0,+∞) ast −→ ∞’. The following proposition
proves that this statement is erroneous.

PROPOSITION 3.1. The system of equations (4), (5) is ultimately bounded with
some bound independent of the initial values.

Proof. Let b, c > 0 such that(R+b)2S
4R < c (for anyb, such ac can be found).

(R+ b)2S

4R
< c

⇔ (R+ b)2− 4
R

S
c < 0

⇔ 0<
R

S
N2− N(R+ b)+ c ∀N. (8)

Therefore we have

d

dt
(N + P) = RN− R

S
N2− Q P

(8)
< −bN− Q P+ c

< −d(N + P)+ c

with d := min(b, Q). So we can conclude that limt→∞ sup(N(t) + P(t)) ≤ c
d .

Note that we haveN(t)+ P(t) ≤ max(N(0)+ P(0), c
d ), ∀t ≥ 0. 2
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Freedman and Mathsen (1993) also point out that a general ratio-dependent model
can pose definition problems on the predator axis. However, if the functional
response is restricted to being positive and bounded (two properties not contested
in ecology and implicit in the model studied here), then (1) and (2) are perfectly
well defined on the whole positive quadrant[0,+∞)2\(0,0), and the analysis in
this paper shows that the behavior at(0,0) has nothing abnormal that would justify
its exclusion.

If the non-trivial equilibrium were unstable and the point(0,0)a saddle point, then
we could construct easily a positive invariant set that contains these two equilibria
and apply the Poincar´e–Bendixson theorem to prove the existence of a limit cycle.
However, the following proposition holds:

PROPOSITION 3.2. For S < Q + R the non-trivial equilibrium (if it exists) is
locally stable.

This means that, if the non-trivial equilibrium is unstable, thenS > Q + R,
implying, as shown earlier, that(0,0) is not a saddle point. This complicates
considerably the construction of the positive invariant set required to apply the
Poincaré–Bendixson theorem. We have not found such a set but do not exclude that
it can exist.

Proof of proposition. (a) For R+ Q < 1 we have already seen above that all
existing non-trivial equilibria are stable.

(b) For R+ Q > 1, we have

R= R(1− Q2+ Q2)
R>1−Q
> R(1− Q2)+ (1− Q)Q2

H⇒ R> (1− Q)(R+ Q2+ RQ)

H⇒ R

1− Q
> (Q+ R)(1+ Q)− Q

H⇒ R+ Q(1− Q)

(1− Q)(1+ Q)
> Q+ R> S

and, according to criterion (6), the non-trivial equilibrium is stable. 2

Getz (1984) gave a proof of existence of a stable limit cycle for a ratio-dependent
model that only differed from the model used here by its prey growth function
[ar/(bN+ r )−c instead ofr (1−N/K )]. He did not study rigorously the behavior
at (0,0), simply stating that the isocline graph ‘demonstrates’ that it is a saddle
point (as required by the Poincar´e–Bendixson theorem, since the origin is part of
the positive invariant set that he constructed). However, the general analysis in the
next section applies also to his system and it shows that(0,0) can become attractive.
His graphical interpretation is therefore incorrect. It can be seen numerically that
there are cases for which(0,0) becomes globally attractive instead of having a
stable limit cycle around the non-trivial equilibrium (as in Fig. 5).
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P(t)

Isop
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Figure 2. The non-trivial equilibrium is a global attractor and(0,0) behaves like a saddle
point, S< Q+ R. Parameter values areR= 0.5, Q = 0.79, S= 1.0.

4. (0,0) AS AN ATTRACTOR

So far we have only shown that the equilibrium(0,0) can be attractive for trajec-
tories where ‘N goes faster to 0 thanP’, but we do not know yet whether this type
of trajectory really exists. In this section we will give a formal proof for this. This
proof will be given for any growth functionf and any functional responseg in the
general form of system (4), (5),

d N

dt
= f (N)N − g(N/P)P

d P

dt
= g(N/P)P − Q P,

with f andg having the following properties:

— f andg are continuous inR+ and both functions are bounded
— f (N) < f (0) ∀N > 0
— g(0) = 0, g′(v) exists and is positive for anyv ≥ 0.

PROPOSITION 4.1. Assume f(0) < g′(0) − Q [i.e. Q+ R < S, in our system
(4), (5)]. Then, any trajectory for which n0 is sufficiently small compared to p0

converges to the point(0,0).

Note that this proposition is a generalisation of a recent result by Kuang and
Beretta (1998).

Proof. Consider the system(N, L) with L := N
P ,

d N

dt
= f (N)N − g(L)

N

L

dL

dt
= f (N)L − (1+ L)g(L)+ QL.
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N(t)
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Figure 3. The non-trivial equilibrium is locally stable, but(0,0) becomes also attractive,
S> Q+R. The white area is the basin of attraction of the non-trivial equilibrium, the gray
area is the one of equilibrium(0,0). Parameter values areR= 0.5, Q = 0.79, S= 1.66.

For L > 0 we have

d

dt
L < f (0)L − (1+ L)g(L)+ QL

Lg(L)>0
< L

(
f (0)− g(L)

L
+ Q

)
.

Because of our assumptionf (0) < g′(0)−Q we have for anyε ∈ (0, g′(0)−Q−
f (0)) the stronger inequality

f (0) < g′(0)− Q− ε. (9)

Since limL→0
g(L)

L = g′(0) there exists someη > 0 such that∣∣∣∣g(L)L
− g′(0)

∣∣∣∣ < ε ∀0< L < η. (10)

We can now conclude that

f (0)− g(L)

L
+ Q

(9)
< g′(0)− g(L)

L
− ε (10)

< 0 ∀0< L < η (11)

H⇒ d

dt
L < 0 ∀0< L < η.

Therefore, if there is somet0 with L(t0) ≤ η, thenL(t) ≤ η∀t ≥ t0 and d
dt L < 0

H⇒ lim
t−→∞ L(t) = 0.

On this basis, we can further conclude that

d

dt
N ≤ N( f (0)− g(L)

L
)
(11)
< 0 ∀t ≥ t0.
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Therefore limt−→∞ N(t) = 0. Finally, consider the equationddt P = P(g(L)−Q),
sinceL(t)→ 0 andg(0) = 0 there is sometω such that

d

dt
P < 0 ∀t > tω

H⇒ lim
t→∞ P(t) = 0.

This proves the proposition. 2

The conditionQ + R < S is possible with isoclines as shown in Fig. 1(b)
and (c). Examples of trajectories converging to the origin are shown in Figs 3–
5. The numerical simulations of the trajectories in these figures were done using
Mathematica with the built-in high order adaptive step size procedure (the accuracy
goal had to be set higher than the default value to avoid numerical problems close
to the origin).

5. DISCUSSION

We saw that the equilibrium(0,0) can behave in several ways depending on
parameter values. The following sequence of figures illustrates these behaviors
by steadily increasing parameterS while keeping parametersR and Q at fixed
values. Figure 2 illustrates the case for which it is a saddle point. All trajectories
converge to the non-trivial stable equilibrium independently of the initial conditions
(this equilibrium is therefore a global attractor). Freedman and Mathsen (1993)
derived for this case conditions that ensure persistence of the predator–prey system.
Figure 3 shows the case of having two attractive equilibria, each with its own
basin of attraction. The two basins were determined numerically by overlaying the
phase space with a small-scale grid, taking each grid point as the initial value and
determining whether the simulation ends in(0,0) or in the non-trivial equilibrium.
There must be a separatrix between these two basins. Figure 4 shows again a case
with two basins of attraction, but the non-trivial equilibrium is now unstable and we
have a stable limit cycle. As was shown in the previous section we cannot use the
Poincaré–Bendixson theorem to prove the existence of this stable limit cycle because
the construction of a positive invariant set would require knowledge of the analytic
form of the separatrix. This figure also shows that the limit cycles will be very
sensitive to stochastic influences: random perturbations to the populations occurring
while the cycle is not far from the separatrix can bring the trajectory into the basin
of attraction of(0,0), thereby causing extinction. Figure 5 shows the case when
(0,0) becomes attractive for all positive initial conditions except the non-trivial
equilibrium itself. There is no formal proof of this global attractivity, and several
trials with Dulac’s criterion failed. Further increase of parameterS will make the
non-trivial equilibrium disappear and(0,0) becomes (trivially) globally attractive
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P(t)

Isop

Ison

N(t)

Figure 4. The non-trivial equilibrium is unstable and(0,0) becomes attractive,S> Q+R.
There are two attractors, a stable limit cycle and(0,0). Parameter values areR= 0.5, Q =
0.79, S= 1.78.

Isop

Ison

N(t)

P(t)

Figure 5. The equilibrium(0,0) is a global attractor,S > Q + R. Parameter values are
R= 0.5, Q = 0.79, S= 1.85. There is no formal proof for the global attractivity.

[Fig. 1(c)]. The present mathematical analysis establishes that a general class of
ratio-dependent models have well defined dynamics on the axes and at the origin.

Extinction of one or both populations in predator–prey systems has occupied
ecologists since the classic experiments of Gause (1935), who tried to reproduce
in the laboratory the cycles predicted by the Lotka–Volterra predator–prey equa-
tions. However, instead of the desired coexistence, the most frequent result was that
the populations (Parameciumsp. preyed upon byDidinium nasutum) went extinct
either immediately or after a couple of oscillations. Other researchers encoun-
tered the same problem [e.g., Huffaker (1958), Luckinbill (1973)]. By thickening
the medium to reduce the mobility of the predator, Luckinbill (1973) repeatedly
obtained several predator–prey oscillations before extinction and Veilleux (1979)
refined this technique to have finally sustained cycles without extinction. He also
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did extensive experiments for various initial conditions and detected two basins
of attraction (his Fig. 11) that are similar to those in our Fig. 3. Since the classi-
cal predator–prey systems like Lotka–Volterra or more complex ones with logistic
growth and Holling type II functional responses cannot show deterministic extinc-
tion, these results have usually been explained by demographic stochasticity: limit
cycles bring the populations very close to 0 during the cycle and small stochastici-
ties suffice to cause extinction. The model studied here can explain the extinction
as a deterministic result, with no need for stochasticity. The simultaneous existence
of an unstable non-trivial equilibrium and an attractive trivial equilibrium(0,0)
extends the behaviors of this model from extinction after one simple oscillation, as
briefly described by Arditi and Berryman (1991), to extinction after a number of
oscillations. Furthermore, the technique of thickening the medium to stabilise the
predator–prey interaction (Luckinbill, 1973; Veilleux, 1979) can be interpreted as
reducing the attack rateα (Harrison, 1995) which, in the present ratio-dependent
model, has a stabilising effect. By varying this parameter, the whole spectrum
of observed behaviors (stable coexistence, sustained oscillations, extinction after
several cycles, immediate extinction) can be predicted, as illustrated by Figs 2–5.
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