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Abstract
Perturbations leading to an estimate of the rate of convergence to an asynchronous
equilibrium of general semigroups with boundary conditions are given. The particular
case of translation semigroups is examined. The results obtained are applied to a
demographic model.

1. Introduction

The formulation of models from population dynamics in terms of abstract evolution
equations via semigroup methods on Banach spaces has had great success in the
last decade. The theory for such equations gives efficient tools for the study of the
qualitative properties of the models. In particular, it provides rigorous proofs and
intuitive understanding of the ultimate behavior of many diverse population problems
structured by an internal variable such as age or size. ‘

Roughly speaking, one can say that the first issue raised by the study of
such models has been settled, that is; the determination of asynchronous exponential
growth. Let us briefly summarize what this means. Denote (T(t))e>o0 the semigroup
associated with a given model, defined on some Banach space X, A its infinitesimal
generator. Asynchronous exponential growth (abbreviated to A.E. G.) occurs when
one can determine a pair (A, v), Ao € IR, 0 # v € X, such that for every z € X
there exists ¢ € IR such that

e T (t)x —cv > 0 as t — +oo.

This asymptotic relation means that the structure of the population (the
relative proportions of respective age or size classes) stabilizes asymptotically near a
fixed distribution given by a suitable normalization of v not depending on the initial
value. Once asynchronous growth has been obtained, the next issue is to determine
how fast solutions reach the stable distribution, that is, the speed of convergence of
e~*!'T(t) to a one dimensional projection operator P.

In the case when (T'(t))i>0 is eventually compact, this amounts to compare
the principal eigenvalue A, to the others and in particular to the number s; =
sup{ReX; A € a(A)\ {Xo}}. In the general situation, it amounts to find an estimate
of the growth rate of the restriction of 7'(t) to the space P~'(0). Determining the
speed of convergence is a difficult problem and of importance in many contexts. It
has notably attracted a lot of attention in numerical analysis where estimates have
been found in the frame of matrices or discrete semigroups [13], [9], [11], [14]. Some
results have been obtained recently [3] in the case of Lotka~von Foerster-Mc Kendrik
models.
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In this work, we present results for a reasonably general class of translation
semigroups given in [6]. A translation semigroup is characterized by a linear func-
tional representing a suitable boundary condition. We call it the symbol of the
semigroup.

The main result of the paper is an estimate of A\g — s; in terms of the symbol
and a nonzera eigenvector of the adjoint of the generator associated with Ao (which is
related to the adjoint of the symbol). This result is applied to the Lotka—von Foerster—
Mec Kendrik vector type model. We now provide a brief description of the content.
Section 2 collects a number of known results in the spectral theory of semigroups. The
problem of the estimation of the speed of convergence to asynchronous equilibrium
is also stated in this section for semigroups on Banach lattices. The remaining
sections are devoted to translation semigroups. Section 3 considers the more general
situation of a semigroup determined by a perturbation of a boundary condition.
It is preparatory for Section 4 which, after some general facts about translation
semigroups, concludes with an estimate of Ag — s; in terms of the symbol. Finally,
Section 5 illustrates the main theorem of Section 4 by the example already mentioned.

2. The case of a general semigroup

Let us first recall some standard definitions and notations (see for instance [15],
[12], [5],[4]) and let (T'(¢))e>0 be a strongly continuous semigroup of bounded linear
operators on a Banach space X . Its infinitesimal generator A is a linear, closed,
in general unbounded operator with dense domain D(A) in X. We denote, as
usual, with o(A) the spectrum of A, p(A) the resolvent set of A and, for A €
p(A), R(A,A) = (A — A)7" the resolvent operator of A. The number s(A) =
sup{ReX; A € 0(A)} (s(A) = +oc if 0(4) = ¢) is the spectral bound of A and
oo(A) = {A € o(A):Rel = s(A)} is the peripheral spectrum of A.

For any A € a(4), the general eigenspace Ny(A) is the smallest closed sub-
space of X containing US> N((A — 4)%), dim N,(A) is the algebraic multiplicity of
A. Note that if A has a finite algebraic multiplicity, then necessarily there exists a
finite integer p > 0 such that Ny(A4) = N((A — 4)?). The essential spectrum o, (A4)
is the set of A € o(A) such that either A is a limit point of o(A), or R(A — A) is not
closed, or N,(A) is infinite dimensional.

For a linear bounded operator L, we denote by r(L) = sup{{A|; A € o(L)}
the spectral radius of L. Moreover, wo(T) = limy 40 7 In ||T'(t)]] is the growth bound
of the semigroup (T'())i».

Definition 2.1.  [17] The semigroup (T'(t));>o is said to have A.E.G with intrinsic
growth rate Ay € IR if there exists a nonzero finite rank operator P such that
Jim e 'T(t) = P (in the operator norm topology).

The study of such an asymptotic behavior arises naturally in population dy-
namics (see [4]). The following proposition establishes a relationship between the
A.E.G. of the semigroup and the spectrum of its generator.

Proposition 2.2.  [17] Let (T(t))es0 be a strongly continuous semigroup in the
Banach space X and A its infinitesimal generator. (T(t));>0 has A.E.G. with
intrinsic growth rate Ao € IR if and only if w.(T) < Ao, oo(4) = {N} and A
is a simple pole of (A — A)™1.
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If (T'(¢))s»0 has A.E.G. with intrinsic growth rate Ao, then Ay = wo(T) = s(A)
and P = B_, where B_) is the coefficient of order —1 in the Laurent series of R(A, A)
about Ay, or B_; = # Jr R(A, A)dX and T is a positively oriented circle of sufficiently
small radius such that no other point than Ag lies on or inside I'. Moreover, there
exists a direct sum decomposition of X as X = N®S with N = PX, S=(I-P)X.
Since Ay is a simple pole of R(A, A), Ag is an eigenvalue of 4, AP = PA = AP and
one has N =ker(Ag—A), S = R(N—A); N and S are T'(t)-invariant. On the other
hand, (Ag— A) is a closed linear operator with dense domain and its range R(A\o — A)
is closed, so that S = (ker(Ag — 4"))* = {z € X; (z*,z) =0, 2" € ker(\g — A)}.

Let T (t) be the restriction of T'(¢) to S. It is known that (JN“ (t))eso0 is a
semigroup on S, its infinitesimal generator A is the restriction of 4 to S and the
spectrum of A is o(A) = o(A) \ {do}. Note, in particular, that wo(T) > we(T)

Proposition 2.3.  Assume that (T(t))>0 has A.E.G. with intrinsic growth rate
Xo. Let T (t) be the restriction of T(t) to S = {a: € X; T(t)x = o(eM?), t — +oo}

~

and let € = Ay — wo(T). Then we have ¢ > 0 and for any n € |0,¢[, there exists M
such that
”e_)‘otT(t) - P)) < Me™™ | t>0.

Our goal in this paper is to provide an estimate of the speed of convergence of
e™!'T(t) to P. This will be done if we find an estimate of £ = Ag—wo(T"). To do this,
we will construct a semigroup (7,(t));>0 depending on a parameter y in a suitable
space, such that the restriction of T, (t) to S will be equal to T (1) the restriction of
T(t) to S. The parameter y will be chosen in such a way that 1, = Ao — wo(T) is
as big as possible in )0, z].

The construction of T,(t) and the choice of y can be made in a general
framework. In view of the applications we restrict ourselves to semigroups with
boundary conditions.

3. Semigroups with boundary conditions

In this section we deal with the case of semigroups having infinitesimal generators
mainly determined by boundary conditions and follow the presentation given by
Greiner [8].

Let X and Y be two Banach spaces, A a closed linear operator with a domain
D(A) dense in X. In many applications, A will be a differentiation operator with its
maximal domain.

The operator L : X — Y is bounded such that R(L) =Y

We denote by Ag the restriction of A to ker L, and for every bounded linear
operator & : X — Y we define Ag by

D(As) ={f e D(A); Lf = ®f}, Aaf = Af forf € D(As).

Then Aq is the operator corresponding to ® = 0.
Our aim is to find an estimate of the speed of convergence of the semigroup
(To(t))i>o generated by Ag to an asynchronous equilibrium (when it exists). As in
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Section 2, the rate of convergence will be given by the difference s(As) — s(As).
Thus, our problem is to find a suitable perturbation of As leading to an estimation
of "the second eigenvalue” s(A4s) of Ags. Before doing so, let us summarize some
results from {8] which will be useful in this respect.

Lemma 3.1.  Assume that A € p(Ay). Then,

i) D(A) = D(Ag) @ ker(A — A)

ii) The restriction of L to ker(A — A) is an isomorphism onto V.

We will denote Ly = Ljxer(x—4) and L3 its inverse for each A € p(Ay).

The following proposition gives conditions under which Ag is the infinitesimal
generator of a semigroup (T (t))s>0-

Proposition 3.2.  [8] Assume that Ao is the generator of a semigroup (To(t))e>o-
i) Suppose that there are constants v > 0, ¢ € IR such that for every AE
R, X > ¢, |ILFIl > M Ifll for f € ker(A — A). Then, for every bounded linear
operator ® : X =Y, Ag is the infinitesimal generator of a semigroup (Ts(t))e>0-
i) Suppose that ® o Ay has a continuous extension from X into Y. Then As
is the infinitesimal generator of a semigroup (Te(t))e>0. Moreover, for X large enough
one has

To(t) — To(t) = Ly1®Te(t) — To(t) L5 ® + /Ot To(t — )L (N — Ag)|To(s)ds.

In the case when Aq generates an analytic (compact) semigroup, then so does As.

;From now on, we assume that A, L, and ® are such that the operator As
is the infinitesimal generator of a semigroup (T (t)):>0 having A.E.G. with intrinsic
growth rate Ag.

Since the operator Ag is the restriction of A to the domain D(Ag), its seems
natural that the perturbed operator A, to be used for the estimation of "the second
eigenvalue” of Ag should also be the restriction of A to a domain D(A,) C D(A).
An indication for the choice of D(A4,) is given by the following result.

Proposition 3.3.  [8] If a restriction A, of A to the domain D(A;) C D(A) is
the generator of a semigroup and D(A;) = kerl with | : D(A) — Y a surjective
A -bounded operator, then any other restriction of A which is a generator is obtained
by perturbing | additively.

For our purpose we have [ := L — &, D(Ag) = kerl. We also have to assume
that | is surjective (this will be true if L is surjective and dominates @, which is the
case in our application).

Assume that | = L—® is surjective. Let 13 be a fixed element of ker(Ao—Aj).
For any y € Y we define the operator A, by

D(A,) = {f € D(A); Lf = &f ~ (5}, f)y}, Ayf = Af for [ € D(4,).

Setting ¢ = —z} ® y, we have D(A,) = ker(l — ¢) = {f € D(A); If = pf}. We
write Iy 1= lker(r—4) for the restriction of I to ker(A — A) and l;l for its inverse for
A€ p(As).
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Proposition 3.4. If Ay is the infinitesimal generator of a semigroup (To(t))ez0,
then
i) A, is the generator of a semigroup (T, (1)) and for X large enough we have

T, (t) — To(t) = 15 0Ty (t) — Te(t)l3 v + /Ot To(t — 85 (X — AT (s)ds.

In case Ap generates an analytic (compact) semigroup, then so does A,
i) If (Ty(t)) is eventually compact, then the same holds for (T, (1))

Proof. If we show that ¢ o Ag has a continuous extension, then i) follows from
Proposition 3.2 ii). But this follows since

(poAsg)f = — (x5, Aef)y = =X (25, /) ¥-

For part ii), we have from i) for A large enough

Ty(t) = (1= I55) " Ta(t)(1 = 5'0) + (1 = ) /Ot To(t — s)K (s)ds.

with K (s) := I3 (A — 4,)T,(s). The conclusion follows by the fact that K(s) is an
operator of rank one . ]

Lemma 3.5.  Let A € p(Ag) and let Ay := Xo— (A= o) <a:(’;., l;1y> . Then we have

zh € D(A;) and Ajzg = Ayzp.

Proof. Let A € p(Ads), y €Y, f € D(4,) and g := f + (x5, f) I5'y. We have
feXge D(Ag) and
(@, Ayf) = (5 Asg) — (35, f) (25, Al y)
= (Aaa, £+ G, DY) = Mg, ) (25, 50y)
No (@h, £) + (ho = V) (z5, ) (25, 151y)
(2o = (= 20) (5. 051y)) 25, 1)

so zp € D(A;) and Agzg = Ay (]

I

Proposition 3.6.  Assume that (z, f) # 0 for all 0# f e N := ker(A — Ag).
Then, for every y € Y,

o(4,) = (o(As) \ {2} U{N},
where A, = Ao — (A= Xo) (75, 13'y) , A € p(Aa).

Proof. 1) Since A, is obtained from Ag by a perturbation of rank one, one has
o.(A,) = 0.(As) ([8], Proposition 3.1). 2) By Lemma 3.5, we have Ajzg = Ay2g
and so A, € o(A,). 3) If A # X is in Po(As), then for f € ker(A — As),
(x5, Ao f) =X (x5, ) = (A5xy, f) = Xo (z}, f) implies that (xf, f) = 0,s0 f € D(4,),
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hence A, f = Af and X € Po(A,). In the same way, since 5 € D(4;), and if A # A,
isin Po(A,), A is also in Po(As).

4) To end the proof, we have to show that Ay ¢ o(A,) unless Ay = Ay If
Ao € 0(A,), then, since Ag ¢ 0.(Ae) = 0.(Ay), there exists f € D(A,) such that
A,f = Xof. For X € p(As), define g := f+ (x5, f) [;'y. Then g € D(As) and

Asg = Xof + A (=3, /)iy
Aog + (Ao = A) {5, ) Iy 'y

Applying z§ on both sides one obtains

(75, Aag) = Ao (5, 9) + (A — N) (55, £) (x5, 1 'y)

On the other hand,

(25, Aog) = (4325, 9) = do (25,9)
hence (zf, f) <$5,l;1y> = 0. But, (z},f) # 0 because if (zf,f) = 0 one has
f=g9¢€ D(As) and Asf = A,f = Aof which implies that f € N. This contradicts
the assumption (z§, f) # 0 for all f € N\ {0}. So <zg,l;1y> =0, hence Ay = A, (in
view of the formula defining A,). ]

Proposition 3.7.  Assume that Ag is the generator of a semigroup with A.E.G..
Assume, moreover, that y can be chosen so that s(A,) is an eigenvalue of Ay and
that, for some z € ker(s(Ay) — A,), one has (xf, z) # 0. Then, the spectral bound of
Ay s

$(Ay) = Ao — (A = Ag) <13,l;1y> ;
where X is an element of p(As).

Proof. For any z € ker(s(A,) — 4,) we have (z5,A,2) = s(4,) (z, 2), but
by Lemma 3.5 <A;z3,z> = A (25, 2). So, if (z5,2) # 0, then s(4,) = Ay =

o — (A= do) (25,557

Since ), depends on zj € ker(\g — A%) and IJ'y € ker(\ — A), we cannot
obtain an explicit expression of s(A4,) without more information on the operators
A, L and &.

In the sequel, we will consider the case when the semigroup (T,(t))i>0 is
positive in order to use spectral properties of such operators. Since it is easier to
check the positivity of the resolvent of the generator, we will give now an expression

of R(A, 4,) in terms of R(A, A).

Proposition 3.8. Let U=® —z;®y and ¥, = VL', A € p(Ap). If | ¥, < 1
for X large enough , then

R(\A,) = RO\, Ag) + Ly 'R(1, W) WR(A, Ay).

Remark. The fact that ||¥,]] < 1 for A large enough follows from conditions
ensuring that A, is a generator (see Proposition 3.2 and [8]).
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4. Translation semigroups

We will now restrict our attention to translation semigroups. In [6], it is proved
that the generators of translation semigroups on X = LY()-r,0[,Y), where ¥ is
an arbitrary Banach space, are first derivative operators, their domain is a part of
Whl(]=r,0[,Y) satisfying f(0) = ®f where & : Wh(]-r,0[,Y) — Y isabounded
linear operator. Using this fact, a number of qualitative properties of translation
semigroups are established in [6]. In [1] a generalization to X = LP(-r0[,Y), 1<
p < oo, is obtained. Compactness of the translation semigroup Te(t) received a
particular attention in that paper and conditions ensuring compactness of To(t) as
a consequence of properties of ® are given.

With the above assumptions on Y and X, 0 < r < 400, 1 <p < +o0,

and X endowed with the norm || f|| = (ffr Hf[l’;)l/p, a semigroup (T(t))e»0 is called
a translation semigroup if for all f € W'?(]-r,0[,Y), t = 0 and almost every

B ft+z) if t+z<0
z €0l (1)) = { (Tt +2)f)(0) if t+5>0.
Proposition 4.1.  [6] Let (T(t))t>0 be a translation semigroup of linear operators

on the Banach space X = LP(J—7,0[,Y). Then, the infinitesimal generator A of
(T(t))e>o ts such that: i) D(A) C Wie(|—r,0[,Y) and Af = f' for all f € D(A).
i) The map f+—— f(0) is continuous from (D(A)|l.]| 4) into Y.

So, translation semigroups on X are a subclass of semigroups with boundary
conditions, for which the operator A is the first derivative and the operator L (see
Section 3) is given by Lf = f(0).

Let ® be a bounded linear operator from X into Y. We define (Ts(t))i>0 as
the semigroup of linear operators generated by the operator Ag given by

D(Ag) = {f € WP (J=r,0[.Y);£(0) = ®f}; Asf = f'forf € D(As).

Then (Ts(t)) is a translation semigroup (see [6], [2])-

We observed in Section 3 that the estimation of the rate of convergence of
e~ !Tg(t) to P needs the determination of an zj € ker(Ao — A3) and L'y, y €Y,
A € p(Ag). For the translation semigroup Ty (t) defined on X, assuming that the
dual space of X is X* = L®((—7,0),Y™) if p=1 (this is the case if Y is reflexive)
and X* = L((—r,0),Y*) where 1+ . = 1if p > 1 (this is the case if Y is
separable), we give in the following propositions explicit expressions for zg, I3y and
Ay =do— (A= Ao) <x3, l;1y>, which is the candidate for the estimate of the rate of
convergence.

We will use the notations £5(a) = €, (ea2)(a) = €2z and @5(2) =
D(eygz) for z€Y

Proposition 4.2.  Let Ag be the operator on X = Lr(]-r,0[,Y) defined by

D(Ag) = {f € W'(—r,0, ¥); f(0) = @f} and Aef = f' for all f € D(4a).

Let A% be the adjoint operator of Ae. Then, 2™ € X* is a non trivial solution of
Lt = Azt if and only if

o*(a) = e / * M [0* 2" (0)](s)ds with 2*(0) = @}[z°(0)], ~r <a <0

—r
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Proof. We proceed in two steps. In the first one, we show that if * € X* isa
non trivial solution of A%z* = Az* then z* is differentiable. In the second one, we
establish the announced formula.

1) For any f € D(As) we have

<A3>I*7 > = <I*7A¢‘f>

= (@ f —pf)+plz’ f) forallpe R
So, (A%x*, f) = A{z*, f) is equivalent to

<'T*7f"—uf> = ()‘_/“L) <l‘*,f>,
which is equivalent, by taking g = e™**f, to

<el—"z*’ g’> = (/\ - H) <e#'z*’ g> . (1)
On the other hand, taking u*(a) = [° e**z*(s)ds, one obtains by integration by
parts

(e"a*, g) = (u"(0),9(0)) — (u".g') . (2)
Writing g(a) = g(0) — [2 ¢'(s)ds, we deduce from g(a) = e7#*f(a):
0

fla) = eng(0) e ["g/(s)ds,
hence, since g(0) = f(0) = &f,

50) = 2,(5(0) - @ (& ["g'(5)ds) .

So, for u sufficiently large p in p(Ag), we have

o0) = ~(1-a,)70 (e [ (s)ds) G
= -[(1-2,)7" ¢, Tl
where Th := [0 h(s)ds and &, (h) :== @ (e**h) for h € X.

Replacing the value of g(0) in formula (2) by the value obtained in (3) and
putting the result in (1) gives, for every ¢' € X,

ez, gy = —(n—p) (((0),[(1 - 2,)" &, Tg') + (w',9)))
= O ([~ 87 B, T (0) - o)
So, denoting ¥,= (1 — ®,)~! &,, one has
z*(a) = — (A — we " {(¥, T)'u (0)}(a) — (A — pe™ *u(a).

To prove the differentiability of z* we have to investigate the smoothness of [(¥,
T)y*u*(0)](a). Since

(B, T)w(0),h) = (&} u*(0),Ih)
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we obtain, [(¥, I)*u*(0)}(a) = f‘_l,[\i/; u*(0)](s)ds, which shows that z* is differen-
tiable with derivative in X*.
2) For f € D(Ag), we have (Apz*, f) = (z*, f'). We can now integrate by
parts and obtain
(A", f) (@ (0), £(0)) — (&* (=), f(=m)) = {&™, )
(=2 + ®"z7(0), f) — (a"(=7), f(=7))-

Using Ahz* = Az*, one obtains
(o, f) = (=2 + ®"2*(0), f) — (2" (=r), f(=7)), (4)
for any f € D(As). Since D(Ag) is dense in X, (4) is equivalent to
{ x*l 4 At = q)xl.x(o)

I

z{(—-r) =0
which gives
z*(a) = e"\“/ e [® 2" (0)](s)ds,

and, for a = 0, z*(0) = f°, *[®*z*(0)](s)ds. So, for any z € Y,
0

(z*(0),2) = /T<e)‘s [@* 2" ( >ds
= /O <<I>* *(0)](s), e* >ds
~ (o)
= (z*(0), @AZ>
= (2327(0),2),
hence z*(0) = ®3[z*(0)]. u

Proposition 4.3.  Let y be any element of Y. If, for A € p(As) large enough,
(1 — ®,) is invertible, then

i) Bly=ea8 1= )7y,

i) Ay = do — (23(0),y) with z5(0) satisfying x3(0) = ®3,125(0)].
Proof. i) For A € p(As), f=15'y means that y = If and f € ker(A — A), that
is y=f(0)—@f and f =ex® f(0). So

y = f(0) — ®(ex® f(0)) = (1 - 21)f(0).
Hence, if for some X € p(Ag), (1 — ®,) is invertible, then f(0)=(1— &) 'y and
Kly=f=ea®(l-2)"y

ii) We have A, = Ao — (A = Xo) <x3,l;1y>. From i) and Proposition 4.2, we
know that

(i) = [ (e [ O aOle)ds @ - @)y do
_ </_0T (e(x_xo)a /_T 23 [0* ) (1- &))" >

= ([ o )ds‘/_r 5055, (1~ 8
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However, we have

50) = [ @ 0)(s)ds and B[a50)] = [ MO"E0)s)ds,

hence,
(zii') = 5o (56(0) - B33 0), (1 ) 7')
- o5 @)
and A\, = Ao — (25(0), ) . .

Definition 4.4. Let ® be a bounded linear operator from X into Y and @, :
Y — Y be the operator defined by ®,(2) := ®(e**z). We will say that ® is of
compact type if @, has a compact iterate for all A ed.

We Assume in what follows that the dual space of X is X* = L*(]-r,0[,Y™)
if p=1 and X* = LY(]—r,0[,Y") where %—}-% =1lifp>1.

Proposition 4.5.  [1] Let Y be a Banach lattice and ® : X — Y a positive
bounded linear operator. Assume that ® is compact or that @ is of compact type
and {(Ts(t)f)(s); f € B} is relatively compact for s € ]-7,0] (B is the unit ball
of X). Assume moreover that ® is a uniform limit of finite rank operators and that
®, is irreducible for some A € IR. Then, the equation 7(®x) = 1 has a unique
solution Ao = s(Ag) = wo(As), there is a unique (when normalized) strictly positive
eigenvector zy of Al associated to Ao, and there erists a positive projection of rank
one P such that
e To (1) ~ P < Me?

for suitable constants 6 >0, M >1 and all t > 0.
Theorem 4.6. Under the same hypotheses as in Proposition 4.5, we have

e Ta(t) = P| < Me ™

for M > 1 and any positive a < op = sup {(z5(0),y); ye Yy, P—1538y 2 0},
where x35(0) is a strictly positive eigenvector of @3 associated to the eigenvalue 1, and
z given by zg(a) = e 200 [2 e2os[®*z5(0)](s)ds is an eigenvector of Ay associated
to )\0.

Proof.  Writing R()\, A,) in the same way as in Proposition 3.8, we see that
the semigroup (T,(t))e>0 is positive if and only if the operator (@ — x5 ®vy) is
positive. On the other hand, by assumption, the semigroup (Ts(t))e>0 is eventually
compact (see [1]), hence (Proposition 3.4 ii)) (Ty(t))i>o is also eventually compact.
So, we(T,) < wo(T,). and then (see [7]), we have wo(T;) = s(4,), oo(4,) = {s(4,)}
and there exists v € X4, v # 0 such that A,v = s(A,)v. By the fact that z7 is
strictly positive one has (zj,v) # 0

Now, using Propositions 3.7 and 4.3 ii), we obtain that we(T,) = s(Ay) =Ny =
Ao — (25(0),y), for any y € ¥ such that & -z5®y > 0. If, moreover y € Y., y#0,
then (z3(0),y) > 0 and so, s(A4y) < Ao
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Finally, since O’(Ay) (o (Aq> I\ {he})U{\} (Proposition3.6) and s(4y) = Ay,
we have s(4,) > S(Aq;) where Ag is the restriction of Ap to S = R()\o — As). On
the other hand we have s(4,) = wo(Ty) > we(Tq)). Hence s(4,) = MO(T(I)) and any
number o such that 0 < a < (z3(0),y) = Ao — s(A4,) is an estimate of the rate of
convergence of e Ty (t) to P. n

5. Application

In this section we will apply the results of Section 4 to an equation in demography.

Let us consider a population, divided into n states. The states correspond
for example to a classification of individuals by geographical habitat, social status or
other criteria (see [16], [10] for more details).

We will denote by u(a, t) := (ui(a, 1)), <<, the vector population densities with
Ji2 u;(a, t)dt the total subpopulation in the state 4, 1 <1 < n, with age between a;
and ao at time ¢,

Q(a) := (gi;(a)), 1 <1i,j < n, the matrix of transition between states. For
i # j, qi;(a) > 0 is the instantaneous rate of transition, at age a, from the state j
to the state 1,

gii(a) == —pi(a) — Xz gji(a), p;(a) > 0 the death rate at age a of individuals
in state ¢, 1 <1 <m,

M(a) := (my(a)) 1<14,j < n, the fertility matrix, where mij(a) > 0 is the
average number of offsprings per unit of time in state i produced by an individual at
age a in state j.

The dynamics of such a population is described by the following vector type
Lotka—von Foerster system of equations:

Fula,t) + aiu(a,t) = Q(a)ufa, t),
(L.F.E) u(0,t) = [ M(a)ula,t)da,

u(a, 0) = p(a),

where a, is the maximum reproductive age (M(a) = 0 for all a > a,) and p(a) =
(pi(@)),<;<p is the initial population vector.

Let a, be the maximum life span of the population (a, < a5 < +00). The
natural state space for the density function w(a,t) is the space X = Lo, r], B™),
where r is a positive real number, such that a, < r < as. With the condition
r < a,, we can have [ p;(a)da = 4oo, which means that the survival function
exp(— [ wi(z)dz) is equal to zero for a = as.

We assume that the functions my(a) > 0 , for 4,7 = 1,---,n, are in
L=(10,r[, R") (my(a) =0 for a > a,). The functions j;(a) and g;;(a) are assumed
to be positive and continuous on ]0,7[.

To have a representation of the solution of (L.F.E.) as a translation semigroup,
generated by an operator Ag with boundary conditions, we introduce the matrix
I1(a), defined as a solution of the following matrix differential equation:

{ +1(a) = Q(a)IL(a),
1(0) = I.
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Then II(a) is the survival matrix. The entry m;;(a) of Il(a) represents the
rate that an individual born in the state j survives and is in the state ¢ at age a.
By Liouville’s formula, we have

det I1(a) _exp</ un >

So, II(a) is invertible. Its inverse I17'(a) satisfies the equation:

{ &0 a) = -11"(a)Q(a),
-1(0) = I.

Now, taking f := II"!(a)u(a, ), (L.F.E.) can be formulated as the following
abstract Cauchy problem in X = L([0,r], R") :

{ 4f=Asf,
f(0) = p,

where Ag is the population operator defined by

Aof = f', D(Aq):={f € WHI([0,7), B"); £(0) = ®(f)}, (5)
O:X -+ R, Of = /OTB(a)f(a)da, Bl(a) = M(a)I(a).

Here, B(a) is the net fecundity matrix. It is not difficult to check that B(a)
is a nonnegative matrix.

The semigroup formulation represents the definition of the evolution in time
of the initial population vector. The limit condition in the A.E.G. reflects the
phenomenon that the age distribution approaches a stable shape independent of the
initial population. The number A is an intrinsic constant characterizing the studied
species in their environment.

In the following proposition we summarize some known (see [16] for instance)
properties of the population operator Ag and the associated semigroup (Ta(t))t>o0-

Proposition 5.1.  Let As be the population operator defined by (5) and let m :=
esssup{||M(a)||; a € 0,7}, d = inf{p;(a); 1 < 7 < n, a € |0,r[}. Then the
following holds.

i) The spectrum of Ag is point spectrum and o(As) = {) €C; det(I — ®,) =
0}, where @y is the n x n matriz given by &5 = [ e e **B(a)da.

i) Any X € o(As) is a pole of R(A, Ag) with finite algebraic multiplicity.
The geometric eigenspace of Ag Jiven by N(A — Ag) = {f; fla) = ¥z, = €
NI - ®,)}.

ii) For any A > d—m, w 1ave X € p(Ag) and R(\, Ag) is a positive compact
operator.

i) Ag 18 the infinitesimal generator of a positive semigroup (To ()0 satis-
fying | Te(t)]| < e 9t and Te(t) compact for t > .

We now apply Theorem 4.6 to this situation
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Theorem 5.2.  Assume that for some )\ € IR, the matriz @\ = [j e **B(a)da is
irreducible. Then, the semigroup (Te(t))i>0 has A.E.G.. Its intrinsic growth rate Ay
is the unique real solution of r(®,) = 1. If we define

Qg 1= sup {< ,y> y € R", ¢*B(a) — [va] / e**B(a)da > 0} ,
0
then for every o, 0 < a < ag there exists M such that
e Ta () — P| < Me

T

where v! is a strictly positive eigenvector of @{0 associated to the eigenvalue 1.

Proof. In our situation the operator ® is defined from X to IR" by @f :=
J$ Ba)f(a)da, Bla) := M(a)II(a) and &, is the n x n matrix given by &, :=
J§ e ?9B(a)da. So, it is easy to see that the hypotheses of Theorem 4.6 are satisfied.
Let us now write the condition ® — zf ® ¥ > 0 using the data of our example. We
have (see Theorem 4.6): z(a) = e~ *0¢ [ e205[®*z(0)](s)ds, x3(0) = @1 (z3(0)) and
for any row vector 27, [®*2T](s) = 2T B(s). Hence, setting v” := z(0), we obtain
z3(a) = 200 [P er5yT B(s)ds = e~ %7 [ e*°B(s)ds. So, for any f € X,

/OrB(a)f(a)da_ [/OT(@_MUT/O 0 B(s)ds) f(a )da]
/Or { B(a) — e 02 [yo"] /Oa exosB(s)ds} f(a)da
[ e Be) - ) [ Bls)ds e f(a)da

Consequently, ® — 23 ® y > 0 is equivalent to e*®B(a) — [yvT] [y €**B(s)ds > 0 for
a.e.aq€l0,r[. ]

(@ ~z50y)f

Remark. The matrix [yvT] is of the form

Yt v o YiUn
[va] _ yQ'Ul YaU2 Y2Un
YnU1 YnU2 YnUn
with v; > 0, ¢ = 1,...,n. The vector y must be chosen such that the matrix

e*®B(a) — [yvT] f§ e**B(s)ds becomes nonnegative. So, if the entry b;;(a) # 0 of
B(a) is equal to zero a.e. on some interval IC[e,r], 0 < ¢ < r, then y;, must be
equal to zero.
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