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Abstract. Active linear compartments are capable of 
transforming input substances into each other. Based on 
several general axioms of functioning of these compartments 
their mathematical description in the form of matrix 
convolution operators is derived. Results are prcvided, 
regarding relationships between two alternative modes of 
mathematical description of linear active compartments. Then, 
properties of systems of active compartments are considered, 
based on results from the renewal theory. 
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INTRODUCTION 

In this paper, we consider a class of 
dynamical systems, which is a 
generalization of the well known 
compartmental systems. We call our 
compartments active since they have 
the ability, absent in the traditional 
formulation, of actively transforming 
one substance flowing through the 
system into another, with a global 
balance of substance satisfied. 

Traditionally, compartmental systems 
are a too1 used to describe the 
circulation of substances in the 
models of various biological proces- 
ses: in cell biology, ecology, 
immunology etc. (see eg. Sandberg 
(1978)). Intuitively, a compartment is 
a black box containing a number (N) of 
distinct substances. Each of these 
substances may flow into the 
ccmpartment, flow out of it, or may be 
stored in it. Compartments are usually 
grouped into compartmental systems, 
making it possible to model the 
Frocesses of circulation of the 
substances involved in various parts 
of the object considered, as for 
example the circulation of radioactive 
tracers in various organs of an animal 
or human body. In the extensive 
literature on the subject, the 
dynamics of compartmental systems is 
usually described with the aid of 
systems of ordinary differential equa- 
tions (Anderson (1983), Rubinow 

(1975), Sandberg (1978)), or systems 
of delay differential equations (Gyeri 
and Eller (1981)). 

We propose an approach which 
generalizes these models in two ways: 
First, we add the possibility of 
substance transformation: thus a given 
substance may be changed in the 
compartment, partly or completely, 
into one or more other substances. 
Second, eveninthe special case of no 
substance transformation, the 
formalism of integral equations of 
renewal type that we employ provides a 
more general description and deeper 
understanding of compartmental systems 
than other approaches available. 

We start by specifying a set of 
axiomatic properties which should be 
satisfied by an active compartment. 
Based only on these axioms, we then 
derive a representation of the opera- 
tors defining a compartment in terms 
of convolutions by appropriately 
chosen impulse response functions. 
Further properties of these cperators 
are then considered. Among others, we 
investigate the asymptotic properties 
of systems of active compartments. The 
present communication has a 
preliminary character and results are 
provided without proof. A detailed 
treatment of the subject is in 
preparation. 
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DEFINITION 
AND MATHEMATICAL DESCRIPTION 

OF AN ACTIVE COMPARTMENT 

We will employ cumulated flows rather 
than flow rates. Thus, Xi(t) will be 
understood as the quantity of the i-th 
substance that flows into the 
compartment in the time interval 
[O,t]. Analogously, Yi(t) will be the 
quantity of the i-th substance that 
flows out of the compartment during 
[O,t]. Videnotes the quantity of the 
i-th substance present at time t in 
the compartment. Let us remark that 
the use of cumulated flows makes it 
possible to consider equivalents of 
impulse flow rates ("Dirac deltas") 
without having to employ the formalism 
of the generalized functions (Schwartz 
distributions). The following set of 
axioms defines active compartments: 

(a) Real 
i=l 

functions Xi and Yi, 

,....N, defined on the semiaxis of 
nonnegative reals CR+), are 
nonnegative and nondecreasing. Real 
functions Vi, i=l,...,N, from R' into 
itself, are of bounded variation on 
the bounded subsets of R+ (consult eg. 
Eojasiewicz (1973) for a definition of 
variation of a function). All the 
above functions are considered 
continuous from the right. 

(b) Let us denote by RBV the set of N- 
vector functions on R+ with the 
entries right continuous and of 
locally bounded variation; by KBV+, 
the subset of RBV consisting of 
functions w+ith nonnegative entries! 
and by ND , the subset of RBV 
consisting of functions with nonnega- 
tive and nondecreasing entries. Let us 
define two operators 

A: ND+ 
B: ND+ 

---> RBV+, 
---> ND+, 

such that 

V = A(X), Y = B(X), 

where V = COl(Vl,...,VN), etc. 
Cperator A will be called the "inflow- 
content operator" while B will be 
called the "inflow-outflow operator". 

(c) The overall balance of substance 
is verified: 

jl 'ict) = $1 'ict) + i$l 'ict). 

(d) Operators A and B are additive and 
nonnegatively homogenous. They are 
also monotonous ie.: 

A(X1) > A(X2), 
B(X1) F B(X2), 

if X 1 > x2, where the inequality is 
defined- componentwise. 

(e) Let us denote by W,(t) the 
translation of a vector function W(t) 
by T. It is assumed that both 
operators commute with translation: 

A(XT) = [A(X)]T, B(XT) = [B(X)]T. 

(f) Both operators obey a 
nonantic'pation rinciple: For ach 
t>o '1 if X (s) = X P (s), f s<t, then Y 
=.Y*(s) and VI(s) = V2(s), 

(s) 

Vi = A(Xi) and Yi = B(Xi). 
s<t ; where 

The description of a compartment in 
terms of operators A and B seems 
perhaps unnatural compared to the 
description in terms of A (inflow- 
contents) and ancther operator: C 
(contents-outflow) mapping V into Y. 
However, the description we propose is 
more general. 

Hypothesis (e) means that the 
properties of the compartment do not 
change with time (ie. the compartment 
is autonomous). Hypothesis (f) states 
that f.or each t>O, V and Y restricted 
to the interval [O,t] depend only on 
the restriction of Xto [O, t]. 

Suppose that A(t) and B(t) are 
matrix functions on R', of locally 
bounded variation, and continuous from 
the right. The dimensions of A and B 
must be chosen so that the ordinary 
matrix product AB is well defined.) By 
a convolution of two such functions, 
we will understand the following 
matrix function C(t) on Rf: 

C(t) = I 
[Ott1 

d,A(s) [B(t-s)], 

where the integral is understood in 
the Lebesgue-Stieltjes sense 
(uojasiewicz (1973), page 200). 
Convolution is symbolically denoted in 
the following ways: 

C(t) = (A*B)(t) = A(t) * B(t). 

Theorem 1. (i) There exist (N, N) 
matrix functions G and H on Rf, such 
that 

V = A(X) = (H*X), 
Y = B(X) = (G*X). 

The entries of G(t) = ]G, .(t)] 
nonnegative, nondecreasing 'I 

are 
unctions 

on R+ continuous from the right, while 
the entries of H(t) = [+Hi'(t)] are 
nonnegative functions on R o* locally 
bounded variation, continuous from the 
right. The following is satisfied: 

.jl Gij (t) + 1 Hij(t) = 1. 
i=l 

(ii). Conversely, for G and H such as 
in part (i), operators A(.) and B(.) 
satisfy hypotheses (a) through (f). 
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OPERATOR CONTENTS-OUTFLOW 

Example. Let us consider an example of 
a “no memory” active compartment 
describable by differential equations 
(formally equivalent to a classical 
compartment system; see section 4): 
Suppose that a small portionof the j- 
th substance present at time t in the 
compartment, 

- either transforms in a short time 
interval [t,t+u] into a portion of one 
(eg. the i-th) of the other substances 
with probability a, .u+o(u) 

i' 
[where o(u) 

is a quantity smal compared to u, ie. 
o(u)/u tends to zero as u tends to 
zero], 

- or it leaves the compartment with 
probability ajjU+O(U), 

- or it remains unchanged inside the 
compartment with probability l- 
(alj+...+aNj)u+o(u). 

These assumptions define a Markov 
process the expected value of which 
may be described either in terms of a 
system of differential equations or 
equivalently in terms of the following 
system of integral equations: 

Vj(t)= 

I 
t 
0 

[-ia. .V.(S)~ fa,,V,(s)]ds+Xj(tJ, 
i=l " I i=1 '= r 

i#j 

I 
t 

Yj(t) = ajj o Vj(S) dS, 

where j=l,...,N. Operator A(.) here 
has the form: 

A(X) = H * X, H = exp(At), 

where A = [Aij]; Ai. = aij, i#j while 
Aii = -(alit...+2 .). The above 
equations are consI$'quences of the 
usual variation of constants formulae 
for ordinary differential equations, 
including nonzero initial conditions 
[since X.(O)>0 implies V.(O)>O]. 
Operator 5(-J, mapping corn artment d 
contents into outflows has the form: 

C(V) = K * v, 

where 

K(t) = t diag(all,...,aNN). 

In the present example it is more 
straightforward to describe the 
compartment using the pair (A, Cl of 
operators. However, this is not 
generally true. We will now state the 
properties that should be satisfied by 
c: 

(g) For each t>O there exists Kt>O 
such that 

sup lc(v1m)-cw2)(s)( 
[Ott1 

(where IV]=lvll+...+lVNI), for all the 
V in the range of operator AC.1 Lie. 
in AtNO+)]. 

(h) Nonanticipation [analogous to 

(f)l. 

(i) Autonomy [analogous to (e)]. 

(j) Additivity and positive 
homogeneity [analogous to (d)l. 

Let us note that A and B enjoy a 
property analogous to (g) as a 
consequence of monotonicity and 
balance equation. Neither of these 
assumptions can be asserted for C. 
Moreover, since the condition (g) is 
restricted to functions V in the range 
of operator A, it does not imply that 
C is of the convolution type. This 
means that the problem of finding an 
operator C, in its generality, might 
not be well posed. From now on wewill 
consider a restricted version of the 
problem: we will look for the 
existence of a convolution type 
operator C. 

Theorem 2. If the determinant of 
matrix H(O) is not equal to zero: 
D[H(O)]#O, then operator Ct.) exists 
and satisfies properties (g) through 
(j). 

The proof of this apparently simple 
condition requires investigation of 
the properties of the algebraic ring 
of convolutions over the space of 
functions of locally bounded 
variation. In general terms, the 
invertibility of the element of this 
ring which plays the role of the 
determinant of a generalized matrix, 
has to be characterized. 

The basic question is whether or not 
the condition det[H(O)]#O is very 
restrictive; in other words, if a 
large enough class of compartments can 
be equivalently described both in the 
terms of the pairs of operators (A,B) 
and (A,C). Let us consider a 
compartment which is a description of 
a real biological process. As no 
changes of one "substance" into 
another can be instantaneous, it seems 
reasonable to assume Hi.(0)=O, jfi as 
well as Gii(0), jfi. &his implies 

det[H(O)] = Hll(CI)...HNN(Ol and 

Hii+Gii=l, i=l,..., N. Suppose now that 
the determinant of H(0) is equal to 
zero. This requires H. .(O)=O for at 
least one j. But then 

1 t>O and this in 
"iii-',' ,,",ij>,"i 

H. .it)=%, t>O. Therefore the case of 
dJg[H(O)]=O-does not s,'em to be of 
much practical importance. The form of 
operator C can be however very 
complicated (see an example further in 
the text). In general, it may not even 
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be positive. 

SYSTEM OF ACTIVE COMPARTMENTS 

We will consider a system of M 
compartments linked to ether 

8 
SC that a 

constant fraction bm of the i-th 
substance outflow ifrom the n-th 
compartment flows into the n-th 
compartment. We will generally assume 
that losses of substance can occur, so 
that: 

bin+ 1 . . . +by < 1, i-L,...,N, n=l,...,M. _ 

We will also admit substances from. the 
environment to flow into each 
compartment. 
Ym and Ws, 

Let us denote by Vy, XT, 

iiflow, 
the accumulation, cumulated 
cumulated outflow and 

cumulated flow from the environment 
(i-th substance, m-th compartment), 
respectively. We have: 

XT = WI + ‘$ 

n=l 
b?" Yq. 

Let us define column vectors: 

y = co1 (Y;,...,Y;,.....,Yy,...,Y;), 

" = co1 (v;,...,v;,.....,v$.. .,v$, 

x = co1 (x;,...,x;,.....,x~,...,x;), 

w = co1 (w;,...,w~,.....,w~,...,w;). 

We obtain: 

x(t) = w(t) + b g(t)*x(t), 
y(t) = g(t)*x(t), 
v(t) = h(t)*x(t), 

where t>O, and the matrices b, g and h 
consistof the following blocks: b = 
[bmn], bmn = diaq(bT",...,bE"), g = 
diag(G1,...,GM), Gm = 
diag(H1,...,HM), Hm = 

[G"!.], h = 
[H*T 1 

functions GT. 
'2 ,and "?j 

'Jr, ,',"Z 
transition fun tlons G. and Fl of 
Theorem 1, for the nl-tt??zompart%nt. 
Let us note that this system of 
equations has unique solutions x(t){ 
y(t) and v(t), defined on R 
(actually, 
in RBV+). 

x and y are in ND+ and v is 

In what follcws, we will be borrowing 
extensively from the renewal theory, 
specifically from the asymptotic 
results for systems of renewal 
equations (Grump (197011. The relevant 
properties are qualitatively different 
if the matrix of the system is of the 
lattice type. The abnormality of 
systems of renewal equations with lat- 
tice matrices is caused by the fact 
that all the iterates of the kernel of 
the integral operator have points of 
increase (ie. the jumps) concentrated 
on a lattice and thus the system 
resembles more a time discrete than a 
time continuous object. We will not 
consider the lattice case here. 

Theorem 3. Suppose that g(t) is not 
lattice, matrix b< is positive with 
the spectral radius equal+to one, s- 
g(t) is integrable on R , h(t) i+s 
dir-ect:y Hienann integrable on R . 
Suppose further that Vart>B[w(t)-wOt] 
is finite for some constant nonzero 
vector w0 with nonnegative components, 
and that 

( /s>Oh(s)ds) w. 
_ (#) 

is in the range of I-bg. 

Then the functions v(t) tend to a 
finite limit as t tends to infinity. 

CLASSICAL COMPARTMENTS 

Suppose that a system of M 
compartments with a single substance 
is considered. A portion of a 
substance present in compartment m 

may, in a short period (t, t+sl, leave 
it and enter compartment n (n#m) with 
probability a 
leave the 

n$~;c;(~)+~;~m=::';; 

probability a 
"!r 

s+o(s). Let us define 
matrix A with e ements A,,=a m off its 

~~~~q=~~p~~~~a,~A~~~.~~~~~~~.~~~t~~ 
I 

= l-h(t), and matrix b has zeros on 
i t s. diagonal and elements 

anm/ x!=lakm off its diagonal. It is 
easy to see that condition (#) reduces 
to the known requirement that 
Rank(AlwO1 = Rank(A). If w(t) is 
absolutely continuous, then we can 
also write: 

6 = Av + &. 

This last equation is equivalent to 
equation describing an active 
compartment without memory. 
Equivalence of this type is possible 
only in the 'I n 0 memory" case. 
Condition (#) is reduced to a 
previously kncwn cne also in the case 
of the "pipe-compartmental" systems 
introduced by Gy6ri and Eller (1981) 
(classical "ideal mixing" compartments 
connected by piston flow pipes of 
various length). 

LEUKEMIC CELL DISINTEGRATION 

We will now illustrate our consi- 
derations with an example based on an 
interesting biological process (for 
biological background, cf. Skierski 
and Doroszewski (1977) and Skierski et 
fill (1979)). The L1210 leukemia, 
transplantable by means of cell injec- 
tion into DBA inbred mice, is the most 
convenient and well known experimental 
model of leukemia. In the experiments 
considered, radiochromium labeled 
~1210 cells were injected into the 
mouse or pumped into separate mouse 
organs in order to investigate how 
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they disinteyrate and/or are 
eliminated by active organs: lungs and 
liver. The kinetics of elimination was 
modeled in Kimmel et al. (1983) as an 
active compartmental system (using the 
terminology of this paper), with the 
transition functions Gi ‘, estimated in 
specially designed expe 2 iments. 

We will present a hypothetical 
model of one of the organs (liver). 
This example is only for the purpose 
of illustrating the relevance of the 
concept of general compartment; 
therefore no biological consequences 
will bediscussed.Wetreat liver as a 
system of ramifying channels (blood 
vessels) of various length through 
which blood flows. Since the 
ramifications are numerous we are 
justified in considering the length 
(L) of the route chosen by a small 
portion of blood to be a random 
variable with cumulative distribution: 

F(1) = Prob{L<l]. 

We assume now that two substances are 
carried by blood: (1) L1210 leukemia 
cells and (2) disintegrated fragments 
of L1210 cells. We also assume that 
both substances are transported by 
blood at the same rate v and that this 
rate is the same in all the 
ramifications. Exactly halfway through 
the liver, both substances encounter a 
small vesicle the surface of which 
consists of active cells having the 
ability to fractionate and (possibly) 
eliminate (ingestion) L1210 cells. The 
cell fragments carried by blood can 
also be eliminated by the vesicles. To 
be specific, let us assume that a 
L1210 cell entering the vesicle leaves 
it intact with probability pk and 
leaves it as a number of cell 
fragments (following fractionation) 
with probability pks (cell is elimi- 
nated with probability l-pk-pks). Each 
small portion of cell fragments 
entering the vesicle leaves it with 
probability p and is eliminated with 
probability si-p 
three followin;' 

Summarizing, the 
alternatives are 

possible: 

1. Cells eliminated as "intact" cells. 
2. Cells turned into fragments some or 
all of which are eliminated. 
3. Fragments coming from a preceding 
organ eliminated, some or all. 

If we denote P(t)=F(tv), we obtain: 

I l-pkP(t)-(l-pk)P(2t) 0 
H(t) = 

P(2t)(l-pkl-pksP(t) 1-p,P(t) I 

G(t) = 

I 

pkP(t) 0 

I 
I 

PksPct) p,P(t) 

We see that D[H(D)] = [l-P(O)][l- 
p P(O)] and is nonzero if P(Ol<l, 
wgict- p in turn, can be safely assumed 
[in Eact, it is not unreasonable to 
assume that distribution PC.1 has a 
density, whence P(O)=O]. Therefore the 
invers 

f 
of D(H) exists in the ring of 

the RBV functions and is equal to 

D(H)-' = 

{E [pkP(t)+(l-pk)P(Zt)l*i] 
i>O _ 

*{ z [PsP(tll*il. 
i>O _ 

Now, we will find matrix K(t), which 
defines operator Cc.1 (the result is 
easy to check by direct substitution), 

K = G * &>, (1 - HIXi. 
_ 

As demonstrated, operator Cc.1 exists 
in this example. Its form, however, is 
much more complicated than those of 
operators AC.1 and Bc.1 and it is not 
positive. 

FINAL REMARKS 

Ordinary differential equations of the 
classical compartmental system can be 
interpreted as describing the expected 
values of a time continuous finite 
Markov chain. It is clear that 
equations of active compartments can 
be treated as describing expectations 
of a semi-Markov process with finitely 
many states. Full exploration of this 
analogy exceeds the scope of the 
present paper. The environmental flows 
w(t) may represent substances injected 
into the system from outside. However, 
they may also model the distributed 
initial conditions ie. the outflows 
from the preceding compartment(s) 
which represent the history of the 
system (t<O). A detailed account of 
how to model the initial conditions 
via w(t) in an analogous framework of 
the theory of branching processes 
applied to cell kinetics, is provided 
in Kimmel (1981). 
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where 1 stands for the unit step 
function at zero, l(t). We will check 
if operator Cc.1 exists for our 
model, by computing the determinant: 
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