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ABSTRACT 

We develop a mathematical model of cell cycle kinetics of transformed embryonic 

cells. The model includes supramitotic regulation, in which decisions regarding growth 

control are made at a point inside the cell division cycle and their impact extends to the 

next decision point, located in the next division cycle. Another feature is the presence of 

two varieties of cells, which switch from one to the other with given transition probabili- 

ties. The third factor considered is unequal division of cells, also defined in probabilistic 

terms. 

We provide a rigorous description of the model and derivation of its equations and 

analyze its asymptotic properties by defining and investigating an abstract semigroup of 

positive linear operators in appropriate state space. The spectral properties of the 

semigroup yield the balanced exponential growth law for the model. 

To compare the model to experimental data, we derive basic pedigree statistics, p 

curves, and generation time correlations. We present numerical calculations based on 

measurements available for the embryonic cells. We conclude that to yield the experimen- 

tally obtained pedigree statistics, switches from one cell variety to the other must be quite 

infrequent. 

1. INTRODUCTION 

Cell cycle kinetics is of continuing interest to biologists and mathemati- 
cians. It is one of the domains of the biological sciences in which mathemat- 
ical modeling is necessary to organize in a logical way new experimental 
findings. New measurement techniques such as flow cytometry, as well as 
molecular biology methods, enable deeper and more precise insight into 
the factors regulating cell cycle in various circumstances, in cells of 
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different organisms (cf. Baserga [6], Tyson [30]). These developments have 
been paralleled by the evolution of mathematical tools (cf., e.g., Metz and 
Diekmann [23], Webb [32], Arino and Kimmel [2]). 

From the mathematical viewpoint, cell cycle kinetics is a part of popula- 
tion dynamics, defined by specific rules of cell proliferation. Modeling of 
cell populations has contributed to various mathematical disciplines, includ- 
ing differential equations, theory of stochastic processes, and statistical 
inference. For the past several years, the area of mathematics that has most 
benefited from population studies has been the theory of operator semi- 
groups (cf. Nagel [24]). 

In this paper, we develop a mathematical model of cell cycle kinetics 
with supramitotic regulation, that is, a model in which decisions controlling 
growth of the cell are made not at the beginning of the cell division cycle 
but at a previous point and their impact is extended to the next decision 
point, which is located in the next division cycle (cf. Sennerstam [26]). The 
period from one decision point to the next is called the growth control 
cycle. In our model, the new growth control cycle is entered when the cell 
attains threshold size. The threshold is in general a random variable, so the 
model allows for imprecise control. 

Another feature of the model is the presence of two varieties or types of 
cells. At the beginning of each growth control cycle, cells may switch from 
one type to the other with given transition probabilities. The third factor 
considered is unequal division of cells, also defined in probabilistic terms 
(cf. Darzynkiewicz [9, lo] and Kimmel et al. [21]). 

The work on the present model has been stimulated by experiments with 
cultured transformed embryonic cells [26-281, the results of which imply 
the cell cycle mechanism described above. 

We provide a derivation of model equations based on biological infor- 
mation (Section 2). Then we analyze the model’s asymptotic properties 
(Section 3 and Appendix). This is accomplished by defining and investigat- 
ing an abstract semigroup of positive linear operators in appropriate state 
space. In brief, we deduce that the semigroup is eventually compact, that its 
spectrum has a dominating eigenvalue determined by solution of a charac- 
teristic equation, and that the asymptotic behavior of the semigroup is 
determined by the dominating eigenvalue. This provides us with the asyn- 
chronous exponential growth law for our model. 

To relate the model to cell kinetic data, we derive basic pedigree 
statistics, p curves, and generation time correlations (Section 4). We 
present detailed numerical calculations based on measurements available 
for the embryonic cells. This part of the paper is of independent interest 
and is written to be understandable with elementary probabilistic and 
statistical expertise. 
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The main biological conclusion of our modeling, consistent with the 
published pedigree statistics of cultured embryonic cells, is that switching 
from one cell type to the other is a necessary but relatively infrequent 
event. 

The present analysis is a continuation of our previous related works on 
celi population dynamics [l-5,19,20]. 

We acknowledge the impact of ideas of Cooper and his coauthors (cf. 
e.g. Cooper [7]), who in a series of papers introduced and developed 
concepts on which our definition of supramitotic control has been based. 

2. MATHEMATICAL MODEL OF CULTURED 
TRANSFORMED EMBRYONIC CELLS 

2.1. BIOLOGICAL BACKGROUND 

In a series of papers, Sennerstam [26] and Sennerstam and Stromberg 
[27, 281 provided a comprehensive picture of cell cycle dynamics of trans- 
formed mouse embryo cell lines. The findings we summarize have been 
obtained for the PCC3 embryonal carcinoma cells. 

In the experiments reported in [26], the principal issue was the inequal- 
ity of division and its contribution to the variability of cell mass and of cell 
generation time in the population. Mitotic cells were obtained by mitotic 
detachment, seeded on glass slides and stained, and investigated at inter- 
vals of 0.5-3 h after division. At each time point, 50-100 cell pairs were 
screened. It was found that unequal division causes the coefficient of 
variation of cell mass to increase by about 4% (from 13.02% to 13.55%). As 
an example, 0.5 h after division, the mean value of cell mass is 7.05 relative 
units, while the mean absolute value of the difference between sister cells is 
0.42 unit. There is no visible correlation between difference of masses of 
sister cells and their joint mass (i.e., the mass of the mother cell). 

Another striking feature of the cell kinetics is the apparent bimodality in 
the distributions of cell size and of cell generation time, suggesting the 
presence of two different types of cells. 

To explore these findings, Sennerstam and Stromberg [28] analyzed the 
pedigree statistics of the PCC3 cells obtained by the time-lapse investiga- 
tion of growing cell populations. The following observations were made: 

(1) The intermitotic time distribution (the rw curve) of the whole popula- 
tion is bimodal. The mean generation times of the two subvariants are 
approximately 10 and 14 h. 

(2) The distribution of differences of generation times between sister 
cells (the /?t curve) is unimodal. 
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(3) The distribution of differences of generation times between first 
cousin cells (the & curve) is bimodal. 

(4) The distribution of differences of generation times between second 
cousin cells (the /3s curve) is unimodal again. 

(5) The correlation coefficient between generation times of sister cells is 
95%; between first cousins, 77%; between mother and daughter cells, 41%. 
Other correlations are close to 0. 

Sennerstam and Stromberg [28] formulated a theory of cell cycle regula- 
tion for the PCC3 cells. The main ideas are that cells may switch from the 
“fast” to the “slow” cell cycle variant and back and that the regulation has 
a supramitotic character-that is, the decision that the cell belongs to given 
variant is made in the preceding cell division cycle. Such a hypothesis 
explains the observed character of the LY, pi, &, and & curves and 
correlation coefficients (see Section 4). 

To realize that this hypothesis is also necessary, let us consider the case 
of two disjoint subpopulations with generation times of 10 and 14 h. In such 
a situation, the “faster” cells would outgrow the other variety quite soon; 
besides, all the /3 curves would be bimodal. The purpose of our modeling is 
to investigate the structure of the cell cycle regulation of the cultured 
embryonic cells. 

2.2. DEWATION 

The model is based on the notion of the supramitotic cell cycle regula- 
tion-a program extending from a point inside one cell division cycle to an 
analogous point inside the next cycle. We consider cells of type 1 (smaller) 
and of type 2 (larger), which may switch from type i to type j with 
probability pij, at a size control point between cell divisions, for example, 
on the G, /S phase boundary (cf. Prescott [25] for definitions of cell cycle 
phases). Then they proceed to division, producing progeny of identical type. 

All feasible transitions are depicted in Figure 1. The convention used 
there is to depict these transitions as if they occurred at the time of 
division. Therefore, it is necessary to consider four variants of cell division 
cycle, (1, 0, (1,2), (2,1), and (2,2), where (i, j) denotes cells born as type i 
that switched to type j. Figure la depicts the transitions in relation to the 
phases of cell cycle; Figure lb is a condensed graph. The growth and 
division model inside the cell cycle is depicted in Figure 2. 

It is assumed that the growth rate r is constant throughout the cell cycle 
and identical for both cell types. Daughter cells entering Gi at size y grow 
to a threshold size wi, which is a random variable with distribution density 
hi depending on cell type i. The support of hi is the closed interval 
[wti,wzi], the ends of which are the minimum and maximum threshold 
value, respectively. Then the cells begin DNA synthesis; that is, they enter 
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FIG. 1. The diagram depicting supramitotic cell cycle regulation and shift between two 

cell cycle varieties. (a) Cells switch from one cell cycle variety to the other between cell 
divisions, on the G, /S boundary. Therefore, to fully describe one cell division cycle, two 
indices are needed, referring to the cell type before and after the G,/S boundary is 
reached. Permitted transitions are from division cycle (i, j) to division cycle (j, k), with 
probabilities P,~. (b) A simplified graph. 

the S phase. Parameters of the model will be chosen in a way that excludes 
the possibility of a daughter cell being equal to or larger than the minimum 
threshold for DNA synthesis. In other words, it is guaranteed that the G, 
phase is longer than 0. 

After leaving G,, cells progress through phases S, G,, and M toward 
division. Total duration of these phases is assumed to be equal to T. During 
this time cells are still growing at rate r. The division is generally unequal. 
The size of a daughter cell derived from a mother cell of size x is a random 
variable y with distribution density f( *, x) conditional on x. The follow- 
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FIG. 2. The division cell cycle. Cell born as one of variety i at size y stays in G, for 

time (r, growing at rate r until it reaches the threshold size described by a random 

variable wI with distribution density h,. At this point it switches to variety j, with 
probability pi,. Then the cell starts synthesizing DNA and passes phases S, G,, and M in 

fiied time 7, growing in size at the same rate r. It divides at age w + 7; its size is then 

x = y + T((T + 7) = y + wi + r7. The size at birth of daughter cell 1 is a random variable y’ 

distributed with density f(. , x), conditional on x. The size of daughter 2 is x - y’. The 

densities of flux of the newborn and dividing (i, j) cells are denoted by ntj and mij, 

respectively. 

ing properties are satisfied: lgmf(y, x)dy = 1; f(y, x) = 0, y > x; and 

f(x-y,x)=f(y,x). 

The dynamics of the model is described in terms of distribution densities 
of cell flow rates through various points of the cell cycle. First, nzj(t, y) is 
the density of flow rate of the age 0 daughter cells into G, phase, for the 
type i cells that will switch to type j at the G, /S boundary (see Figure 2). 
The interpretation is that nij(t, y)dtdy is equal to the number of these 
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cells with sizes in interval (y, y + dy) that entered G, in time interval 
(t, t + dt). 

Analogously, mij(t, X) is the density of flow rate of mother cells through 
division. These are cells that started as type i daughters and now are type j. 
Finally, qij(t,x) is the flow rate density of daughter cells descending from 
mothers described above, before they are assigned to the G, phase of any 
of the four cell division cycle types. 

The relationship between nij and qij is described by the system of 
equations 

nij(f, Y) =Pij[41iCtT Y) + q2iCt, Y)I 3 i=1,2, (2.‘) 

according to the schemes in Figure 1. 
The principle of unequal division implies that the relationship between 

qij and mij is 

qij(f,y)=2~a~(Y,*)mij(r,x)~~ i= 1,2. (2.2) 

The distribution mij of the flow rate of mother cells can be found from 
the balance equation 

= (2.3) 

which expresses the fact that a portion of mother cells with sizes from 
(x, x + Ax) dividing in (t, t + At) passed the G, /S threshold size (w) 
exactly 7 time units earlier and that this portion was composed of cells that 
were born at various sizes 5 and consequently (W - 5)/r time units before 
they reached the threshold size. The maximum size of the type i daughter 
cell is assumed to be smaller than the lowest threshold wIr [hypothesis 
(H,); see Section 2.31. 

Dividing (2.3) by At Ax and letting At, Ax + 0 yields 

mij(t,x)=hi(x-~r)jw”n,,(t-~,~)d5. 
0 

(2.4) 

Replacing 5 by another variable, ~7 = (x - [j/r - 7, equal to the duration 
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of G, (see Figure 2) yields 
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Mij(t,X)=Yhj(X_7r)/ ““nij[t-(T+u),X-r(7+(T)]du. (2.5) 
0 

For simplicity we will use the matrix-vector notation 

I n11(t, Y> 
\ 

n(t, Y) = 
n,,(t, Y) 

n,,(t,y) ’ 

,n22(t,Y), 

(p,,h,(w) 0 Pllh2CW) O 

I P12hdW) 

H(w)= o 
0 PI2h2CW) 0 

PzA(w) 0 P2lh2CW) 

0 P224(W) 0 P22h2CW) 

. (2.6) 

, 

Combining equations (2.11, (2.2), and (2.9, we obtain, employing the above, 

4f,Y) =2rjurf(YJ)H( / x-m) n[t-(7+~),3C-r(7+O)]dadr, 

(2.7) 

which is equivalent to a system of four equations (integration bounds left 
out for brevity). 

In view of the fact that biologically there exist only two cell types, it 
seems intuitively true that system (2.7) should be reducible to two equa- 
tions. A reduced system can be obtained if cell flows through the size 
control point on the G, /S boundary are considered. 

The reduction is impossible when n is used to describe model dynamics. 
To show this, it is sufficient to try to combine flow rates, for example, 
nt = n,, + n2i, n2 = ni2 + n22, or n1 = n,, + n12, a2 = n21 + n22. We will use 
the four-dimensional model since it describes the population structure in 
full detail. 

The expression for the total number ~j(t) of the (i, jkype cells present 
at time t is derived in the following way. The density of cell flux into G,, 
including cells born with size 5 at time p that will enter S after reaching 
threshold size w, is equal to hi(whjj(p,~>. Population at time t includes 
cells born before t but not earlier than one cell cycle duration before t, 
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where the upper bound wti reflects the fact that only cells less than 
minimum threshold size are allowed into G, [hypothesis (H * ), Section 2.31. 

2.3. ASSUMPTIONS AND SUPPORT PROPERTY 

We proceed to specify the basic hypotheses on functions f and hi, which 
formalize the requirements of cell cycle dynamics. 

First, we require that the inequality of division be subject to constraints. 
Specifically, the daughter cells are not allowed to differ too much in size. 

(H,) f =L;,(R:); f 20; /o”f(y,x)dy=l; fb-y,x)=f(y,x); 
f(y, x) is nonnegative and there exists d, E (0, i> such that 

f(y, x) is positive if and only if y E (d,x,d,x), where 
d, = 1 -d,. 

Second, it is assumed that the threshold cell size required to cross the 
G, /S boundary is constrained to an interval. 

(H,) For i = 1 and i = 2, hi E L\,(Iw:), ],“hi(w)dw = 1; hi(W) is 

nonnegative and there exist twopositive numbers wli and Wzi, 
wli : wzi, such that hi(w) is positive if and only if w E 

Cwli, w2i>. 

In addition, the following technical hypothesis is imposed. 

Ws) wkl < wk2 9 k = 1,2, (2.9) 

W21’ W12) (2.10) 

wll > d,(w, + rT). (2.11) 

The meaning of the two first conditions in hypothesis (H,) is that cells 
of type 2 grow generally larger in G, than cells of type 1, and there is an 
overlap of threshold intervals of the two cell types. Condition (2.11) ensures 
that the model is self-consistent (see below). 

As demonstrated in Appendix 1, to continue the solution n past time t, 
the necessary and sufficient condition is the restriction of n to the parallel- 
ogram L@(t) defined in Equation (A1.3) in Appendix 1. We will adopt the 
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where 

n,(s, Y) = n(t + s, Y), t>o;(S,Y)Eqt)> (2.12) 

p(r)={(p.E):ptjf+(t-~I,I));~E[UI;UZI} (2.13) 

is a trapezoid including parallelogram B’(t). 
From derivations in Appendix 1, it follows that the lower integration 

bound with respect to u in Equation (2.7) is equal to [x - d,(w,, + YT)]/ 
r-7. It is nonnegative since x > wii + r~ and, by assumption (2.11), 

wii 2 d,(w,, + r7). 
Because of support properties of n, integration over u in Equation (2.7) 

can now, without complications, be carried out formally over R,. This 
simplifies many expressions. 

3. ASYNCHRONOUS EXPONENTIAL GROWTH 

Material of this section is of predominantly mathematical interest. Its 
importance for the data analysis in Section 4 stems from the fact that it is 
necessary to establish, in a mathematically rigorous way, the existence of 
asynchronous exponential growth and other fundamental relationships in 
our model. 

3.1. EXISTENCE OF SOLUTION AND DEFINITION 

AND COMPACTNESS OF SEMIGROUP 

The solution n(t, y) of Equation (2.7) can be uniquely extended by steps 
of length 8, starting from initial data on g(O). The support of solutions 
does not leave the strip Iw, X I. The solution exists in the L’ sense. 

Let 0i and 0z (0, > 0i > 0) be numbers such that (- 0z, - 0,)X I is the 
smallest rectangle containing &9(O). This means that 0, and 0z are, respec- 
tively, the smallest and largest delay of (2.7). 

The following lemma states that the solution of Equation (2.7) exists in 
the L’ sense (for proof, see Appendix 2). 

LEMMA 3.1 

Suppose that hypotheses (Hf), (H,), and (H,) are satisfied. If no: 
F(O) --) R”, belongs to X = L’(B(0);R4), then there exists a function n: 
C! + [wt, where Cl = &‘(O)U([w+ X I), n E L\,(Q); which uerifies (2.7) almost 
everywhere in a; and lim t -) o n, = no in X. The solution is unique in the sense 
of an equiualence class in L&&Cl). 
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This result also can be restated in a form more convenient for further 
considerations. 

COROLLARY 3. I 

The family of mappings {G(t), t > O}, 

G(t): X3n,+n,EX, 

is a strongly continuous semigroup of positive bounded linear operators on X. 

The next result requires additional technical hypotheses regarding distri- 
butions f and hi. 

(WI f E Go,. 

(HA) hi E LCc(‘+), i=1,2. 

LEMMA 3.2 

Under the hypotheses of Lemma 3.1 supplemented by (Hfl) and (H,‘), 
G(t) is compact from X into X for any t > 38,. 

Proof of Lemma 3.2 is included in Appendix 3. 

3.2. CHARACTERISTIC EQUATION AND THE DOMINATING EIGENKALUE 

In this section, we derive and analyze the characteristic equation, which 
enables computation of the spectral values of the semigroup of operators 
G(t). We also prove the existence of a dominating real eigenvalue. 

The operators G(t) are compact for t > 38,. This implies [12, theorem 
11.4.11 that the spectrum of G(t) is a pure point spectrum (except possibly 
the element (0)) composed of elements of finite multiplicity. The spectral 
mapping theorem for eventually compact semigroups [24, theorem A.III.6.61 
implies also that all the nonzero eigenvalues are of the form eht, where A 
are the eigenvalues of the infinitesimal generator A of the semigroup (A 
exists because {G(t), t z 0) is a strongly continuous semigroup). Since 
{G(t), t > 0) is also a translation semigroup [15], to each eigenvalue there 
corresponds an eigenvector c* E X of the form v*(p, 5) = e”Pp(&>, (p, 5) E 

e(o). 
The eigenvalue problem for G(t) may be represented in the form 

eA’vA - G( t)v, = 0, (3.1) 

which means that e”‘v,(O, y) = e”‘k(y) is a solution of the evolution equa- 
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tion (2.7) defining the semigroup; that is, 

e*tpu(y) =2rjeqf(y,~)~(~ - ~T)]~~~[~-(~+~$L[x - r(fl +~)ldah. 
0 

(3.2) 

We multiply (3.2) by e-** and replace variable v by u = x - r((+ + 7). The 
integration bounds for u are from --m to x - rr. However, the support of 
Z.L is contained in [a,, a,]. Therefore, the lower bound can be set at 0. Also, 
if x - r7 I wrr, then Z-Z(x - r-7) = 0; if x - r-r > wl,, then for u > x - r-7, 

p(u)= 0 since by (2.11) wrr > u2. Therefore, the upper bound can be 
extended to 00. Eventually, 

@u(y) =Zjaqf(y,x)H(x - r~)e-A(x~‘)dxjme”(u~r~~(~)drc. (3.3) 
0 

Multiplying (3.3) by e”(y/r) and integrating with respect to y, we obtain 

(Id-B)M= Z~-210mloaf(y,~)H(x-r7)e’“/“Y-*“drdy]~ 
[ 

= 0, (3.4) 

where M is a 4-vector. This linear algebraic system has a nontrivial solution 
if and only if the determinant of the matrix (Id - B) in (3.4) is equal to 0, 

det( Id - B) = 0. (3.5) 

Let us remark that M # 0, since otherwise (3.3) would imply p = 0. 
Condition (3.5) is equivalent to 

where 

1112(1- P11- P22) + Pllzl+ P2212 = 1, (3.6) 

Zi= Z,(A) =2kmkmf(y,x)h,(w -r7)e@~rXY--x)dydy, i = 1,2. (3.7) 

Equation (3.6) is the characteristic equation of our model. Its roots A, 
particularly the dominating simple positive real root, provide leading terms 
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in the asymptotic behavior of the model. The rigorous statement is con- 
tained in the lemma below (proof in Appendix 4). 

LEMM4 3.3 

Under hypotheses of Lemma 3.2: 

(i) The spectrum of G(t), for t > 0, is a pure point spectrum, consisting of 

isolated eigenvalues of finite multiplicity. 
(ii) The eigenualue exp(h*t) with largest absolute value is real for all t 

(i.e., A* is real), and there exists no other spectral value with absolute value 

exp(h*t). 
(iii) The number A* is the larger of the at most two real roots of character- 

istic equation (3.6). 

(iv) The corresponding eigenvector v*(p, 5) = p*([)exp(A*p), v* E X, is a 
4-vector with all the components positive. 

(v) The function u* is obtained from 

p*(y) = 
] 
2imf( y,x)H(x - r~)ePACX/“dr]M, 

where M is a positive 4-vector that satisfies (Id - B)M = 0. 

3.3. ASIWPTOTIC BEHAVIOR 

Throughout this section, we drop the asterisk from A*; it is understood 
that A is the eigenvalue of the generator A with strictly dominating real 
part, and exp(At) is the eigenvalue of the semigroup with strictly dominat- 
ing absolute value. 

To state the asymptotic result about the exponential growth of the 
semigroup, it is sufficient to decompose the state space into the direct sum 
of two subspaces, the first of which is associated with the dominating 
eigenvalue. Trajectories on this subspace are pure exponentials Cexp(At). 
On the complementary subspace, all the trajectories grow more slowly than 
exp(At). Therefore, each trajectory contains the component Cexp(At), 
eventually “outgrowing” the remaining part of solution. 

The decomposition is usually carried out by selecting as the first space 
the generalized eigenspace of the dominating eigenvalue. This construction 
is feasible if the generalized eigenspace is one-dimensional. The details are 
presented below. 

The generalized eigenspace is defined by 
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We know from the preceding section that dimKer(A - AZd) = 1. If there 
exists k z 1 such that 

then Nh = Ker[(A - AZLZ)~]. In our case, where A is the dominating eigen- 
value of A, characterized in Lemma 3.3, this occurs with k = 1. 

LEMM4 3.4 

Under hypotheses of Lemma 3.2, Nh = Ker(A - AZd). 

Proof of Lemma 3.4 is included in Appendix 5. The immediate conse- 
quence of the lemma is that NA is one-dimensional. 

We proceed toward characterizing the asymptotic behavior of G(t). 
Since G(t) is compact (for t > 30,), its spectrum is pure point spectrum, 
composed of poles of finite order, and space X is decomposed into the 
direct sum of the generalized eigenspace and the generalized range of 
[e*‘Zd - G(t)], 

X=N,@R,, (3.9) 

both of which are invariant with respect to G(t), 

G( t>Rh = R,, G(t)N,cN,. (3.10) 

Therefore, 

n, = G( t)no = GR( t) 0 IIRno + GN(t)o IINn,, (3.11) 

where G, and G, are restrictions of G to R, and N,, respectively, and IIR 
and II, are projections on these components of the direct sum. 

For V~ E N,, the restricted semigroup satisfies G,(t)v, = e**v,,. Also, 
II,,+, = (v{,n,>v,, where vi is the eigenvector of the adjoint operator G’, 
corresponding to exp(At), chosen so that ( v;(,v~) = 1. The eigenvector 
vi E L”(B(O)) is nonnegative a.e. on e(O). Therefore, 

(vi, no> = // vXn0 
G(O) 

is positive whenever no > 0. 
The spectral radius of the restriction G,(t) is r[GR(t)]= exp(w,t), 

where wR is the growth bound of the restricted semigroup (Nagel 
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[24, proposition A.III.l.l]), 

This yields wa < A, and consequently, 

GR( t) 0 IIRn, = o( e*‘). 

We summarize the above in a theorem. 

THEOREM 3.1 

Suppose that hypotheses (H,), (H,), (H,), (H;), and (Hh) are satisfied. 
Then, for any initial data n, > 0, the semigroup exhibits asymptotic exponen- 
tial growth; that is, 

G( t)n, = C,,,,uAeAf + o( ehr). (3.12) 

A is the largest real root of the characteristic equation (3.6). The positive 

eigenvector vA is equal to vA(p, 5) = eAPp(5>, where ~(5) is computed as in 
Lemma 3.3, and the constant C,(, is positive if no > 0. 

4. MODEL VERSUS DATA 

4.1. DERIVATION OF THE PEDIGREE STATISTICS 

We derive some of the basic statistical characteristics of cell population 
evolving according to the rules of our mathematical model. They will be 
compared to observations of Sennerstam [26] and Sennerstam and 
Stromberg [28]. 

The sample pedigree is presented in Figure 3. It corresponds to the 
experimental situation in which a cell (called the root cell of the clone or of 
the pedigree) is sampled at random, close to the time of its division, from 
an exponentially growing population and then its progeny and possibly the 
progeny of its progeny are recorded. Cells in the pedigree are indexed by 
multiindices u = (O), (0, O), (0, l), (O,O, O), (O,O, l), (0, l,O), (0, 1, l), . . . . The 
number of elements in u is equal to the generation number, and the cell 
number in the ith generation (from 0 to 2’-’ - 1) is coded in the binary 
system by (T (as in Figure 3). The generation time, birthsize, G, /S 
threshold size, and size at division of the cell (+ are denoted, respectively, 
by T,, x,, w,, and y,. The type of the root cell of the pedigree is denoted 
(j,i,), while for all the other cells it is either (i,, i(,,,,) or (i,, i,,,,,), 
depending on whether the cell’s index is (a, 0) or (a, 1). The indices j and 

i, are random variables. Whenever it does not cause confusion, the 
parentheses will be dropped in subscripts; for example, w~O1O) will be 
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FIG. 3. The sample pedigree. The root cell of the pedigree is selected at random from 

the exponentially growing population. Cells in the pedigree are indexed by multiindices 

c = (O),(O, O),(O, l),(O, O,O),(O, 0, l),(O, l,O), (0, 1,1X The generation time, birth size, G, /S 

threshold size, size at division, and the variety of the growth cycle of the cell (T are 

denoted, respectively, by T,, x,, wV, y,, and i,. Unequal division of cell (T is repre- 

sented by multiplication by a random variable u,. 

written wai,,. The distributions of ~(~,a) and wCg,ij are equal to hi_. The 
generation time T(,, of the root cell cannot be measured, but its size at 
division can. For all the progeny cells, generation times and sizes at division 
can be measured. 

The following assumptions are accepted to facilitate the analysis of the 
model. 

(1) Unequal division of cell (T is represented by multiplication by a 
random variable u,. The distribution of u, is denoted by F,. It has support 
on [0, l] and is symmetric; that is, 

F,(O) = 0, F,(l) = 1, F,(u)=l-F,(l-u). 

[This yields F(y, x) = F,,(Y /x).1 Formah 

Y((T,O) = u,x,, Y(o,l) = Cl- %)-%7 

where u, is independent of x,. 
(2) The random threshold size for a cell of type i is equal to wi = wli + w, 

where the distribution of random variable w is independent of the birth 
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size of the cell and of the cell type. The support of w is [O,W,~ - wul. It is 
assumed that w2t - wtt = wZ2 - w,*. 

Intuitively, assumption 1 means that the inequality of cell division is 
proportional to its size. Assumption 2 means that the spread of the G, /S 
threshold is always the same, whereas its mean depends on the cell type. 

The (Y and p Curves. If the distribution densities h, and h, are both 
unimodal with sufficiently distant modes, then by Equation (2.5) the distri- 
bution of cell sizes at mitosis is bimodal. As for the p curves, let us consider 
the differences between lifetimes of sister and first cousin cells in the 
pedigree of Figure 3, 

Too - To, = ; [( woo - wol) - (fi + r7)(2u0 - l)] , (4.1) 

Tom - Tolo = r ‘k woo0 - WOlO ) - r7(um - %I) - (bouoo - ~olum)l~ 

(4.2) 

The reasons the /3, curve should be unimodal and the & curve bimodal 
become apparent when expressions (4.1) and (4.2) are compared assuming 
equal division, that is, uo, uDo, uo, = i. Then, 

The difference woo - wol is unimodal because the two sister cells always 
have the same minimum thresholds wii,. Consequently, the distribution of 
Too - To, and the pi curve are unimodal also. On the other hand, 

T - Toio = ; ( “‘000 
I 

1 
000 - WOlO> - +oo - WOl> 1 

includes the term woo0 - woio. This latter has a bimodal distribution be- 
cause the minimum thresholds of two first cousins are generally different. 
Consequently, the distribution of Tooa - Tolo and the & curve are bimodal 
also. The & curve, which is based on the distribution of Toooo - TollO, 
contains contributions from one unimodal and two bimodal terms, and so it 
is not likely to have a distinctive bimodality. If unequal division is assumed, 
the analysis is complicated, but conclusions are similar. 

Sister-Sister, Cousin -Cousin, and Mother -Daughter Correlations. 
Based on the pedigree of Figure 3 and the simplifying assumptions 1 and 2 
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above, the following expressions are obtained: 

Co~(T,,,,~T,l)=~(n,u2(~ll-~l2)2-lila2~~(~l)-~(~2)l(~l-~*~ 

-D2(u)E(lt+r~)2+[:-DZ(U)]g2(~)). 
(4.3) 

Cov(T,,T,,,)=~ (b,-b,)-$(w,,-w,,) I I 
2 

> (4.4) 

CWo,,.%,,,)=~ (wI,-w12)(bl-b2)-~(w~~-w,2)’ 
( [ lff2 1 

-5152 ~[E(i,)-E(~2)l(a,--a,) 
( 

-:[E(I;,)-E(i,)l(b,-b,)) 

- ;u’w} 9 (4.5) 

~2Go) = -$ (v2h - w1212- M52[WG) - W2)l(b, - b2) 

+D2(u)E(Q+r~)2+[2D2(u)+:]D2($)+D”(o)) 

(4.6) 

~2(%,J = 5 
i 

YIYZ(WII - w12j2- ~2(w11- w12)(b, - b2) 

+D~(0)+[2D~(U)+~][D~(W)+C(1”2(w~I-W12)2] 

+ L+)(a,w,, + c9WQ + r7)2 
1 

, (4.7) 

where D2(u) denotes the identical variances of unequal division multipliers 
U my and 

ai =SlPli + 32P2i, Yi = alPli + (y2P2it 

bi = Pilwll+ Pi2wl2 7 ai = Pilb, + Pi2b2 3 

where i = 1,2. The coefficients of correlation of the sister-sister, 
cousin-cousin, and mother-daughter generation times can be now com- 
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TABLE 1 

Values of Parameters of the Model of the PCC3 Cells” 

Parameter Symbol 

ESS b parameters 
Probability root cell is type 1 51 
Probability root cell is type 2 52 

ESS G, ,/S threshold size E(G) 
ESS Variance of the G, /S threshold 02(G) 

ESS Cell size at division HO + r7) 

Time parameters 
Minimum time in G, rc, Ill%” 
TimeinS+G,+M 

Mean cell cycle time, type 1 EC,) 
Mean cell cycle time, type 2 E(t,) 
Mean cell cycle time, all cells E(t) 
Growth and unequal dicision parameters 
Growth rate r 

Lower G, /S threshold size, type 1 WII 
Lower G, /S threshold size, type 2 WI2 

Variance of unequal division D’(U) 

“Details of parameter estimation as in Section 4.3. 
bESS = exponential steady state. 
‘rsu = relative size unit. 

Value (units) 

0.518 

0.482 

9.87 (r&J 

1.8 (rsu*) 

14.08 (rsu) 

3 (h) 

6.9 (h) 

10.91 (h) 

14.31 (h) 

12.55 (h) 

0.61 (rsu/h) 

8.87 (rsu) 

10.94 (rsu) 

0.00036 

puted from 

4.2. DATA ANALYSIS 

We have carried out numerical studies of the correlation coefficients 

(4.8H4.10) based on data in Sennerstam [26] and Sennerstam and 
Striimberg [28]. Table 1 is a summary of values of parameters of the model 
employed in the computations. 

Details of Parameter Estimation. Figure 4 in [28] shows distributions of 
recorded 144 generation times of type 1 cells and 134 generation times of 
type 2 cells. From these histograms, we compute the mean cell cycle time 
of type 1, E(t,) = 10.91 (h), and of type 2, E(t,) = 14.31 (h). Then we accept 
the exponential steady-state (ESS) values of the probabiiity that the root 
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cell is type 1, @r = 144/(144 + 134) = 0.518, and type 2, fiz = 0.482. From 
this we calculate the mean ESS cell cycle time, E(t) = C,E(t,)+ fi2E(t2) = 
12.55 (h). Based on computation in Figure 3b of [26], we accept the growth 
rate r = 0.61 relative size units (rsu) per hour. We assume that the mini- 
mum duration of the G, phase for the type 1 cells is to, min = 3 (h). This last 
parameter is canceled out in the eventual calculations of the correlation 
coefficients and is introduced only for completeness. 

The mean cell size at division is taken from Table 1 of [26], E(G + 1~) = 
14.08 rsu. Then we compute the minimum threshold sizes in type 1 and 2 

cells, 

W 11 - - E( G + r7)/2+ ~to, min = 8.87 rsu, 

W 12 = Wll +r[E(t,)-E(tl)] =10.94h. 

We assume that the mean ESS threshold sizes are not very different, and 
we obtain the ESS mean G, /S threshold size, 

E( KJ) = $,E( r?t) + &E( G2) = 9.87 rsu. 

To obtain an estimate of the variance of 6, we extrapolate from the value 
of size variance in early G, provided in Table 1 of [26], 0.956*. This yields 

D’(@) = 0.956* ‘(‘t) *=I grsU2 
E(ti++r7)/2 1 * * 

The time in phases S, G,, and M is computed from the expression 

Finally, the variance of the unequal division multipliers U, is computed 
from the equation 

where 

D*(x) + E( y)*/4 
w’)=$f= D2(Y)+E(y)2 = 

0.956* + 14.0g2/4 = o ooo36 

1.833* +14.0g2 ’ ’ 

The principal issue is now to relate the ESS values of the probabilities 
that root cell is type 1 or 2, fir and j2, to the transition probabilities pii. 
Since no details about distributions hi and of the population growth rate 
are known, we can obtain only very crude estimates. Therefore, we carry 
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out simplified computations, by assuming first that h, = h,. This implies 
that the only real solution A of the characteristic equation (3.8) satisfies 
Z(A) = 1. Assuming equal division and deterministic G, /S threshold yields 

by (3.9), 

Z(A) = Zexp( - AC), 

where c is a positive constant. 
Let us assume, as before, that h, = hz and f( y, x) “ = ” 6(y - x /2) 

(Dirac’s delta “function”). If we additionally assume that A is small enough 

that M g /p, then Equation (3.4) implies 

I 4’ h, 0 Pll 0 ’ ‘MI,’ 
Ml, PI2 0 P12 0 Ml2 

= 

M21 0 P21 0 P21 M21 

\ hi,,, \ 0 P22 0 P22/ \M22) 

which yields 

MI, = M21) 

Ml2 
MI, + MI, = pz 3 

1 
M22+M2,=$ 

If it is assumed, as we did here, that the generation times of cells of both 
types are similar, then the proportions of type 1 and type 2 among mothers 
and daughters are also similar. Therefore, 

$1 z 

MI, + MI, P21 

&jMij = pzl + p12 ’ 

Further computations are organized 
selected from the interval [O, 11. Then 

jj=l-jla p12 
p21+ PI2 . 

as follows. A value of 
~~~=l-p,~ and, from 

pII is 

(4.11), 
p21 = p12j1 /&. Then pz2 = l- p2i. Together with the parameter esti- 
mates discussed above, this is sufficient to compute correlation coefficients 
from expressions (4.3)-(4.10). 

Results of Computations. Numerical values of the correlation coeffi- 
cients are collected in Table 2. They have been computed for values of 
parameter pI1 ranging from 0.05 to 0.99. This parameter, the probability 
that the type 1 cell does not switch to type 2, is a measure of the “memory” 
present in the system. 

The values of the sister-sister correlation coefficient stay positive and 
high for the entire range. This reflects the fact that in the model the sister 
cells have the variable part of their cell cycle belonging to the same type. 
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TABLE 2 

Results of the Computations of the Correlation Coefficients of Cell Generation Times 

Correlation coefficients of generation times 

Pll Sister-sister Cousin-cousin Mother-daughter 

0.1 0.94 0.86 - 0.86 

0.2 0.94 0.68 - 0.75 

0.3 0.93 0.51 -0.63 

0.4 0.92 0.36 -0.51 

0.5 0.91 0.21 - 0.38 

0.6 0.90 0.09 - 0.25 

0.7 0.88 0.02 -0.10 

0.8 0.85 0.01 0.07 

0.9 0.81 0.16 0.29 

0.925 0.79 0.25 0.36 

0.95 0.71 0.35 0.44 

0.975 0.75 0.54 0.53 

0.99 0.73 0.68 0.55 

The slow drift of this coefficient is caused by the fact that change in p,i is 
accompanied by a change in pz2, forced by accepting fixed values of fit and 
j2 computed from the data. 

Mother-daughter correlations increase from negative values close to - 1 
when p,t is low to positive values exceeding 0.5 when pii is high. This 
trend is as expected, since high pt, implies that more frequently mother 
and daughter are of the same type. Cousin-cousin correlations start from 
high positive values when pii is low, descend to a minimum for p,i = 0.75, 
and then climb to a high positive value when pii is high. This behavior is 
caused by the fact that pl1 low implies high probability of cell type being 
the same each second generation, whereas if p,, is high each generation is 
likely to be of the same type; for cousin cells high correlation is expected in 
both cases. 

Let us note that the values of correlations computed by Sennerstam [26] 
from the PCC3 data are in approximate quantitative agreement with 
correlations in the lowest rows of Table 2, for high values of pii. We return 
to this matter in the next section. 

5. DISCUSSION 

Size control has been considered repeatedly in different variants in the 
biological literature (cf. Fantes [14], Hola [17], Hola and Riley [18], Shields 
et al. [29], Tyson [30], and references therein) for cells ranging from 
bacteria to yeasts to mammalian cells in culture. A comprehensive paper by 
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Webb [32] provides mathematical references. Two principal variants have 
been considered, one including regulation of time in G,, and the other 
regulation of the growth rate in G, [17, 181. 

The concept of two or more alternating or successive cell cycles has been 
considered in the literature on unicellular organisms. An interesting exam- 
ple is the two-cell-type model of the population dynamics of the conical 
mutant of Tetruhymena thermophilu in [22]. It is characteristic for the 
conical mutant that daughter cells differ significantly in size. At the 
temperature of 24”C, each dividing cell gives rise to the larger anterior 
proter (P) cell and to the smaller posterior opiste (0) cell. The generation 
times of the P and 0 cells are equal to T, = 3.03 h and T, = 3.88 h. The 
proportions of P and 0 cells in the proliferating population remain con- 
stant. One explanation for this is that after division the P and 0 cells grow 
to an almost identical size and then each divides into another pair of P and 
0 cells. We omit further details, noting only the same general type of 
interplay between size control (not supramitotic in this case) and cell type 
shift as in the present model. 

The unequal division models also have a long history, but their popular- 
ity seemed to be rather low, probably because of the early finding (see the 
review by Tyson [30]) that in bacteria the role of unequal division is 
negligible. More recently, precise experiments by Darzynkiewicz et al. 
[9, lo], followed by construction of a mathematical model [2, 211, demon- 
strated that unequal division is a major source of heterogeneity in Chinese 
hamster ovary cells in culture. Also, a major contribution of unequal 
division to the heterogeneity of cell counts in small colonies of cultured 
mouse fibroblasts (NIH 3T3 cells) has been recently discovered [20]. 

With respect to the PCC3 embryonal carcinoma cells considered in the 
present paper, the concepts of supramitotic size regulation, random shift 
between two cell types, and unequal division are due to Sennerstam [26] 
and Sennerstam and StrGmberg [27, 281. Differences in interpretation of 
the experimental data exist between these original communications and our 
present contribution. First, the assumptions of our model imply that the 
cell variety with higher size threshold has a longer cell cycle, opposite to 
what was originally assumed on the basis of indirect evidence. Second, our 
model does not require different growth rates for the two varieties of cells, 
which was originally postulated. The reason is that, in our opinion, only the 
existence of two different size thresholds can explain the marked bimodal- 
ity in size distribution. 

The interesting feature of the PCC3 cells are the bimodalities observed 
in the LY and & curves. Here, our explanation (Section 4.1) is in principle 
the same as that provided by Sennerstam and Striimberg [28]. 

The major point concerns the pedigree statistics. They do not seem to 
have ever been calculated before in a model of this complexity (cf. deriva- 
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tions in Cowan and Staudte [81). The experimental data imply the 
sister-sister correlation of generation times equal to 0.95, the cousin-cousin 
correlation equal to 0.77, and the mother-daughter correlation equal to 
0.41. Our numerical studies (Section 4.3) indicate that the present model 
can predict similar values only if the shift between cell types is a relatively 
infrequent event, that is, if the value of probability pii is high. 

The model discussed in this paper is of independent mathematical 
interest. The theory of semigroups of positive operators is as important to 
population models with internal structure [31] as ordinary differential 
equations were for the earlier models. With proper definition of the state 
space, various types of structures present in the population can be accom- 
modated [23]. Since the key to basic properties of the semigroups is their 
strong continuity [13], the semigroup description and analysis apply most 
naturally to semigroups based on partial or retarded differential equations. 
However, it can also be successfully applied to certain Volterra equations 
and to other equations intermediate between integral and difference equa- 
tions. Examples of these latter, stemming from cell population models, can 
be found in our previous works [2-4, lo]. 

In the present paper we carry out the analysis of a new variant of a cell 
cycle dynamics model based on the assumptions of supramitotic size con- 
trol, random shift between two types of cells, and unequal division of cells 
in mitosis. The state space for the semigroup describing dynamics of this 
model is L’(&(0);R4), where B(O) is a trapezoidal region in R*. The 
semigroup is strongly continuous, positive, and eventually compact. It also 
has support properties that are similar to irreducibility (cf. [24]) and yield 
analogous results: the existence of a dominating eigenvalue, which yields 
exponential growth in the limit. The fortunate feature of our semigroup is 
that the eigenvalues are obtained from a characteristic equation. Therefore, 
it is possible to find a relatively simple result for the mathematical object 
with a rich internal structure. 

APPENDIX 1. THE SUPPORT PROPERTY 

Support hypotheses imposed on hi and f imply that each solution n of 
Equation (2.7) has the support property 

wpn(~,-)c[4( ~~i+r~),dz(w~z+r~)] =[ai,aZ]=Z. (Al.l) 

Indeed, on the basis of (2.4) and hypothesis (Hi,), 

s”PPmij(tf’) c[ wli + r7,w2i + t-71. 

The support of qij(t, .) is then [d,(wu + YT),d2(~2i + r-T)] because by 
Equation (2.2) it is the set of all y such that f(y, x) # 0 for x E supp mij(t, .>. 
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2 

FIG. 4. Explanation of the state space of the semigroup of solutions of the model. 

By hypothesis (H,) it is necessary that d,x I y I d,x, and the last assertion 
follows. Finally, from Equation (2.1), we see that 

2 

s”PPnij(tf’)= U s”PPqkj(t,‘)3 
k=l 

which yields (Al.l). 
Inspection of (2.7) proves that to compute n(t,, y) it is necessary to 

know the restriction of n to a subset of (- ~0, t,) X R,. We will characterize 
this subset. Let us select y E I. In Equation (2.71, integration with respect 
to x is carried out over interval x ~[y/d~, y/d,1 [see (H,)l. Integration 
with respect to u has to lead to x - r(a + T> E I; hence u varies over 

Therefore, the pair (t, -(CT + T), x - r(a + 7)) sweeps the following Paral- 

lelogram &to) (see Figure 4, 

(Al .2) 
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and when y E I, it sweeps a larger parallelogram, 

To formally construct a solution of Equation (2.7) after time to, it is 
necessary to know it on the set @to). 

APPENDIX 2. EXISTENCE OF SOLUTIONS 
(PROOF OF LEMMA 3.1) 

Let 1.1 denote the max norm in R” or, depending on the context, the 
matching matrix norm in [w”‘. Integrating (2.7), we obtain 

where step 1 follows by /gmf(y, x)dy = 1, step 2 by change of variables, 
p = t -CT + CT), 5 = x - ~(7 + a), and by (A1.3), and step 3 by the definition 
of 8(O). Step 4 is based on the estimate 

/ IHI = max(p,,,p,,,P*L,P**)l(hl+ h2) 2 2. 

The result can be restated as follows: 

Il~llt~~~o,e,)xI;R 4 < 411qJLy67(0)$84). ) - (A2.1) 

We will accept L1(E(0);lR4) as the basic space and call it X. Equation 
(A2.1) yields 

llntllx I Slln~llx, t E (o,e,>. (A2.2) 
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Existence of solutions is obtained by iteration of the a priori estimate 
(A2.2). Uniqueness and nonnegativity are obvious. Continuity of n, at 
t = O+ is implied by continuity of translations in L’. 

APPENDIX 3. COMPACTNESS OF THE SEMIGROUP 
(PROOF OF LEMMA 3.2) 

Under (Hi) and (HL), 

Let us consider (t, y) E (28,,28, + 0,)X Z and iterate Equation (2.7) to 
obtain 

n(t, y) = 4r2/llJf( Y, x)H(x - rr)f[ x - r(7 + a), Xi] H(x, - rr) 

Xn[t-(27+~+~*),X1-r(T+u1)]d~ldr1dadr 

= 
Il g(t,y;p,5)n(p,5)dpd5r(Kn)(t,y), 

where step 2 follows by the change of variables (:-,,x,> + (p,[), p = t - 
(27 + u + a,), 5 = xi - r(r + (pi); and g is an L” matrix function. Consider- 
ing the supports of f, H, and n, it is obtained that K is a mapping from 
L”((O,28,)X Z,[w4) into L1((2f3,,28, +0,)X Z,[w4). 

K is compact as being defined by the integrable kernel g. Indeed, g can 
be approximated in the norm of L’ by continuous functions with compact 
support. The corresponding operators approximate K in the operator norm 
from L” into L’. By the Ascoli theorem, they are compact as operators 
from L” into C and consequently as operators from L” into L’. Therefore, 
K is compact as a norm limit of compact operators. 

APPENDIX 4. SPECTRUM OF THE SEMIGROUP 
(PROOF OF LEMMA 3.3) 

Let us consider real roots of the characteristic equation (3.6). First, since 
suppf(., x) c [d,x, d2x], the integration in (3.3) extends only over a region 
where y - x < 0, and consequently I, and Z2 are strictly decreasing in A, 
for A real. Also, 

lim Z,(A) = 0, lim 
h+m A+-cc 

Zi( A) = m. 

If 1 - pii - p2z > 0, then the left-hand side of (3.6) is strictly increasing 
in A, for A real. Therefore, there exists a single real root A*. 
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FIG. 5. Graphical interpretation of the real solutions of the characteristic equation. 

The case 1- pI1 - p22 < 0 is more complicated, since the left-hand side 
of (3.6) is no longer monotonous. Let us consider the points (It, Z2) in the 
positive quadrant of the plane, which satisfy (3.6) understood as an alge- 
braic equation in I, and I,. As depicted in Figure 5, these points are 
situated on two hyperbolic branches A and B. The curve C, the collection 
of points (Z,(h), Z,(A)), A E R, intersects each of A and B in exactly one 
point. So, there exist exactly two real roots of (3.6) in this case, and we call 
A* the greater of them, corresponding to the intersection of curves A 
and C. 

Existence of A* implies, among others, that the spectral radius of the 
semigroup operator G(t) is positive. Since G(t) is a positive and compact 
(for t > 36,) operator, the Krein-Rutman theorem (Deimling [ll, theorem 
6.19.21) asserts that there exists a real eigenvalue equal to the spectral 
radius of G(t). This eigenvalue has to be equal to exp(A*t). By the same 
theorem, it has a positive eigenvector exp(A*s)w*(u) [which is also evident 
from (3.3)1. 

Since exp(A*t) is also the spectral radius of G(t), no eigenvalue exp(At) 
such that lexp(At)] > exp(A*t) may exist. We will also demonstrate that 
eigenvalues of G(t) of the form exp[(A* + ifi>t], /3 # 0, do not exist. 
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We will consider Equation (3.4). Let us denote 

B=B(‘) = [Bjk]j,k=r,2,3,4’ 

M=“(h) =co1(Mj)j=1,2,3,4' 

B* = B(h*), M* = M(h*); 
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also, 

IBI = [ IBjkl] and IMI = col( IMjl). 

For vectors and matrices, the relation > is understood componentwise, > 
means that the inequality is strict for at least one component, and Z+ that 
it is strict for all components. 

We have 

B*M*= M*, (A4.1) 

where M* Z-S- 0. Let us suppose that exp[(A* + iPIt], /3 f 0, is an eigenvalue. 
This implies 

B(A*+ip)M(A*+iP)=M(A*+iP) (A4.2) 

and 

IB(A*+ip)jIM(A*+i/?)I>IM(A*+i/3)(. (A4.3) 

The definition of B(h) [see (3.4)1 yields 

IB(h*+iP))<B* 

From (A4.3) and (A4.4), it follows that 

(A4.4) 

(A4.5) 

Let us suppose that this inequality is strict, 

B*IM(A*+i/?)I>[M(A*+iP)I. (A4.6) 

The matrix B* has a left eigenvector N* >> 0 corresponding to its eigen- 
value 1, such that N*B* = N*. Multiplying (A4.6) by N*, we obtain 

N*B*IM(A*+iP)(> N*lM(A*+ip)(. (A4.7) 

This implies N*IM(A* + ip>l > N*lM(A* + ipI, a contradiction. Therefore, 

B*(M(A* + iP)l = IM(A* + iP)l, 
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that is, M(h* + i/3> can be chosen so that 

IM(h*+iP)I=M*. (A4.8) 

This and (A4.3) imply 

IB(A*+ip)IM*~M*. (A4.9) 

BY (A4.4), 

IB(A*+i/?)IM*<B*M*=M*. (A4.10) 

Comparing (A4.9) and (A4.10), we obtain a contradiction, disproving the 
existence of eigenvalue exp[(A* + iP>t]. 

The other assertions follow. 

APPENDIX 5. DIMENSION OF THE GENERALIZED EIGENSPACE 
(PROOF 0~ LEMMA 3.4) 

As indicated in the beginning of Section 3.3, we drop the asterisk from 
A*. It is understood that A is the eigenvalue of the generator A with strictly 
dominating real part and exp(At) is the eigenvalue of the semigroup with 
strictly dominating absolute value. 

It is sufficient to demonstrate that the equation (A - AZd)‘z = 0 has the 
same solution as the equation (A - AZd)z = 0. First, let us note that 
because the semigroup is a translation semigroup, then z E Ker(A - AW2 
yields the following expression for z: 

z(e,x)=e~e[u,(x)+eul(x)], (0,x) E qq, 

and since z E O(A*), we have ~(0, x) = @(z)(x) and 

[(A-AZd)z](O,x)=@[(A-AZd)z](x), 

where Q, is the right-hand-side operator in Equation (2.7) defining the 
translation semigroup at t = 0, that is, 

@(z>(x) = ~pw)~w4-( T+(T),(-r(~+c)]dd5, (x45.1) 

where K(x, 5) = 2f(x, .$)Z%$ - w). COnSequentlY, 

k)(x) = Q(z), u*(x) = a+, 8 P). (A5.2) 

Therefore, the existence of z E Ker[(A - AZd>2] is equivalent to the exis- 
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tence of uc and ur in L’(a,,a,) such that 
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uI(x) = @(u, Be”‘), uo(x)=~(uo~eeAe)+~(u,sBeAB). (*) 

For brevity, we denote T,u = @(u 0 e”‘> and observe that 

@(u c3 eeAe) = $1;~. 

We observe that 

(r,u)(x) =lo;;((x.E)exp( - +5)&f-f(u), (‘Qj.3) 

where the operator 2’: L’((a,, a,), rW4) 4 [w4 is defined as 

_Z?U = jn’exp( +w)u(cd) dw. 
al 

The 4 x 4 matrix B defined in (3.4) may be rewritten as 

We have the expression 

_&‘QI-,=BJ, (A5.4) 

which will allow us to reduce Equations (*) above to an equation in Iw4. 
Applying operator _.P to both sides of Equations ( * ), we obtain 

-A, = B_.h,, _&=B_&+_+&u,). (**) 

From the first equation of (* *> we conclude that 1 is an eigenvalue of B 
associated with a positive right eigenvector (since Ju, > 0). Therefore, 
there also exists a positive left eigenvector e* of B corresponding to 
eigenvalue 1, such that e*_Yul > 0. Multiplication of the second equation 
of (* *) on the left by e* yields 

e*P(&T,u,)=O. (M.5) 
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We demonstrate that this is a contradiction. Indeed, let us note that 
since H(& - ~7) = 0 if .$ - r7 5 wI1, 

(r,u)(x) =lwqI+TTK(x,&)exp( - $$)d5J’(u). (A5.6) 

Therefore, 

I - rTrAu CM.71 

if u > 0. Consequently, we obtain 

e*~(~T,ul)~-r7f*/‘[r,(ul)]=-r7e*J’u,<O, 

which is a contradiction. The lemma is proved. 

Part of this research was carried out in November 1989 when both authors 
were visiting the Department of Mathematics of the Brigham Young University 
in Provo, Utah. 
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