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ABSTRACT 

We present our point of view of the controversy regarding complex dynamics of 
population models. We analyze two nonlinear models of population dynamics which 
may be used to model the same population, but which display very different 
dynamics. We prove that Model 1 stays globally asymptotically stable, while Model 2 
is known to display instability, oscillations, and apparent period doubting leading to 
chaos. We also indicate situations in which both models are equivalent. We employ 
these results to argue that the “complex” behavior of some models may be due to 
apparently small differences in assumptions. 

1. INTRODUCTION 

In recent years there was a lot of interest in nonlinear models of 
population dynamics describing various regulatory phenomena leading 
to self-limiting growth. Examples of applications include ecology, de- 
mography, and cell biology and are not limited to these disciplines [2]. 

Modeling of population dynamics is based on various principles. 
Predominantly, the models are based on ordinary or partial differential 
equations (PDE) or branching processes and more general stochastic 
population processes. It is not quite clear to what extent these ap- 
proaches are equivalent in the sense of leading to similar dynamics of 
models meant to describe similar nonlinear mechanisms. 

Regarding mathematical analysis of dynamics of the population mod- 
els, much attention has been paid recently to “interesting” and “com- 
plex” phenomena like bifurcation, oscillations, and chaos, in addition to 
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“straightforward” properties like asymptotic stability. Following the 
same trends, new explanations based on chaos has been suggested for 
phenomena which traditionally were explained in the terms of stochas- 
tic perturbations. 

In the present contribution, we relate our own experience with 
modeling dynamics of populations to these recent trends. We are 
interested in two general questions. First, when are models derived 
from different principles equivalent? Second, to what extent is the 
complex behavior of some models due to their assumptions? 

We selected for analysis two nonlinear models of population dynam- 
ics which may be used to model the same population, but which display 
very different dynamics. For simplicity, the models are chosen to de- 
scribe cell population dynamics (see Discussion), but the conclusions 
seem to be more general. 

We provide an original proof that Model 1 stays globally asymptoti- 
cally stable (Proposition 4), while Model 2 is known to display insta- 
bility, oscillations, and apparent period doubling leading to chaos 
(Proposition 5). Interestingly, there exist situations in which these two 
models lead to the same equation (Appendices B and C), and this fact 
may lead to additional confusion since in general they are very differ- 
ent. 

2. THE TWO MODELS 

The following cell population model published by Kimmel [lo] is the 
basis for our analysis (Figure 1): 

1. The interdivision times of cells are independent random variables 
with common distribution density g(7). 

2. A cell dividing at time t produces a random number p(t) of 
surviving progeny cells ( p(t) = 1,2, or 31, independent of the number of 
nrogeny produced by all other cells and independent of the lifetimes of 
1 _ -. 

all cells. The average is Ep(t) = m(t) surviving progeny per cell. 

n+ (t > - n-w 

c 
NW 

xmw 

7 N d) 

[T N f(.) for N(0) initial cells.1 

FIG. 1. Schematic diagram of the basic cell population model 
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3. The population is started by N(0) “initial” cells. Each of these 
cells has a random time left before it can divide. These random times 
are independent and identically distributed with density f(r). 

HYPOTHESIS 1 

The densities g and f and function m are nonnegative bounded measur- 
ablefunctions on R, such that lR+ g = jR+ f = 1 and m(t) < 2. 

Let us denote N(t) the expected cell count at time t, n+(t) the 
expected flux of “just born” progeny cells, and n-(t) the expected flux 
of “just dividing” parent cells. The act of division is assumed to be of 
zero duration. The two fluxes can be understood as the time derivatives, 
of N+(t) the cumulated expected count up to time t of progeny cells 
and of N-(t) the cumulated expected count up to time t of dividing 
parent cells, respectively. The following equations are then satisfied 
[lo]: 

n-(t) =i’n+(t -u)g(u)du+ N(O)f(t), (1) 

n+(t) =rn(t)n-(t), (2) 

N(t)=N(O)+i’[n+(T)-n-(T)]dT, t > 0. (3) 

The next hypothesis makes reformulating the equations possible. 

HYPOTHESIS 2 

The densities g and f have supports restricted to the interval [O, 11. 

We then have [lo] 

N(t)=~ln’(t-u)G(~)du, t>l, (5) 

where G is the tail function of the interdivision time distribution, i.e., 
i?(t) = /;g(T)dT. 

The third hypothesis makes m(t) depend on the expected cell count 
N(t). It would be preferable to use actual cell count At> as the 
regulating factor. However, proceeding as we do, we obtain self-con- 
tained equations for the expected values. This would be impossible if 

At) were used. For more comments, see Discussion. 
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The average progeny function m(t) is a function of the expected cell 
count N(t), i.e., 

m(t) =Q[N(t)]. (6) 

Function @. R, + [0,2] is assumed continuously differentiable, non- 
increasing, and such that @CO) > 1. 

Our model assumes now its final form, 

Model One. 

n’(t)=SIN(t)]~jln+(t-~)g(u)du. (7) 

N(t) =[,‘n’(t -u)C(u)du, t z=o, (8) 

with time variable shifted for convenience. This form of nonlinear 
feedback in which the total number of cells regulates the efficiency of 
divisions is classically known as mitotic autoregulation [23]. 

Let us note that Model 1 can also be derived on the basis of the 
partial differential equations approach (Appendix A) as suggested by 
Metz and Diekmann [1X, Exercise 111.6.2.71. 

The other model is based on the following hypothesis: 

HYPOTHESIS 4 

The average progeny function m(t) is a function of the expected rate of 

divisions n- (t>, i.e., 

m(t) =Q[n-(t)]. (9) 

Function @. R, + [0,2] is assumed continuously differentiable, non- 
increasing, and such that NO) > 1. 

Solving Equations (1) and (2) for n (t), and using relationship (6) we 
obtain a self-contained nonlinear equation for n- (t>: 

Model Two. 

n-(t) =k’@[n-(t -u)]n-(t -u)g(u)du, t 20. (10) 

In this version of mitotic autoregulation, the number of dividing cells 
regulates the efficiency of divisions. Equation (10) is supplemented by 
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the following formula for N(t): 

187 

3. LOCAL STABILITY 

3.1. LINEARIZED EQUATIONS 

Model 1. Let us denote x(r) and X(t) the solutions of the linearized 
problem, corresponding to n+ (t) and N(t) in system (7)~(8). We obtain 

x(I)=~~x(I-u)g(u)du-SX(r), (14 

X(t)=j,'w(r-@(u)du. (13) 

S is a nonnegative constant, 

s= _ ewlw’(l> 
E(T) ’ 

(14) 

where Q-‘(l) is the equilibrium value of N(t) (denoted fi), and 
E(T) = j,‘f?(u)du = /,‘ug(u>du is the expected lifetime of the cell. E(T) 
exists if Hypothesis 2 is assumed. The equilibrium value of n+(t) is - 
equal to n+ = N/E(T). 

The characteristic equation can be obtained by substituting x(t) = 
a exp( At) and X(t) = A exp( At), with a complex number A, in system 
(12)-(13) and requiring that a solution of this form exist. This leads to a 
condition on the determinant of the resulting matrix: 

/ 
l(l-epA”)g(u)du S 

0 

/ 

1 
emAUG( u) du 1 

0 

which can be reduced to 

= 0, 

(hfS)&‘e-““??(u)du=O. 

(15) 

(16) 
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An equivalent more convenient form is obtained through integration by 
parts, 

(17) 

The singularity at h = 0 is removable. 

Model 2. Let us denote y(t) the solution of the linearized problem, 
corresponding to n- (1) in Equation (10). We obtain 

- 
The equilibrium value nP = cPP ‘(1) is formally the same as in Model 1, 
with S given by (14). 

The characteristic equation can be obtained by substituting y(t) = 
AexpChr), with a complex number A, in Equation (18) and requiring that 
a solution of this form exist. This leads to the condition 

(19) 

3.2. ROOTS OF THE CHARACTERISTIC EQUATIONS 

We first obtain two simple results concerning the roots of the 
characteristic equations (17) and (19). 

PROPOSITION 1 

Suppose Hypotheses 1, 2, 3, and 4 are satisfied. Then, the only common 
root of Equations (17) and (19) can be h = - S. 

Proof Suppose that Equation (17) is satisfied and A + - S. Then 
/deC”“g(u)du = 1. Substitution into the left-hand side of Equation (19) 
yields - SE(T), which is negative. Therefore Equation (19) is not 
satisfied. 

PROPOSITION 2 

Suppose Hypotheses 1, 2, and 3 are satisfied. Then, all roots of 
Equation (17) have negative real parts. 
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Proof The root A = - S is negative real. Let 
of 

; l- 
[ 1 

‘e?g(lc)dn =o. 
0 1 
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us consider the roots 

(20) 

Suppose first that 8 A > 0. This yields 1 /,:e- *“g(u) dul < /de-“‘““g(u) du. 
This latter is less than 1, so that Equation (20) cannot hold. If 8 A = 0, 
then de-““g(u)& = L/glsin(vu)g(u)du + /dcos(Yu)g(u)du, where L 

=ti - 1 and v = 3 A. If Equation (20) is to be satisfied, then the 
imaginary part of the integral must be equal to 0 and the real part equal 
to 1. This is possible only if v = 0. This yields A = 0, which is excluded 
since it does not satisfy Equation (16). This concludes the proof. 

Proposition 2 has the following corollary: 

COROLLARY 1 

If cD( N) is continuously differentiable for N near N, then each trajectory 
N(T) of Model 1, Eqz Jtions (7) and (S), starting in some neighborhood of 
N, approaches fl as t -+ ~0. 

Model 2 was investigated repeatedly by Swick 120,211. We quote 
below, in our notation, one of his results. It is assumed that the 
characteristic equation (19) has a dominant root, which is positive if 
SE(T) < 0 and negative if 0 < SE(T) < 1, and that there is r0 such that 
the dominant root of the characteristic equation (19) is complex and has 
negative real part if 1 < SE(T) < r0 and positive real part if SE(T) > r0 
The following classification of solutions of Model 2 is obtained by: 

PROPOSITION 3 [ZO, THEOREM I] 
- 

If @,(n- ) is continuously differentiable for n- near n-, then the 
solutions of Model 2, Equation (lo), satisfy the following properties: 

(i) Zf 0 < SE(T) < 1 then each trajectory n-(t) of Model 2, Equate@ 
(lo), starting in some neighborhood of the equilibrium n _, approaches n - 
with either no oscillation about n- or with some initial oscillations about 7 
induced by the initial functions n ,( 1,o, 

(ii) Zf 1 < SE(T) < r(, then eachtrajectory of Model 2 starting in some - 
neighborhood of no approaches no and oscillates about n- with period 
near 2p. 

(iii) If 1 <SE(T) < Y r0 then n is unstable. 

Swick’s papers [20,21] provide numerous examples of equations of 
the type of Model 2, exhibiting periodic and even chaotic behavior. 
Most of these studies are based on numerical computations; however, 
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for certain special forms of the feedback function Qt.), the roots of the 
characteristic equations can be determined analytically. 

4. GLOBAL STABILITY 

Model 1. We provide a result on global asymptotic stability of 
system (7)-(S). We begin by outlining the ideas which lead to such a 
result, then we state the result. The formal proof is presented in 
Appendix D. The reasoning is analogous to that in [4], where a more 
complicated system was analyzed. 

It is clear from Equations (7) and (8) that the functions II+(~) and 
N(t) are nonnegative for t a 0 if only the initial values of n+(t) on the 
interval ( - 1,O) are nonnegative. Then, we note that N(t) is absolutely 
continuous if only n+(t) is locally integrable, i.e., if a;_ ,,Oj~ L’( - l,O>. 

By differentiating Equation (8) side-by-side we obtain 

rj(t)=n+(t)i?(O)-n+(t-1)(;(l)-l;,rz+(u)p(t-u)du 

=rr+(t)-/i rz+ (u)g(t - u) du 
r-l 

={@[N(t)]-l)[;,n+(u)g(t-u)du. (21) 

Based on the above, the derivative of N(t) is positive if and only if 
@[N(t)] - 1 > 0, i.e., if and only if N(t) < 3, and respectively it is 
negative if and only if N(t) > 3. This implies that N(t) is bounded from 
above (and from below, since it is nonnegative). Also A$t> cannot 
change sign (this would required crossing # which is impossible by 
continuity of N(t)). Boundedness and monotonicity yield convergence 
of N(t) to a limit N(x), as t +m. This limit has to be equal to N. 
Indeed 

N(t)-N(0)=l;:j{@[N(i)]-l}~i n+(u)&-u)dujd~. 
7-l 

If N(t) + N(a), then this implies that 

and so, by uniform continuity of N(t), it converges to 0, as t + =. If 
/V(m) f N, then @[N(t)] - 1 converges to a nonzero value and so 
1,’ ,n+ (u)g(t - u)du converges to 0. By Equation (7), it yields n’(t) --) 
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0, which by Equation (8) yields N(t) + 0, a contradiction since N(t) is 

increasing if N(t) < N. 
This is sufficient to demonstrate that N(t) + N as t + ~0. 

PROPOSITION 4 

Suppose that rti > 0 is a nonnegative junction in the space L’( - l,O). 
Then a soZution of system (7)-(g), n+(t), t > - 1, N(t), t > 0, such that 
nI;_ ,,Oj= ni, exists and both n+(t) and N(t) are nonnegative. Moreover, 
nf (t) is locally integrable and N(t) is absolutely continuous. All nonnega- 
tive solutions tend to the limit 

lim n: L’(~l’o) N,E( T) , 
t’” 

lim N(t) = fl. 
t-m 

The notation n,? denotes a segment of solution n+, understood as an 
element of space L’( - l,O), i.e., n: (s) = n + (t + s), for s E ( - l,O), t > 0. 

Demonstrating that n: - 
L’(Gi,O) fl,E(T) 

, as t -+m, constitutes the 
difficult part of the proof. It requires arguments similar to those in the 
proof of Theorem 3.3 in [4] (Appendix D). 

Model 2. Swick [20] provides the following result, presented here in 
our notation: 

PROPOSITION 5 [20, THEOREM 41 

If 

Q’(K) >a>O, 

O<SE(T)<2, 

- 
for 0 < n- <n-, and 

- 
for n >n-, then every solution n-(t) of Equation (10) satisfies n-(t) 
+n-, as t -00. 
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5. DISCUSSION 

Interest in dynamics of models like our Models 1 and 2 is justified 
since these models provide the simplest mathematical description of 
self-limiting growth. One classical application is mitotic autoregulation 
in cell populations [4,7,23]. 

There is a substantial difference between Models 1 and 2 with 
respect to local and global stability. Model 1 is always asymptotically 
stable, while Model 2 may exhibit oscillations, period doublings, and 
chaos. This phenomenon is very much like what happens in the dis- 
cretized logistic equation which produces complex behavior, while the 
basic and probably more justified continuous version does not. In our 
case the difference may be attributed to the smoothing influence of 

N(t). 
An equation formally identical to Equation (10) of Model 2 is 

considered in the book by Metz and Diekmann [lg]. It can bc traced 
back to the papers by Swick [20,21]. In these sources, it is used in a 
demographic context, in a way which is justified by the very specific 
hypotheses employed. The detailed derivation of the mathematical 
model used in these papers is provided by Frauenthal [91. In the original 
notation, the equation has the form 

B(r)=~pc$(S)B(t-s)M{B(i -s)}ds, t> P, (22) 
n 

where B(t)& is the number of female births that occur between times t 
and t + dt, 1#4.) is the so-called net fertility function, and the decreasing 
function M(a) is the regulating factor which depends on past values of 
B(.). This formulation depends on the so-called Easterlin hypothesis 
which states that as the size of the cohort in which a female is horn 
increases, the fertility rate for the females decreases. In [Y] actual demo- 
graphic data which suggest periodic behavior for B(.) are analyzed. 

In the context of cell populations, the Easterlin-type equation 

governs the dynamics of a model of mitotic autoregulation in which the 
number of dividing cells regulates the efficiency of divisions. Such a 
model might be true in some situations, although we do not know of any 
example. 

It is generally recognized that stochastic and deterministic models 
including nonlinearities are seldom equivalent in the sense of the 
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expected value of the stochastic process being equal to the deterministic 
process. In Equations (l)-(3) leading to Models 1 and 2, m(t) is 
precisely equal to the expected number of progeny cells per mother cell, 
and up to this point, these equations are accurate. The reason for this is 
that Equations (l)-(3) describe a linear model with variable coeffi- 
cients, fully equivalent to a branching process in varying environment. 
Models of this type were explored by Kimmel in [12,13]. 

Hypothesis 3, m(t) = @[N(t)], makes m(t) depend on the expected 
cell count N(t), instead of the actual cell count At>. Obviously this 
approximation holds only if N(t) is large since only then N(t) -fit) in 
some sense. This illustrates another point: Models like Models 1 and 2 
make sense only if their trajectories are bounded away from 0. Large 
oscillations drive the model toward regions where random fluctuations 
play a major role, leading to extinctions or related effects. 

It is interesting to note that in two cases Model 1 can be reduced to a 
single equation identical to the equation of Model 2. The first case is 
the elementary model of mitotic autoregulation, in which cell lifetimes 
are exponentially distributed. Models 1 and 2 are governed by the same 
equation (Appendix C> and are globally asymptotically stable. This 
latter follows from the fact that in this particular case the dynamics is 
described by the ordinary differential equation, 

N(t) ={(a[N(t)] -l}aN(t). (23) 

It is interesting that in the general case of Model 1, the proof of global 
asymptotic stability includes derivation of a differential equation (21) 
which generalizes (23). 

Another case in which both models are governed by the same 
equation is m(t) = const (Appendix B). 

Finally, let us mention the general question of equivalence of differ- 
ent models of population dynamics. In our recent paper [6], structured 
population models based on partial differential equations are compared 
to those stemming from branching processes. In that context, even with 
m(t) = const, the two types of models may not be completely equivalent. 

APPENDIX A: THE PDE DERIVATION OF MODEL 1 

We begin with the partial differential equation, very much like, e.g., 
Equation (111.6.2.9) in [181. Suppose n(a, t) is the age density of cells in 
the population at time t; we write, 

Jn( a, t) 
dt 

+ Jn(a,t> = 
da - h(a)n(a,t), a,t>O, (24) 
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where h(a) = g(a)/c((a) is the death hazard function. 
has the initial condition 

n(a,O) = n{)(a) = N(O)cp(a), a 2 0, 

OVIDE ARINO 

This equation 

(25) 

where functions &a), the age density of a randomly selected member 
of initial population, and f(t), the remaining lifetime of a randomly 
selected member of initial population, are related by 

f(t) =%,(u)g$$hz, t>o, (26) 

The boundary condition, 

n(o,t)=n+(t)=n~(t)m(t), t>o, (27) 

is identical to Equation (2). 
Integration of the partial differential equation (24) endowed with the 

above initial and boundary conditions (using, for example, the method 
of characteristics), results in 

n(u,t) = 

I 

%W)exP[-[_Wd+ 

n(O,t - u)exp - i,‘/z( U) du ; [ 1 
t<a7 (28) 

t > a, 
The flux of dividing parent cells, IZ- (t>, is related to the age distribution 

density, n(u,t>, by 

n-(t) =jjh(u)n(u,t)&, t >o. (29) 

Substituting the solution (28) into Equation (29), using the facts g(u) = 

h(u)exp[ - /,“h(u) dul and c(u) = exp[ - /~/Z(U) dul, and employing 
Equation (26) yield Equation (1). 

APPENDIX B: THE CASE m(t) = const 

Let us substitute m = const in system (l)-(3). Iterating Equations 

(l)-(3), we obtain 

~~(t)=J:n-(I-u)mg(u)du+N(O)f(t), (30) 
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n+(t) =m/ ‘n+(t-Ll)g(u)du+mN(O)f(t). (31) 
0 

Substitution in Equation (3) provides 

=m~‘l”[n+(u-u)-n~(u-u)]g(r:)dudu+(m-l)N(o)~(t) 
0 0 

=m ~~tg(ll)[N(‘-“)-N(0)]d~+(m-l)N(O)F(I), 
/ 

so that 

N(t)=m@-B)&)&+[m@f)-(m-l)p(+V(O). (32) 

If Hypothesis 2 is assumed, we see that Equation (32) is identical to 
Equation (9). 

If the population is started by a single cell (N(0) = 1) born at t = 0 

(i.e., f<-> = g(*>), we obtain (without Hypothesis 2) 

(33) 

which is the familiar renewal-type equation for the expected particle 
count in the Bellman-Harris branching process [8]. In the general case, 
Equation (32) is the equation for the expected particle count in the 
Bellman-Harris branching process with immigration [Sl. 

With t > 1, we see that Equations (30), (31), and (33) are identical. 

APPENDIX C: EXPONENTIALLY 
DISTRIBUTED LIFELENGTHS 

Let us consider g(t) = se-a’. We show that in this case solutions of 
system (4)-(5) if they exist satisfy the equation identical to Equation 
(10) (with the obvious corrections of upper integration bounds). 

Equation (1) is replaced by 

n-(t) = d(t). (34) 
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Indeed, substituting g(u) = ayeear in Equation (1) yields 

n~(t)=~,tn+(t-~)ae~audu+N(0)ae~"', (35) 

where we set f(t)= (yePat because, for exponentially distributed life- 
times, the remaining lifetime conditional on reaching any given age is 
also exponentially distributed with the same parameter. Substituting the 
above into Equation (3) and carrying out integrations provides 

N(t)=N(0)e-“‘+~,~,lt(7)d7+~,~~T~i(~-U)ae~U”dudr, 

t >O. (36) 

This latter yields, after a change in the integration order and a substitu- 
tion, 

N(t)=N(O)e~“‘+~‘n’(t-u)e-“‘du. (37) 

Comparison of Equations (3.5) and (37) yields Equation (34). 
Combining Equation (34) with Equations (2) and (3) yields the 

following ordinary differential equation 

N(t) = cx[m(t)-l]N(t), t E R, (38) 

which admits explicit solution 

N(t) =N(O)exp 
i 

lyL’[m(u)-l]du 
1 

, t E R, (39) 

If we verify that N(t) given by Equation (39) satisfies 

N(t)=~xN(t-u)m(t-u)ne-““du, (40) 

which leads to the desired result, then the demonstration is concluded. 
For this, we need an additional hypothesis. 

HYPOTHESIS 5 

For any t > 0, the integral j\,m(s)ds is finite. 

Using the variation of constants formula in Equation (38) we obtain 

N(t) =N(tO)e-u(f+‘~))+ 
/ 

‘~‘“N(t-u)m(t-u)ne~““du, (41) 
0 
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for any real t and t, such that t a t,. All the terms in Equation (41) are 
nonnegative, and, therefore, by passing with t, to -00, we obtain that 
the integral 

is finite. If Hypothesis 5 is satisfied, then convergence of this integral 
requires that 

tends to 0 as t, -+ --oo. Using this in Equation (41) yields Equation (401, 
as required. 

APPENDIX D: PROOF OF PROPOSITION 4 

We use the standard techniques of functional analysis and theory of 
semigroups of operators. A review of the theory can be found in the 
survey by Arino [ll or in the book edited by Nagel 1193. 

1. The Limit Equation. Let us consider {T(t), t > 0) the strongly 
continuous semigroup of bounded linear operators defined by the 
solutions of the equation 

n’(t) =/ ln+(t-U)g(u)du, t 2 0, 
0 

(42) 

the limit equation obtained from Equation 7 by setting N(t) + 00. 

T(t):L’(-l,O)-,L’(-l,O), T(t) 110=?2,. (43) 

Since the density g is essentially bounded, we have T(t)(L’) c L” for 
t >l. 

If g is in the C’ space, then T(1) sends the unit bail of L” into a 
bounded equicontinuous subset of C and therefore T(1) is compact. 
The essentially bounded g can be approximated in the L’ norm by a 
sequence of C’ functions g,. If we denote T, the semigroup associated 
with g,, then IIT, - T(t)11 + 0 as IZ + 00. Therefore T(2) = 
lim n ,,T,(l)o T(1) IS compact. This yields T(t) compact for any t a 2. 

The semigroup T(t) has a characteristic equation 

1= leC”“g(u) du. 
/ 0 
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Equation (44) has only roots with nonpositive real parts. Moreover, in 
view of /dg(u)du = 1 and g >, 0, we conclude that A = 0 is the only root 
with zero real part. 

Since T(t) is a translation semigroup, its infinitesimal generator is 
defined by 

Aq=+ (45) 

D(“)=jlptC’([-1,0]):1”(0)=~~‘~(-u)fi(u)du}. (46) 

The algebraic multiplicity of A = 0 is 1, but this is not sufficient for the 
dimension of its generalized eigenspace to be 1. However, suppose that 
this dimension is 2 2. Then, there exists a u E D( A)\Ker(A - AId) 
such that (A - AIdj2p = 0 (A = 0). This latter implies cp” = 0 and cp = 
C,u + C,. Requirement cp E D(A) yields the condition 0 = - C,/?(T), 
which implies C, = 0, i.e., cp = C, E Ker(A - AId), which is a contradic- 
tion. 

2. The nonlinear Problem. We know that N(t) - fl and that N(t) is 
absolutely continuous and so bounded. Departing from this, we prove 
that rz+ is bounded from above. There exists E > 0 such that G(E) = l/2. 
This implies, by Equation (81, 

(47) 

But if this is true for each t & 0, then also 1: n ’ (t - u) du G M, < m, and 
from this, using Equation (7), n+(t) G M, <m. 

Using the same technique as for the linear case, we demonstrate that 
the trajectory of any solution of the nonlinear equation is relatively 
compact. Let us consider a subsequence nl: which converges to Ti as 
t, +m. The limit fi is a solution of the limit equation (42) on the whole 
real axis. Moreover, fi must satisfy the condition 

fl=lo’ii(r -u)??(u) du. (48) 

Since ~3 is a solution of the limit equation, we have (see the discussion 
L1 + 

in Part 1 of the proof) ii -+ n -t , as t + 30, where n = N/E(T). 
+ We prove that fi =n . Because the spectrum of an eventually com- 

pact semigroup is a pure point spectrum (except perhaps the spectral 
element at 01, and since e”’ = 1 is the strictly dominant eigenvalue of 
T(t), the convergence of ii toward n + is exponential with, say, exponent 
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- y, y > 0. Therefore, if t < 0, we have 
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Therefore, if fi #n’, we conclude that J(?zr -311 -00, as t --, --co. This 
is impossible since 6 is bounded on R. 

The above implies 2 =?. Since this is true for each element of the 
w-limit set of n+, this set is reduced to a single element; i.e., the 
solution tends to a constant. 

The first version of this paper was written in Spring 1993, when Ovide 
Arino visited the Department of Statistics, Rice University Ovide Arino was 
supported in part by a grant from the French National Center for Research, 
program Environment, entitled Environment and Structured Popula- 
tions. Marek Kimmel was supported in part by grants (DMS 9020626 and 
DMS 9203436) fr om the National Science Foundation. 
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