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The Two-Dimensional Attractor of a Differential
Equation with State-Dependent Delay
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The delay differential equation

x* (t)=&+x(t)+ f (x(t&r)), r=r(x(t))

with +>0 and smooth real functions f, r satisfying f (0)=0, f $<0, and r(0)=1
models a system governed by state-dependent delayed negative feedback and
instantaneous damping. For a suitable R�1 the solutions generate a semiflow
F on a compact subset LK of C([&R, 0], R). F leaves invariant the subset S of
, # LK with at most one sign change on all subintervals of [&R, 0] of length
one. The induced semiflow on S has a global attractor A. A"[0] coincides with
the set of segments of bounded globally defined slowly oscillating solutions. If
A{[0], then A is homeomorphic to the closed unit disk, and the unit circle
corresponds to a periodic orbit.

KEY WORDS: State-dependent delay; negative feedback; slowly oscillating
solutions; global attractor; discrete Lyapunov functional; asymptotic expansion;
Poincare� �Bendixson-type theorem.

1. INTRODUCTION

In this paper we study the state-dependent delay equation

x* (t)=&+x(t)+ f (x(t&r)), r=r(x(t)) (1.1)

where +>0, f and r are smooth real functions, r(0)=1, and f satisfies the
negative feedback condition !f (!)<0 for all !{0. Equation (1.1) with
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r#1 appears in several applications (see, e.g., [15, 30, 34, 36, 37, 40, 52]
and references therein). Over the past several years it has become apparent
that equations with state-dependent delay arise also in several areas such
as in classical electrodynamics [18�22], in population models [7], in
models of commodity price fluctuations [8, 35], and in models of blood
cell productions [38].

In the case that r#1 Eq. (1.1) generates a semiflow on the phase space
C([&1, 0], R). Under the additional assumptions f $<0, sup f<� or
inf f >&�, the semiflow leaves the subset T of elements , # C([&1, 0], R)
with at most one sign change invariant. A recent result of Mallet-Paret and
Walther [46] shows that the domain of absorption into T is open and
dense. Walther [49, 50] and Walther and Yebdri [51] described the global
attractor A of the induced semiflow on T: either A=[0] or A is a two-
dimensional C1-smooth graph which is homeomorphic to the closed unit
disk, and the unit circle corresponds to a periodic orbit. A solution is called
slowly oscillating if its zeros are spaced at distances larger than 1. A con-
tains 0 and the segments x(t+ } ) # C([&1, 0], R) of all bounded slowly
oscillating solutions x: R � R.

Recent results of Mallet-Paret and Nussbaum [41, 42], Mallet-Paret
et al. [43], Kuang and Smith [33], and numerical studies suggest that the
slowly oscillating solutions play an important role in the global dynamics
of (1.1) also in the case r�1 for certain +, f, r.

Our goal in this paper is to describe the asymptotic behavior of the
slowly oscillating solutions of Eq. (1.1). The results obtained are in part
analogous to those of Walther [50] but in the proofs a variety of new
mathematical phenomena arises which is not present in the case r#1.

In addition to the above conditions on +, f, r, we assume that
f # C1(R, R), f $<0, and sup f<� provided r(u)>0 for all u # R.

Some basic existence, uniqueness, continuation, and continuous depen-
dence results for differential equations with state-dependent delay are con-
tained in [41, 43]. The results of [41, 43] are applicable to Eq. (1.1) and
give existence, uniqueness, etc., for solutions having values in a certain
compact interval. However, it is possible that there are slowly oscillating
periodic solutions of the equation outside the region guaranteed by the
results of [41, 43]. In this paper we are interested in the asymptotic
behavior of all slowly oscillating solutions of Eq. (1.1). A slight modifica-
tion of the technique of [41, 43] gives the existence, uniqueness, and con-
tinuous dependence results which are satisfactory for our purpose.

Let Ir denote the maximal subinterval of R with 0 # Ir and r(u)�0 for
all u # Ir . Our first result is that for every bounded continuous initial function
,: (&�, 0] � Ir , there is a solution x: R � R of Eq. (1.1) through ,, that is
x is continuous on R, continuously differentiable on (0, �), x| (&�, 0]=,,

454 Krisztin and Arino



and (1.1) holds for all t>0. If , is Lipschitz continuous, then x is unique.
Then we show the existence of positive constants A, B, R, K such that

0<r(u)�R for all u # [&B, A], max
u, v # [&B, A]

|&+u+ f (v)|�K

moreover, for every solution x: R � R belonging to a bounded continuous
initial function , with ,((&�, 0])/Ir , there exists s�0 such that

x(t) # [&B, A] for all t�s

Consequently, as we are interested in the asymptotic (t � �) behavior of
solutions, it suffices to consider only solutions with values in [&B, A].

Let X denote the space of continuous real functions on [&R, 0]
equipped with the supremum-norm. The set

LK={, # X : ,([&R, 0])/[&B, A], },(t)&,(s)
t&s }�K for &R�s<t�0=

is a compact convex subset of X. For every , # LK there is a unique
continuous function x,: [&R, �) � R such that x,| [&R, 0]=,, x, is con-
tinuously differentiable on (0, �), and x, satisfies Eq. (1.1) for all t>0.
Then the relations

F(t, ,)=x,
t for t�0, x,

t (s)=x,(t+s) for &R�s�0

define a semiflow F on LK .
Motivated by the conjecture, which is true in the constant delay case

[46], that the behavior of slowly oscillating solutions govern the typical
long-term behavior of the solutions of Eq. (1.1), we consider the compact
subset

S=[, # LK : sc(,, [t&1, t])�1 for all t # [&R+1, 0]]

of LK , where sc(,, [t&1, t]) denotes the number of sign changes of , on
the interval [t&1, t]. All segments xt of slowly oscillating solutions x with
values in [&B, A] belong to S. The set S is positively invariant under the
semiflow. The restriction of F to R+_S defines a semiflow FS . FS has a
global attractor A which is a subset of the global attractor of the full semi-
flow F. A consists of 0 and the segments xt of the globally defined slowly
oscillating solutions x: R � [&B, A].

We prove a Poincare� �Bendixson-type result on A: the :- and |-limit
sets of phase curves in A are either [0] or periodic orbits given by slowly

455The 2D Attractor of a Differential Equation with State-Dependent Delay



oscillating periodic solutions. The second main result is that in the case
A{[0], the set A is homeomorphic to the two-dimensional closed unit
disk so that the unit circle corresponds to a periodic orbit given by a slowly
oscillating periodic solution.

The paper is organized as follows. Section 2 gives the appropriate
framework for the study of the asymptotic behavior of solutions. An addi-
tional condition on r is introduced to guarantee that the function
t [ t&r(x(t)) is strictly increasing. For example, the smallness of r$ or con-
cavity of r is sufficient. This monotone property of t [ t&r(x(t)) plays an
important role in the proofs.

Section 3 contains results on the associated linear equation

y* (t)=&+y(t)+ f $(0) y(t&1) (1.2)

Although the map X % , [ &+,(0)+ f (,(&r(,(0)))) # R is not, in general,
differentiable, equation (1.2) can be considered as the linearization of (1.1)
at 0 (see Cooke and Huang [14] and also [9, 27]).

Section 4 introduces a discrete Lyapunov functional which counts the
sign changes of solutions over intervals of the form [t&r(x(t)), t]. We
need a modified version of the results of Mallet-Paret and Sell [44] on
discrete Lyapunov functionals in order to handle the state-dependent delay
case instead of the constant delay case. It seems to be crucial that the delay
r depends only on x(t) and not on xt . We prove an analogue of the a priori
estimate of Mallet-Paret [39], Cao [10], and Arino [4] which can be
used to show that slowly oscillating solutions do not decay faster than any
exponential.

Section 5 introduces the set S, the global attractor A, and intersection
maps associated with the compact convex subset

U=[, # LK : ,(s)�0 for all s # [&1, 0], ,(0)=0]

of LK . We find that A & U is connected, which is an essential step in the
construction of a homeomorphism from A onto the closed unit disk.

Section 6 proves asymptotic expansion for slowly oscillating solutions
converging to zero as t � &�. The related result for the constant delay
case is due to Cao [10].

Section 7 shows that if ,, � are different elements of A and x,,
x�: R � R are the solutions through ,, �, respectively, then the difference
x,&x� has at most one sign change on the interval [t&r(x,(t)), t] for
all t # R. This fact guarantees the injectivity of a map from A into R2 in
Section 8. The proof uses, among others, properties of slowly oscillating
periodic solutions obtained by Mallet-Paret and Nussbaum [41].
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The last two sections contain the two main results with proofs.
We remark that the results can be easily modified to the case +=0

and to the case when f is bounded below. Only the construction of the con-
stants A, B, R, K in Section 2 is slightly different. So, Wright's equation
[54] with state-dependent delay is a particular case.

We mention that related results on attractors for differential equations
with constant delay are contained in [11, 31, 32]. For other results on
functional differential equations with state-dependent delay we refer to
[1�3, 5, 6, 12, 13, 16, 23, 24, 28, 29, 47, 53, 55, 56].

Notation. The symbols N and R+ denote the nonnegative integers and
reals, respectively. R and Z stand for the set of all reals and all integers,
respectively.

An upper index tr denotes the transpose of a vector in Rn.
A trajectory of a map g: M � N, M/N, is a finite or infinite sequence

(xj ) j # I & Z , I/R an interval, in M with x j+1= g(xj ) for all j # I & Z with
j+1 # I & Z.

A simple closed curve is a continuous map c from a compact interval
[a, b]/R, a<b, into Rn so that c| [a, b) is injective and c(a)=c(b). The set
of values of a simple closed curve c, or trace, is denoted |c|. The Jordan
curve theorem guarantees that the complement of the trace of a simple
closed curve c in R2 consists of two nonempty connected open sets, one
bounded and the other unbounded, and |c| is the boundary of each of these
components. We denote the bounded component int(c) and the unbounded
one ext(c).

Spectra of continuous linear maps T : E � E are defined as spectra of
their complexifications. If a decomposition

E=F�G

into closed linear subspaces is given, then PrF : E � E and PrG : E � E
denote the associated projection operators along G onto F and along F
onto G, respectively.

For given reals a, b with a<b, C([a, b], R) denotes the Banach space
of continuous functions ,: [a, b] � R with the norm given by

&,&C([a, b], R)= max
a�t�b

|,(t)|

C1([a, b], R) is the Banach space of all C1-maps ,: [a, b] � R, with the
norm given by

&,&C 1([a, b], R)=&,&C([a, b], R)+&,4 &C([a, b], R)
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2. THE EQUATION AND SOME BASIC PROPERTIES

Consider the equation

x* (t)=&+x(t)+ f (x(t&r)), r=r(x(t)) (2.1)

under the hypotheses

{
+>0
f # C2(R, R), f (0)=0, f $(u)<0 for all u # R

r # C 1(R, R) and r(0)=1
sup[ f (u): u # R]<� if r(u)>0 for all u # R

(H1)

For intervals I, J�R with I�J, we say that x is a solution of Eq. (2.1)
on (I, J ) if x: J � R is continuous, continuously differentiable on I, satisfies

t&r(x(t)) # J for all t # I

and is such that (2.1) holds for all t # I. (If t is an endpoint of I, then by
x* (t) we always mean the appropriate one-sided derivative.)

Let Ir be the maximal subinterval of R such that 0 # Ir and r(u)�0 for
all u # Ir .

Let BC((&�, 0], Ir) denote the set of bounded continuous functions
on (&�, 0] with values in Ir .

The following results on the existence, uniqueness, and continuous
dependence of solutions can be obtained by using the technique of [41, 43].
We need a slight modification of the results of [41, 43] since we want to
study the asymptotic behavior of all slowly oscillating solutions of Eq. (2.1).

Proposition "I}I

(i) If , # BC((&�, 0], Ir), then there exists a solution x of (2.1) on
([0, �), R) with x| (&�, 0]=,.

(ii) If , # BC((&�, 0], Ir), ; # (0, �] and x is a noncontinuable
solution of (2.1) on ([0, ;), (&�, ;)) with x| (&�, 0]=,, then
;=� and x(t) # Ir for all t # R.

(iii) If , # BC((&�, 0], Ir) is Lipschitz continuous and x, x� are solu-
tions of (2.1) on ([0, �), R) with x| (&�, 0]=,=x� | (&�, 0] , then
x(t)=x� (t) for all t # R.

Proof. 1. Let , # BC((&�, 0], Ir) be given. Define

m,=min[0, inf[,(s): s�0]], M,=max[0, sup[,(s): s�0]]
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First, we determine two positive constants C, and D, such that
[m, , M,]�[&D, , C,]�Ir and any solution x of (2.1) on ([0, ;), (&�, ;))
with x| (&�, 0]=, satisfies

x(t) # (&D, , C,) for all t # (0, ;) (2.2)

Let &b # [&�, 0) and a # (0, �] denote the (possibly infinite) endpoints
of Ir . Let I +

r denote the maximal subinterval of R such that r(u)>0 for all
u # I +

r . Choose c, d # (0, �] such that I +
r =(&d, c). Clearly, &��&b�&d

<0<c�a�� and &b�m,�0�M,�a. In the definition of C, and D, ,
we distinguish four cases.

Case 1. c<�, d<�. In this case we choose C, and D, such that

C,=min {a, max {c, M, , 1+
1
+

f (m,)==
and

&D,=max {&b, min {&d, m, , &1+
1
+

f (M,)==
Case 2. c=�, d<�. In this case first we define D, such that

&D,=max {&b, min {&d, m, , &1+
1
+

f (M,)==
Then choose C, such that

C,>max {M, ,
1
+

f (&D,)=
Case 3. c<�, d=�. In this case we first define C, such that

C,=min {a, max {c, M, , 1+
1
+

f (m,)==
then choose D, such that

&D,<min {m, ,
1
+

f (C,)=
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Case 4. c=d=�. Then I +
r =(&�, �) and, by (H1), sup f<�.

So we may choose C, such that

C,>max {M, ,
1
+

sup f =
and then D, so that

&D,<min {m, ,
1
+

f (C,)=
Now we prove (2.2). First, observe that &b� &D,�m,�M,�C,�a
because of the definition of C, and D, . Therefore, x(t) # [&D, , C,] for all
t�0.

Another observation, from Eq. (2.1) and (H1), is that

t # [0, ;), x(t)>0, r(x(t))=0 imply x* (t)<0
(2.3)

t # [0, ;), x(t)<0, r(x(t))=0 imply x* (t)>0

If (2.2) is not true, then there exists t0 # [0, ;) such that x(t) # [&D, , C,]
for all t�t0 and either x(t0)=C, , x* (t0)�0 or x(t0)=&D, , x* (t0)�0.

Assume that x(t) # [&D, , C,] for all t�t0 , x(t0)=C, and x* (t0)�0.
Then r(x(t))�0 for all t�t0 because of [&D, , C,]�Ir . From (2.3) it
follows that r(x(t0))>0.

In Case 1, the facts r(a)=0 provided a<�, r(c)=0, r(x(t0))>0, and
the definition of C, combined imply c<C,<a. We also have x(t){0 for
all t # [0, t0), since x(t1)=0 for some t1 # [0, t0) and (2.3), r(c)=0 together
would imply x(t)<c<C, for all t # [t1 , ;), contradicting x(t0)=C, . In
particular, x(t)�m, for all t�t0 . Then, using Eq. (2.1) and that C,>
(1�+) f (m,), we obtain

x* (t0)�&+C,+ f (m,)<0

a contradiction.
In Case 2, from &D,�x(t) for all t�t0 , Eq. (2.1), and the definition

of C, , it follows that

x* (t0)�&+C,+ f (&D,)<0

a contradiction.
In Case 3 the same proof works as in Case 1.
In Case 4, by Eq. (2.1) and the definition of C, , we again obtain the

contradiction x* (t0)<0.
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In the case when x(t) # [&D, , C,] for all t�t0 , x(t0)=&D, and
x* (t0)�0, we can get a contradiction in the same way as above. Therefore,
(2.2) holds.

We modify the right-hand side of Eq. (2.1) and r outside the sets
[&D, , C,]_[&D, , C,] and [&D, , C,], respectively. Let

g(x, y)=&+}(x)+ f (}( y)), r~ =r(}(x))

where

&D, if x< &D,

}(x)={x if &D,�x�C,

C, if x>C,

Consider the equation

x* (t)= g(x(t), x(t), x(t&r~ )), r~ =r~ (x(t)) (2.4)

Let R� =max[r(u): u # [&D, , C,]] and let C� =C([&R� , 0], R) be the
Banach space of continuous functions equipped with the maximum norm.
It is easy to see that the mapping C� % � [ g(�(0), �(&r~ (�(0)))) # R is con-
tinuous and there exists c1>0 such that | g(�)|�c1 maxs # [&R� , 0] |�(s)| for
all � # C� . Therefore, the existence theorem of [26, Chap. 2] can be applied
to Eq. (2.4). Let ,� # C� be such that ,� =,| [&R� , 0] . Then Eq. (2.4) has a solu-
tion x~ : [&R� , �) � R with x~ |[&R� , 0]=,� . Since the right-hand sides of (2.1)
and (2.4) are the same on [&D, , C,]_[&D, , C,], and the functions r
and r~ are the same on [&D, , C,], the proof of (2.2) works also for x~ to
show that x~ (t) # (&D, , C,) for all t>0. Then the extension x of x~ to R,
such that x| (&�, 0]=, and x| [&R� , �)=x~ , is a solution of (2.1) on ([0, �), R)
with x~ | (&�, 0]=,. This completes the proof of (i).

2. Now let x be a noncontinuable solution of (2.1) as in (ii). Rela-
tion (2.2) holds for this x. Therefore, the restriction of x to the interval
[&R� , ;) is also a noncontinuable solution of Eq. (2.4) on [&R� , ;). Since
| g(�)|�c1 maxs # [&R� , 0] |�(s)| for all � # C� , the continuation theorem of
[26] gives ;=�.

3. To prove the claim of uniqueness in (iii), assume that x and x� are
solutions of Eq. (2.1) on ([0, �), R) with x| (&�, 0]=,=x� | (&�, 0] . For
both solutions x and x� , (2.2) is satisfied with ;=�. Therefore, we may
choose M�+ such that x and x� are Lipschitz continuous on R and f, r are
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also Lipschitz continuous on [&D, , C,] with Lipschitz constant M. Let
y(t)=x(t)&x� (t), '(t)=t&r(x(t)), and '� (t)=t&r(x� (t)). Then

y* (t)=&+y(t)+ f (x('(t)))& f (x� ('� (t)))

and

| y* (t)|�+ | y(t)|+| f (x('(t)))& f (x� ('� (t))|

�M | y(t)|+M |x('(t))&x� ('(t))|+M |x� ('(t))&x� ('� (t))|

�M | y(t)|+M | y('(t))|+M3 | y(t)|

Hence with z(t)=maxs # [0, t] | y(s)|,

| y(t)|�|
t

0
(M 3+2M ) z(s) ds

�|
{

0
(M 3+2M ) z(s) ds for all 0�t�{

Then

z({)�|
{

0
(M 3+2M ) z(s) ds for all {�0

and the Gronwall lemma implies z({)=0 for all {�0. This proves the
uniqueness. g

Now we need the following two simple observations about the
asymptotic behavior of the solutions of (2.1).

Lemma "I"I

(i) If t0 # R and x is a solution of Eq. (2.1) on ([t0 , �), R) with
x(R)/Ir such that x has no zero on [t0 , �), then x(t) � 0 as
t � �.

(ii) If x is a bounded solution of Eq. (2.1) on (R, R) with x(R)/Ir ,
then there is a sequence (tn)�

0 such that tn � &� as n � � and
x(tn)=0 for all n # N.

Proof. 1. The proof of (i). By the proof of Proposition 2.1, there
are constants C0 , D0 # (0, �), depending on x| (&�, t0] , such that x(t) #
[&D0 , C0] for all t # R. Let R0=max[r(u): u # [&D0 , C0]]. If x(s)>0
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for all s�t0 , and t�t0+R0 , then, from Eq. (2.1) and hypothesis (H1), it
follows that x* (t)<0. Therefore, x(t) converges to some :�0 as t � �.
Suppose :>0. Then, by Eq. (2.1) and (H1), x* (t) � &+:+ f (:)<0 as
t � �, a contradiction. The case, when x(s)<0 for all s�t0 , is analogous.

2. The proof of (ii). By the boundedness of x, there are constants
C0 , D0 # (0, �) such that x(t) # [&D0 , C0] for all t # R. Suppose that the
statement is not true. Consider the case when x(t)>0 for all t�t0 for some
t0 # R. Then, by (H1),

x* (t)=&+x(t)+ f (x(t&r(x(t))))� &+x(t), t�t0

Hence

0<x(t0)�x(t) e&+(t0&t)�C0e&+(t0&t), t�t0

Letting t � �, we obtain that x(t0)=0, a contradiction. The case x(t)<0
for all t�t0 , is analogous. g

Now we show that all solutions of Eq. (2.1) with initial values in
BC((&�, 0], Ir) are eventually in a finite interval.

Proposition "I/I There exist positive constants A, B, R, K such that:

(i)

R�max[r(u): u # [&B, A]]

min[r(u): u # [&B, A]]>0

K�max[ |&+u+ f (v)|: (u, v) # [&B, A]_[&B, A]]

(ii) For each solution x of (2.1) on ([0, �), R) with x| (&�, 0]=, #
BC((&�, 0], Ir), there exists s�0 such that

x(t) # [&B, A] for all t�s

(iii) If , # C([&R, 0], [&B, A]) is Lipschitz continuous with
Lipschitz constant K, then there exists a unique solution x of
(2.1) on ([0, �), [&R, �)) with x|[&R, 0]=, and this solution
satisfies

x(t) # [&B, A], |x* (t)|�K, for all t�0
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(iv) If x is a bounded solution of (2.1) on (R, R) with x(R)/Ir , then
x(R)/[&B, A].

Proof. 1. The proof of (i). First, we define two constants C>0 and
D>0. As in the proof of Proposition 2.1, c, d # (0, �] are chosen such that
r(u)>0 for all u # (&d, c) and c<� implies r(c)=0, d<� implies
r(&d )=0. In order to define C and D, we distinguish four cases.

Case 1. If c<� and d<�, then let C=c and D=d.

Case 2. If c=� and d<�, then let D=d and choose C such that
C>(1�+) f (&D).

Case 3. If c<� and d=�, then let C=c and choose D such that
&D<(1�+) f (C ).

Case 4. If c=d=�, then, by (H1), sup f<�. Choose C such that
C>(1�+) supu # R f (u) and D such that &D<(1�+) f (C ).

Set

K=max[ |&+u+ f (v)|: (u, v) # [&D, C]_[&D, C]]

and let L=max[ | f $(u)|: u # [&D, C]].
Now we define the two positive constants A and B. Let

A=C if c=�

and

B=D if d=�

In the case that c<�, choose A # (0, c) such that

r(u)<
+A

2LK
for all u # [A, c]

If d<�, then choose B # (0, d ) such that

r(u)<
+B

2LK
for all u # [&d, &B]

The existence of A and B in the cases c<� and d<� follows from the
continuity of r and r(c)=r(&d )=0.
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Let

R=max[r(u): u # [&D, C]]

r0=min[r(u): u # [&B, A]]

Clearly, r0>0 and (i) is satisfied.

2. The proof of (ii). By the proof of Proposition 2.1, there are con-
stants C, , D, # (0, �) such that x(t) # [&D, , C,] for all t # R. Let R,=
max[r(u): u # [&D, , C,]].

If there exists t0�0 such that x has no zero on [t0 , �), then
limt � �x(t)=0 because of Lemma 2.2(i). Therefore, x(t) # [&B, A] for all
large t.

Assume that x has arbitrarily large zeros. Pick two zeros z1 , z2 of x
such that z2�z1+R, , z1�0. Then (2.3) can be used to get that

x(t) # (&d, c) for all t�z1 (2.5)

We want to prove that

x(t) # (&D, C ) for all t�z2 (2.6)

We follow the four cases of the definition of C and D.
Case 1 is clear from (2.5).
In Case 2, (2.5) implies that x(t)>&d=&D for all t�z1 . Thus, it

suffices to show that x(t)=C and t�z2 imply x* (t)<0. Indeed, this is the
case by Eq. (2.1) and C>(1�+) f (&D).

Case 3 is analogous to Case 2.
In Case 4, if x(t)<C for all t�z1 does not hold, then there is a

smallest t>z1 such that x(t)=C. We have x* (t)�0 because of the defini-
tion of t. On the other hand, x(t)=C and the definition of C imply x* (t)�
&+C+sup f<0, a contradiction. Consequently, x(t)<C for all t�z1 . If
t�z2 and x(t)=D, then, using the definition of D, we find x* (t)�+D+
f (C )>0. Therefore, x(t)> &D can be obtained for all t�z2 . Thus (2.6)
is proved. As a consequence, x is Lipschitz continuous on [z2+R, �) with
Lipschitz constant K.

In order to complete the proof of (ii), we need the following claim.

Claim. Assume that x is a solution of (2.1) on ([0, �), R) with
x| (&�, 0]=, # BC((&�, 0], Ir), there exists t0�0 such that x(t) #
[&D, C] for all t # [t0&R, t0] and x is Lipschitz continuous on
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[t0&R, t0] with Lipschitz constant K. Then x(t) # [&D, C] for all t�t0 ,
there exists T>0 such that x(t) # [&B, A] for all t�t0+T, and

x(t0) # [&B, A] implies x(t) # [&B, A] for all t�t0

Proof of the Claim. Assume that x(t) # [&D, C] for all t�t0 does
not hold. Then there exists t�t0 such that x(s) # [&D, C] for all
s # [t0&R, t] and either x(t)=C, x* (t)�0 or x(t)=&D, x* (t)�0. We can
get a contradiction exactly in the same way as in the proof of (2.6). There-
fore, x(t) # [&D, C] for all t�t0 . If A=C and B=D, the proof is com-
plete. Assume that A<C. Let s�t0 be such that x(s) # [A, C]. Using the
definition of A, we have

x* (s)=&+x(s)+ f (x(s&r(x(s))))

=&+x(s)+ f (x(s))+ f (x(s&r(x(s))))& f (x(s))

�&+A+| f (x(s&r(x(s))))& f (x(s))|

�&+A+L |x(s&r(x(s)))&x(s)|

�&+A+LKr(x(s))

<&+A+
+A
2

=&
+A
2

Then it is easy to see that x(t)�A for all t�t0+2(C&A)�(+A). Moreover,
x(t0)�A implies x(t)�A for all t�t0 . In the case B<D, we get analo-
gously that x(t)�&B for all t�t0+2(D&B)�(+B) and that x(t0)�&B
implies x(t)�&B for all t�t0 . This completes the proof of the claim.

Obviously, the Claim implies (ii).

3. The proof of (iii). Statement (iii) also follows from the above
claim. Indeed, extending x to R with x(t)=x(&R) for t� &R, we can
apply the Claim with t0=0 to get x(t) # [&B, A] for all t�0. The estima-
tion for |x* (t)| is an obvious consequence. The uniqueness comes from
Proposition 2.1.

4. The proof of (iv). If x is a bounded solution on (R, R) with values
in Ir , then Lemma 2.2 (ii) implies that x has arbitrarily large negative
zeros. Hence, in the same way as in the proof of (2.5) and (2.6), we get first
that x(t) # (&d, c) and then that x(t) # [&D, C] for all t # R. Since the
Claim can be applied with any t0 # R, it is obtained that x(t) # [&B, A] for
all t # R. g

On the basis of Proposition 2.3, in the remaining part of the paper we
consider only solutions with values in the interval [&B, A]. We define a
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suitable phase space and show that Eq. (2.1) generates a continuous semi-
flow on this phase space.

Let X=C([&R, 0], R) denote the Banach space of continuous func-
tions on [&R, 0] with the maximum norm denoted by & }&. Define

LK=[, # X : &B�,(s)�A, |,(t)&,(s)|�K |t&s| for all t, s # [&R, 0]]

(The constants A, B, R, K are given in Proposition 2.3.) By the Arze� la�
Ascoli theorem, LK is a compact convex subset of X.

If a>0, x # C[(t0&R, t0+a), [&B, A]), and x is Lipschitz contin-
uous on [t0&R, t0+a) with Lipschitz constant K, then, for t # [t0 , t0+a),
xt # LK is defined by xt(s)=x(t+s), &R�s�0. In the following, for given
, # LK , x, : [&R, �) � [&B, A] denotes the unique solution of (2.1) on
([0, �), [&R, �)) with x,

0=, guaranteed by Proposition 2.3. Define

F : [0, �)_LK % (t, ,) [ x,
t # LK

Proposition 2.3 shows that F is well defined and maps [0, �)_LK into LK .
It is easy to check that, for every , # LK , the function [0, �) % t [
F(t, ,) # LK is continuous and F(t+s, ,)=F(t, F(s, ,)) for all t, s # [0, �).
The continuity of F in , and more are contained in the next lemma.

Lemma "I�I If (,n)�
0 is a sequence in LK , , # LK , &,n&,& � 0 as

n � �, and xn, x denote the solutions of Eq. (2.1) on ([0, �), [&R, �))
with xn

0=,n, x0=,, respectively, then for any T>0,

xn(t) � x(t) as n � � uniformly in t # [&R, T ]

x* n(t) � x* (t) as n � � uniformly in t # [0, T ]

Proof. If the first statement does not hold, then there exists $>0 and
a subsequence (nk)�

0 such that

sup
&R�t�T

|xnk(t)&x(t)|�$ for all k # N

By the Arze� la�Ascoli theorem, there is a subsequence (nkl
)�

l=0 of (nk)�
0 with

xnkl (t) � y(t) as l � � uniformly in t # [&R, T ]

for some y # C([&R, T ], [&B, A]) which is also Lipschitz continuous
with Lipschitz constant K and y| [&R, T ]{x| [&R, T ] . It is easy to see that y
is a solution of Eq. (2.1) on ([0, T ], [&R, T ]) with y0=,. This contradicts
the uniqueness.
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The second statement follows from the first one and

|x* n(t)&x* (t)|�+ |xn(t)&x(t)|+| f (xn(t&r(xn(t))))& f (x(t&r(x(t))))|

�+ |xn(t)&x(t)|+Lf |xn(t&r(xn(t)))&x(t&r(xn(t)))|

+Lf |x(t&r(xn(t)))&x(t&r(x(t)))|

�+ |xn(t)&x(t)|+Lf |xn(t&r(xn(t)))&x(t&r(xn(t)))|

+Lf K |r(xn(t))&r(x(t))|

�+ |xn(t)&x(t)|+Lf |xn(t&r(xn(t)))&x(t&r(xn(t)))|

+Lf KLr |r(xn(t))&r(x(t))|

�(++Lf +Lf KLr) max
&R�s�T

|xn(s)&x(s)|, 0�t�T

where Lf and Lr are Lipschitz constants for f and r on the interval [&B, A].
g

As a consequence, we obtain that F is a continuous semiflow on the
compact metric space LK .

The increasing property of the function t [ '(t)=t&r(x(t)), where x
is a solution of Eq. (2.1) with values in [&B, A], plays an important role
in the theory. Either one of the following two hypotheses guarantees
'* (t)>0 for some interval.

|r$(u)|<
1
K

for all u # [&B, A] (H2)

[r # C2([&B, A], R) and there exists a # (0, 1) with

r"(u)�a+(r$(u))2 for all u # [&B, A]] (H2$)

Condition (H2$) was introduced by Mallet-Paret and Nussbaum [41].
The advantage of (H2$) comparing to (H2) is that it is independent of f,
and if it holds for some +0>0, then it holds for all +�+0 . This was impor-
tant in [41], where a singularly perturbed equation was considered.

In the remaining part of the paper we always assume that, in addition
to (H1), either (H2) or (H2$) holds.

Lemma "I<I Let t0 # R and let x: [t0&R, �) � [&B, A] be a solu-
tion of (2.1) on ([t0 , �), [t0&R, �)). Suppose x* (\)=0 for some \�t0 .
Then (d�dt)(t&r(x(t))>0 for all t�\.
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Proof. Set ': [t0 , �) % t [ t&r(x(t)) # R. If (H2) is assumed, then
'* (t)=1&r$(x(t)) x* (t)�1&|r$(x(t)) x* (t)|>1&(1�K ) K=0 for all t�t0 .

Assume that (H2$) holds and let \�t0 with x* (\)=0. Then '* (\)=
1&r$(x(\)) x* (\)=1. We show that '* (t)>0 for all t�\. If this is false,
then define

t1=inf[t>\ : '* (t)=0]

At t=t1 we have '* (t1)=0, r$(x(t1) x* (t1)=1, and so

d 2

dt2 '(t1)=&r"(x(t1))(x* (t1))2&r$(x(t1))
d 2

dt2 x(t1)

=&r"(x(t1))(r$(x(t1)))&2++

The definition of t1 implies (d 2�dt2) '(t1)�0. So, it follows that at u=x(t1)
we have r"(u)�+(r$(u))2, which is a contradiction since r$(u)=r$(x(t1))
{0. g

The next lemma gives an equation for the difference of two solutions
of Eq. (2.1). This fact enables us to define a discrete Lyapunov functional
as a basic tool. The fact that the dependence of the delay on the state is of
the form r(x(t)) seems to be crucial.

Lemma "I>I There are negative reals :0�:1 with the following
properties. For all solutions x, y of Eq. (2.1) on (R, R) with x(R)/
[&B, A] and y(R)/[&B, A], there exist continuous functions a: R � R
and :: R � R such that :(R)/[:0 , :1], a is bounded, and the function

v: R % t [ [x(t)& y(t)] exp \&|
t

0
a(s) ds+ # R

satisfies

v* (t)=:(t) v(t&r(x(t))) for all t # R

Proof. Define the real numbers a0 , b0 , b1 , :0 and :1 by

a0=++K max
u # [&B, A]

| f $(u)| max
u # [&B, A]

|r$(u)|

b0= min
u # [&B, A]

f $(u), b1= max
u # [&B, A]

f $(u)

:0=b0 ea0 R, :1=b1e&a0R

Then :0�:1<0.
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Set

z: R % t [ x(t)& y(t) # R

a: R % t [ =&+&|
1

0
f $[[1&s] y(t&r( y(t)))+sy(t&r(x(t)))] ds

_|
1

0
y* [[1&s](t&r( y(t)))+s(t&r(x(t)))] ds

_|
1

0
r$[[1&s] x(t)+sy(t)] ds # R

b: R % t [ |
1

0
f $[[1&s] y(t&r(x(t)))+sx(t&r(x(t)))] ds # R

Clearly, z, a, b are continuous functions and

|a(t)|�a0 , b0�b(t)�b1 , for all t # R

It is not difficult to see that z is continuously differentiable and satisfies

z* (t)=a(t) z(t)+b(t) z(t&r(x(t))) for all t # R

Setting

v: R % t [ z(t) exp \&|
t

0
a(s) ds+ # R

we obtain that v is continuously differentiable and

v* (t)=b(t) exp \&|
t

t&r(x(t))
a(s) ds+ v(t&r(x(t))) for all t # R

Define

:: R % t [ b(t) exp \&|
t

t&r(x(t))
a(s) ds+ # R

Then : is continuous, and by using the bounds on a, b and the inequality
0�r(x(t))�R, t # R, we conclude :(R)/[:0 , :1]. g
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Backward uniqueness also holds for the solutions of Eq. (2.1) in the
following sense.

Lemma "I�I If x, y are solutions of Eq. (2.1) on (R, R) with x(R)/
[&B, A], y(R)/[&B, A], and xs= ys for some s # R, then x(t)= y(t) for
all t # R.

Proof. Clearly xt , yt # LK for all t # R. Proposition 2.3 yields x(t)=
y(t) for all t�s&R. Let

t0=inf[t: x(u)= y(u) for all u�t]

It is enough to shown that t0=&�. Suppose t0>&�. We apply Lemma 2.6.
It follows that v(t)=0 for all t�t0 . In particular, v* (t)=0 for all t�t0 . The
differential equation for v and the fact that :<0 combined yield

v(t&r(x(t)))=0 for all t�t0

By Proposition 2.3(i) we have r0=minu # [&B, A] r(u)>0. Consequently,
v(t)=0 for all t�t0&r0 , which contradicts the definition of t0 . g

Since F is a continuous semiflow on the compact metric space LK , it
follows from [25] that, for every , # LK , the solution x,: [&R, �) �
[&B, A] has a nonempty |-limit set

|(,)=[� # LK : there is a sequence (tn)�
0 in R+ such that

tn � � and F(tn , ,) � � as n � �]

which is compact, connected, and invariant. If , # LK and there is a solu-
tion x: R � [&B, A] of (2.1) on (R, R) such that x0=,, then Lemma 2.7
implies that x is unique. For such a , # LK , the :-limit set

:(,)=[� # LK : there is a sequence (tn)�
0 in (&�, 0] such that

tn � &� and xtn
� � as n � �]

is nonempty, compact, connected, and invariant. By Lemma 2.7, the
invariance of the :- and |-limit sets means that, for each � # :(,)
(� # |(,)), there is a unique solution y: R � [&B, A] of (2.1) on (R, R) so
that y0=� and yt # :(,) ( yt # |(,)) for all t # R.

In case , # LK and there is a solution x on (R, R) with x(R)/
[&B, A] and x0=,, we also use the symbol x, to denote such a solution.
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3. A LINEAR AUTONOMOUS EQUATION

The linear autonomous equation

x* (t)=&+x(t)+ f $(0) x(t&1) (3.1)

can be associated with solutions of Eq. (2.1) tending to zero as t � � or
t � &�. We recall some basic facts.

The phase space is C=C([&1, 0], R) with the maximum norm & }&C .
For each , # C, there exists a unique solution of (3.1) starting from ,.
Namely, there exists a unique continuous x,: [&1, �) � R such that
x,| [&1, 0]=,, and x,: [0, �) � R is differentiable and satisfies (3.1). Back-
ward solutions, if they exist, are also unique in the following sense: if I is
an interval on R and x, y are continuous on �t # I [t&1, t], are C 1 on I,
satisfy (3.1) on I and x(t+s)= y(t+s), &1�s�0, for some t # I, then
x(u)= y(u) for all u # �t # I [t&1, t]. For each (t, ,) # [0, �)_C, defining
T (t),=�, where �(s)=x,(t+s), &1�s�0, (T (t))t�0 is a linear C0 -semi-
group on C. T (1) is a compact operator. The spectrum 7=[* # C : *++
& f $(0) e&*=0] of the generator of (T (t))t�0 consists of complex con-
jugate pairs of eigenvalues in the double strips Sk given by

2k?<|Im(*)|<2k?+?, k=1, 2,...

and at most two eigenvalues in the strip S0 given by

|Im(*)|<?

the total multiplicity of 7 in S0 is 2.
We have

max Re \ .
�

k=1

(7 & Sk)+<min Re(7 & S0)

Let L and Q denote the realified generalized eigenspaces associated with
the spectral sets 7 & S0 and ��

k=1 (7 & Sk), respectively. Then

C=L�Q

dim L=2, and both L and Q are positively invariant under the maps T (t).
Let TL(t) and TQ(t) denote the restrictions of T (t) to L and Q, respec-
tively. TL(t) can be defined for all t # R so that TL is a flow on L.

Let u0=max Re(7 & S0). Define

v(+) # \?
2

, ?+ by v(+)=&+ tan(v(+))
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Then

u0<0 for f $(0)>
+

cos(v(+))

u0=0 at f $(0)=
+

cos(v(+))

u0>0 for f $(0)<
+

cos(v(+))

If u0�0, then 7 & S0 consists of a complex conjugate pair [u0\iv0] with
v0 # ((?�2), ?).

The standard notation xt is occupied to denote an element of
C([&R, 0], R). If x a solution of (3.1) on I and [t&1, t]/I, then xt, C # C
is defined by xt, C(s)=x(t+s), &1�s�0.

A solution of (3.1) is called slowly oscillating if for every pair of zeros
z$>z, we have z$&z>1.

Lemma /I}I

(i) If , # L"[0] then the unique solution x,: R � R of (3.1) is slowly
oscillating on R.

(ii) If u0<0 and z: (&�, 0] � R is a solution of (3.1) with

&zt, C&C�&z0, C&C for all t�0

then z(t)=0 for all t�0.

(iii) If u0=0 and z: (&�, 0] � R is a solution of (3.1) with

&zt, C&C�&z0, C &C=1 for all t�0

then z has at most one sign change on the intervals [t&1, t] for
all t�0.

(iv) If u0>0, =>0 and z: (&�, 0] � R is a solution of (3.1) with

&zt, C&C�e(u0+=) t &z0, C &C for all t�0

then z(t)=0 for all t�0.

(v) If u0>0 and z: R � R is a slowly oscillating solution of (3.1)

with

|z(t)|�k1ek2 |t| for all t # R

for some k1>0 and k2>0, then zt, C # L for all t # R.
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Proof. 1. The proof of (i) is elementary, and it can be found, e.g.,
in [50].

2. The proof of (ii). There exist K1>0 and $>0 such that
u0+$<0 and

&T (t)&�K1e(u0+$) t, t�0

For _�t�0, we have zt, C=T (t&_) z_, C and thus

&zt, C&C =&T (t&_) z_, C&C�K1e(u0+$)(t&_) &z_, C &C

�K1e(u0+$)(t&_) &z0, C&C � 0

as _ � &�. Therefore, zt, C=0 for all t�0.

3. The proof of (iii). There exist K2>0 and $>0 such that

&TQ(t)&�K2e&$t, t�0

If _�t�0 and zu, C=zQ
u, C+zL

u, C with zQ
u, C # Q, zL

u, C # L, then

&zQ
t, C&C =&TQ(t&_) zQ

_, C &C�&TQ(t&_)& &zQ
_, C &C

�K$2 &TQ(t&_)& &z_, C&C�K$2 &TQ(t&_)& &z0, C&C

�K$2K2e&$(t&_) � 0

as _ � &�, where K$2>0 is a bound for the norm of the projection
operator from C onto Q along L. It follows that zt, C # L for all t�0.
zt, C{0 since &z0, C &=1. Thus (i) can be applied to get the statement.

4. The proof of (iv). There exist $ # (0, =) and K3>0 such that

&T (t)&�K3e(u0+$) t, t�0

Then for t�0

&z0, C &C =&T (&t) zt, C &C�K3e(u0+$)(&t) &zt, C&C

�K3e(u0+$)(&t)e(u0+=) t &z0, C&C=K3e(=&$) t &z0, C&

Hence, for sufficiently large negative t, &z0, C &=0 follows. Then z(t)=0 for
all t�0.

5. The proof of (v). Consider another decomposition,

C=Q� �L�
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of C into T (t) positively invariant subspaces such that Re *<&k2 for all
* # 7 associated with Q� . Then there exists :>0 such that Re *<&:
<&k2 for all * # 7 associated with Q� and

&TQ� (t)&�K4e&:t, t�0

We have zt, C=zQ�
t, C+zL�

t, C with zQ�
t, C # Q� , zL�

t, C # L� . Then, for _�t,

&zQ�
t, C&C =&TQ� (t&_) zQ�

_, C&�K$4 K4 e&:(t&_)k1ek2 |_|

=K$4K4k1e&:te(:&k2) _ � 0

as _ � &�, where K$4>0 is a bound for the norm of the projection
operator from C onto Q� along L� . Therefore, zt, C # L� for all t # R. Conse-
quently,

z(t)= :
N

k=0

akeuk t sin(vk t+bk)

for some nonnegative integer N such that aN{0. For large negative t, the
term with greatest index is dominant in this sum. Since sin(vNt+bN) has
zeros at distances ?�|vN |<1 for N�1 and z is slowly oscillating, it follows
that N=0, and thus zt, C # L for all t # R. g

4. A DISCRETE LYAPUNOV FUNCTIONAL

In this section we define a discrete, integer-valued Lyapunov func-
tional. For equations with constant delay, Mallet-Paret [39] introduced a
discrete Lyapunov functional. A more general version is contained in [44].
The state-dependent delay requires a modified version of the functional. We
have to count sign changes of solutions x of Eq. (2.1) on intervals of the
form [t&r(x(t)), t] instead of on intervals with fixed length.

Let [a, b] be an interval and , be a real-valued continuous function
defined on an interval containing [a, b] such that ,| [a, b]{0. Then the
number of sign changes sc(,, [a, b]) of , on [a, b] is 0 if either ,(s)�0
for all s # [a, b] or ,(s)�0 for all s # [a, b]; otherwise sc(,, [a, b]) is given
by

sc(,, [a, b]=sup[k: there exist s0<s1< } } } <sk such that si # [a, b] for

i=0, 1,..., k, and ,(si ) ,(si+1)<0 for i=0, 1,..., k&1]
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Let

V(,, [a, b])={sc(,, [a, b])
sc(,, [a, b])+1

if sc(,, [a, b]) is odd or infinite
if sc(,, [a, b]) is even

Therefore V(,, [a, b]) # [1, 3,...] _ [�]. Define

H[a, b]=[, # C1([a, b], R) : ,(b){0 or ,(a) ,4 (b)<0,

,(a){0 or ,4 (a) ,(b)>0, all zeros of , in (a, b) are simple]

H[a, b] is an open dense subset of C1([a, b], R).

Lemma �I}I

(i) V is lower semicontinuous in the following sense. If ,, ,n are non-
zero continuous functions on the intervals [a, b], [an, bn], respec-
tively, and

max
s # [a, b] & [an, bn]

|,n(s)&,(s)| � 0, an � a, bn � b as n � �

then

V(,, [a, b])�lim inf
n � �

V(,n, [an, bn])

(ii) If , # H[a, b] , then V(,, [a, b])<�.

(iii) If , # C1([a&$, b+$], R) for some $>0 and ,| [a, b] # H[a, b] ,
then there is # # (0, $) such that

|a&c|<#, |b&d |<#, � # C1([c, d ], R), &�&,&C 1([c, d ], R)<#

imply

V(�, [c, d ])=V(,, [a, b])

Proof. 1. The proof of (i). The cases V(,, [a, b])=� and a=b
are clear. Assume that a<b and V(,, [a, b])<�. Then there exists # #
(0, (b&a)�4) such that , does not change sign on the intervals [a, a+2#]
and [b&2#, b]. For large n, we have [an, bn]#[a+#, b&#]. If
|,n(s)&,(s)| is sufficiently small for all s # [a+#, b&#], which is the case
for sufficiently large n, then obviously

V(,n, [an, bn])�V(,n, [a+#, b&#])�V(,, [a+#, b&#])=V(,, [a, b])
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2. The proof of (ii). V(,, [a, b])=� implies the existence of an
s # [a, b] with ,(s)=,4 (s)=0, a contradiction.

3. The proof of (iii). If ,(a){0 and ,(b){0, then clearly
sc(�, [c, d ])=sc(,, [a, b]) provided |a&c|, |b&d | and &�&,&C 1([c, d ], R)

are small enough. In the case ,(b)=0, ,(a) ,4 (b)<0, the number of sign
changes sc(,, [a, b]) of , on [a, b] is an even number. If |a&c|, |b&d |,
and &�&,&C1([c, d ], R) are sufficiently small, then

sc(,, [a, b])�sc(�, [c, d ])�sc(,, [a, b])+1

that is, V(�, [c, d ])=V(,, [a, b]). The same works for the case ,(a)=0,
,4 (a) ,(b)>0. g

Let I=[c, d ] be an interval and let :: I � R, {: I � R be continuous
functions such that :(t)<0, {(t)>0 for all t # I, and the function ': I % t [
t&{(t) # R is strictly increasing on I.

Let k # N"[0, 1] be given. Assume that there exists a finite sequence
(cj )

k
1 in [c, d ] such that c1=c and '(cj )=cj&1 for all j # [2,..., k]. Then we

define the functions '0, '1,..., 'k by '0(t)=t for all t # [c, d ], and

' j: [c, d ] % t [ '(' j&1(t)) # R

for j # [1, 2,..., k].
Set J=[t&{(t): t # I ] _ I. Let v: J � R be a continuous function

which is continuously differentiable on I and satisfies

v* (s)=:(s) v(s&{(s)) (4.1)

for all s # I.

Lemma �I"I Assume that I=[c, d ], :, {, ', v, k and (cj )
k
1 are given

as above, moreover, for all v|['(t), t] is not identically zero. Then

(i) t1, t2 # I, t1<t2 imply that V(v, ['(t1), t1])�V(v, ['(t2), t2]);

(ii) k�3, t # [c3 , d ], v(t)=v('(t))=0 imply that either V(v, ['(t), t])
=� or V(v, ['(t), t])<V(v, ['3(t), '2(t)]);

(iii) k�4, t # [c4 , d ] and V(v, ['(t), t])=V(v['4(t), '3(t)])<�
imply that v|['(t), t] # H['(t), t] .

Proof. 1. The proof of (i). We claim that it suffices to show that
for all t # I there exists =0==0(t)>0 such that for all = # [0, =0] with
t+= # I,

V(v, ['(t), t])�V('(t+=), t+=) (4.2)
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Indeed, let t1, t2 in I with t1<t2 be given and assume that for every t # I
there is =0==0(t)>0 so that for all = # [0, =0] with t+= # I we have (4.2).
Define

t*=sup[s # [t1, t2] : V(v, ['(t1), t1])�V(v, ['(u), u]) for all t1�u�s]

Then t1<t*�t2. From the definition of t* it follows that there is a
sequence (sn)�

0 in [t1, t*] so that sn � t* as n � � and V(v, ['(t1), t1])�
V(v, ['(sn), sn]) for all n # N. Clearly, '(sn) � '(t*) as n � �. Then
Lemma 4.1(i) yields V(v, ['(t1), t1])�V(v, ['(t*), t*]). If t*<t2, then
there is =0(t*) # (0, t2&t*] so that V(v, ['(t*), t*])�V(v, ['(t*+=),
t*+=]) for all = # [0, =0(t*)]. This contradicts the definition of t*. Conse-
quently, t*=t2, and the claim holds.

If V(v, ['(t1), t1])=�, then there is nothing to prove. Assume that
V(v, ['(t1), t1])<�. Again, the case v(t1){0 is obvious by using the
increasing property of '. Assume that v(t1)=0. From the finiteness of
V(v, ['(t1), t1]), it follows that v does not change sign on ['(t1), '(t1)+$]
for some $>0. Assume that v(t)�0 on this interval. Since (4.1) is linear,
the case v(t)�0 is analogous. By the continuity and increasing property
of ', there is =0>0 such that t # [t1, t1+=0] implies '(t) # ['(t1), '(t1)+$].
Hence, using (4.1), v* (t)�0 follows for t # [t1, t1+=0]. Since v(t1)=0, we
obtain that v(t)�0 for all t # [t1, t1+=0]. If v(t)=0 for all t # [t1, t1+=0],
then (4.2) holds with equality for all = # [0, =0]. If v(t)<0 for some
t # [t1, t1+=0], then, by (4.1) and :<0, we have v('(t� ))>0 for some
t� # (t1, t) with '(t� ) # ['(t1), '(t1)+$]. Then there exists # # (0, t1&'(t1))
such that v is not identically zero on [t1&#, t1] and either v(t)�0 for all
t # [t1&#, t1] or v(t)�0 for all t # [t1&#, t1]. If v(t)�0 on [t1&#, t1],
then

sc(v, ['(t1), t1+=])�sc(v, ['(t1), t1])+1, 0�=�=0

But sc(v, ['(t1), t1]) is even [since v has the same sign on the right of '(t1)
and on the left of t1], and thus (4.2) is satisfied for all = # [0, =0]. If v(t)�0
on [t1&#, t1], then

sc(v, ['(t1), t1+=0])=sc(v, ['(t1), t1])

and (4.2) holds again for all = # [0, =0].

2. The proof of (ii). Assume that V(v, ['(t), t])<�, since there is
nothing to prove if V is infinite. Let k=sc(v, ['(t), t]). We can choose
(ti )k+2

i=0 such that

'(t)=tk+2<tk+1< } } } <t1<t0=t
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and

v(ti ) v(ti+1)<0, i=1, 2,..., k

Applying the mean value theorem to each interval [ti+1, ti ] and using the
facts that v(t0)=v(tk+2)=0, that v* (s) and v('(s)) have different signs (if
none of them is zero), and that ' is increasing, we get a sequence (t� )k+1

i=0

such that

'2(t)<t� k+1<t� k< } } } <t� 1<t� 0<'(t)

and

v(t� i ) v(t� i+1)<0, i=0, 1,..., k

Therefore sc(v, ['2(t), '(t)])�k+1, and thus, in case of odd k,

V(v, ['2(t), '(t)])�k+2>k=V(v, ['(t), t])

and the stated inequality follows from (i).
Assume that k is even. Then v(t� 0) and v(t� k+1) have different signs.

Using that v('(t))=0, we can choose t* # (t� 0, '(t)) such that v(t*) and
v(t� 0) have the same sign, and v* (t*) and v(t� 0) have different signs. Then,
since v* (t*) and v('(t*)) have different signs, we conclude that the signs of
v('(t*)) and v(t� k+1) are different. Consequently, sc(v, ['(t*), t*])�k+2
because of '(t*)<'2(t)<t� k+1. Thus, from '(t*)>'3(t) and statement (i),

V(v, ['3(t), '2(t)])�V(v, ['(t*), t*])�k+3>k+1=V(v, ['(t), t])

3. The proof of (iii). Assume that V(v, ['(t), t])=V(v, ['4(t), '3(t)])
<�. Then, for any s # ['(t), t], we have '3(t)�'2(s)�s�t. Conse-
quently, by statement (i),

V(v, ['(s), s])=V(v, ['3(s), '2(s)])<�, s # ['(t), t]

From statement (ii) it follows that

(v(s), v('(s))){(0, 0) for all s # ['(t), t]

Using that v* (s)=:(s) v('(s)) and :(s){0, we obtain

(v(s), v* (s)){(0, 0) for all s # ['(t), t]

that is, the zeros of v on ['(t), t] are simple. As a consequence, in case
v(t)=0 we get 0{v* (t)=:(t) v('(t)) and v* (t) v('(t))<0 because of :(t)<0.
Now assume v('(t))=0. By statement (ii), v(t){0, v('2(t)){0, and thus
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v* ('(t)){0. Assume that v* ('(t)) v(t)<0. Then sc(v, ['(t), t]) is an odd
number k, and similarly to the proof of statement (ii), there is a sequence
(ti )k+2

i=0 such that

'(t)=tk+1<tk< } } } t1<t0=t

and

v(ti ) v(ti+1)<0, i=1, 2,..., k

Applying the mean value theorem and using v* ('(t)) v(t)<0, we get k+1
sign changes in the interval ['2(t), '(t)]. This gives that

V(v, ['2(t), '(t)])�k+2>k=sc(v, ['(t), t])=V(v, ['(t), t])

a contradiction. Therefore, v|['(t), t] # H['(t), t] . g

The next result shows that the Lyapunov functional V can be effec-
tively used to show that solutions of (4.1) cannot decay too fast at �. For
constant delay, Mallet-Paret [39], Cao [10], and Arino [4] proved
estimates of this type.

Lemma �I/I Assume that t$, t are real numbers with t$<t, :: [t$, t] � R
and {: [t$, t] � R are continuous functions, and there are positive constants
a0 , a1 , {0 , L{ such that

&a1�:(s)� &a0 for all s # [t$, t]

{0�{(s) for all s # [t$, t]

|{(s1)&{(s2)|�L{ |s1&s2| for all s1, s2 in [t$, t]

the function ': [t$, t] % s [ s&{(s) # R is strictly increasing, and t$='4(t).
Let v be a continuous function on ['5(t), t] such that (4.1) holds for all
s # ['4(t), t] and V(v, ['5(t), '4(t)])=1.

Then there exists a constant k=k(a0 , a1 , {0 , L{)>0 such that

max
s # ['2(t), '(t)]

|v(s)|�k max
s # ['(t), t]

|v(s)| (4.3)

Proof. First, we prove the following claim.

Claim. For any $ # (0, {0) there exists c=c($, a0 , L{)>0 such that
for each interval 2/['4(t), '(t)] with length $, we have

min
s # 2

|v(s)|�c max
s # ['(t), t]

|v(s)| (4.4)
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Proof of the Claim. Let v� =maxs # ['(t), t] |v(s)|. First choose 2 in the
interval ['2(t), '(t)], that is, 2=['(s1), '(s2)], $='(s2)&'(s1) and '(t)�
s1<s2�t. Integrating (4.1) on [s1, s2], we get

v(s2)&v(s1)=|
s2

s1
:(u) v('(u)) du

The length of [s1, s2] can be estimated from

$='(s2)&'(s1)�s2&s1+|{(s2)&{(s1)|�(1+L{)(s2&s1)

Hence

min
s # 2

|v(s)|�
2(1+L{)

a0$
v�

Define c1=c1($, a0 , L{)=(2(1+L{))�a0$.
Now consider any interval 2/['3(t), '(t)] of length $. If the length

of 2 & ['2(t), '(t)] is greater than or equal to $�2, then we choose
c=c1($�2, a0 , L{). Assume that |2 & ['3(t), '2(t)]|>$�2. There are t1, t2 #
['2(t), '(t)] such that ['(t1), '(t2)]/2 and '(t2)&'(t1)=$�2. From the
Lipschitz continuity of {, we obtain

t2&t1�
$

2(1+L{)

Considering the intervals

_t1, t1+
$

6(1+L{)& , _t2&
$

6(1+L{)
, t2&/['2(t), '(t)]

of length $� =$�(6(1+L{)), the first part of the proof gives that

min
s # [t 1, t 1+$� ]

|v(s)|�c1($� , a0 , L{) v� , min
s # [t2&$� , t 2]

|v(s)|�c1($� , a0 , L{) v�

Applying the mean value theorem, we obtain a t* # (t1, t2) such that

|v* (t*)|�
2c1($� , a0 , L{) v�

$�

Using Eq. (4.1),

|v('(t*))|�
|v* (t*)|

a0

�
2c1($� , a0 , L{) v�

a0$�
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Since '(t*) # 2, it follows that

min
s # 2

|v(s)|�
2c1($� , a0 , L{)

a0$�
v�

Then, for any interval 2/('3(t), '(t)] of length $, (4.4) holds with c=c2 ,
where

c2=c2($, a0 , L{)=max {c1 \$
2

, a0 , L{+ , 2
c1($� , a0 , L{)

a0$� =
Repeating the above argument we obtain that

c=c($, a0 , L{)=max {c2 \$
2

, a0 , L{+ ,
c2($� ), a0 , L{

a0$� =
is an appropriate constant for any 2/['4(t), '(t)]. This completes the
proof of the claim.

Now we prove Lemma 4.3. Choose $>0 such that 2$(1+L{)(2+L{)
�{0 . By the above claim, there is a c=c($)>0 such that (4.4) holds.
Clearly, c>1 may be assumed. We prove that (4.3) is satisfied if k>0 is
chosen such that (k&c)�a1 $>c. Let v� =maxs # ['(t), t] |v(s)| and assume
that (4.3) is not true. Then there is t* # ['2(t), '(t)] such that |v(t*)|>kv� .
By the above claim,

min
s # [t*&$, t*]

|v(s)|�cv� , min
s # [t*, t*+$]

|v(s)|�cv�

If t*+$>'(t), then the claim does not apply to get the second inequality.
But in that case it clearly holds since c>1. The mean value theorem
implies the existence of s1 # [t*&$, t*] and s2 # [t*, t*+$] such that

|v* (si )|�
(k&c) v�

$
, i=1, 2

moreover, v* (s1) v* (s2)<0. Hence it follows that

|v('(si ))|�
|v* (si )|

a1

�
(k&c) v�

a1 $
>cv�

and v('(s1)) v('(s2))<0. A second application of the claim gives

min
s # ['(s 1)&$, '(s1)]

|v(s)|�cv� , min
s # ['(s2), '(s 2)+$]

|v(s)|�cv�
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We prove later that '(s1)&$�'4(t), i.e., that the claim is applicable. Then,
again by the mean value theorem, it is obtained that v* has at least two sign
changes on the interval ['(s1)&$, '(s2)+$]. Equation (4.1) implies that
then v also has at least two sign changes on ['('(s1)&$), '('(s2)+$)].
From the Lipschitz continuity of { it follows that

|'(s2)+$&('(s1)&$)|�|'(t*+$)+$&('(t*&$)&$)|

�2$(2+L{)�{0 (4.5)

|'('(s2)+$)&'('(s1)&$)|�2$(1+L{)(2+L{)�{0 (4.6)

From (4.5), '(s1)&$�'4(t) follows, since '(t*)�'3(t) and '(t*) #
('(s1)&$, '(s2)+$). In addition, '('(s1)&$)�'5(t) is also obtained. Then
(4.6), sc(v, ('('(s1)&$), '('(s2)+$)])�2, and Lemma 4.2(i) combined
imply

V(v, ['5(t), '4(t)])>1

a contradiction. g

The next result gives a connection between the distances of consecutive
zeros of solutions of (4.1) and the values of V.

Lemma �I�I Assume that :, {, v: R � R are continuous functions such
that :(R)/(&�, 0), {(R)/(0, �), the function R % t [ t&{(t) # R is
strictly increasing, {(t)=1 for all t # R with v(t)=0, v is continuously
differentiable on R and satisfies (4.1) for all s # R.

Then the following statements are equivalent.

(i) |z1&z2 |>1 holds for every pair of zeros z1{z2 of v.

(ii) v|[t&{(t), t]�0 and V(v, [t&{(t), t])=1 for all t # R.

Proof. 1. Assume (i). If v has no zero, then (ii) holds. Suppose v
has at least one zero. For a given zero z of v, define z+=� if v has no zero
on (z, �); otherwise z+=min[t>z : v(t)=0]. For every t # R either there
exists a zero z of v with t # [z, z+) or v(s){0 for all s�t. In the latter case
clearly v| [t&{(t), t]�0 and V(v, [t&{(t), t])=1. Assume that t # [z, z+) for
some zero z of v. Then z is the only zero of v on (z&1, z+). We also have z&1
=z&{(z)�t&{(t)<t<z+ . Therefore v|[t&{(t), t]�0 and V(v, [t&{(t), t])
=1.

2. Assume (ii). Let z be a zero of v. Then {(z)=1. By Lemma 4.2(iii),
all zeros of v are simple on ['(z), z]=[z&1, z] and v(z&1) v* (z)<0. These
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facts and sc(v, [z&1, z])�V(v, [z&1, z])=1 combined yield z(t){0 for
all t # (z&1, z). g

Remark 4.5. Let x, y be solutions of Eq. (2.1) on (R, R) with x(R)/
[&B, A] and y(R)/[&B, A]. Lemma 2.2(ii) and Lemma 2.5 combined
imply that the function R % t [ t&r(x(t)) # R is strictly increasing. Defining
v, : as in Lemma 2.6 and { by {(t)=t&r(x(t)) we find that (4.1) holds for
all s # R. Using the properties of :, v stated in Lemma 2.6, we see that
Lemmas 4.2�4.4 can be applied.

5. SLOWLY OSCILLATING SOLUTIONS

A solution x of Eq. (2.1) is called slowly oscillating if for every pair of
zeros z$>z of x

z$&z>1

holds. Our aim is to describe the set of globally defined slowly oscillating
solutions with values in [&B, A]. Recall from r(0)=1 and Proposition 2.3
that R�1. Set

S=[, # LK : sc(,, [t&1, t])�1 for all t # [&R+1, 0]]

S0=[, # S : ,(s)=0 for all s # [&1, 0]]

S is a closed subset of LK , therefore it is compact. For each t # [&1, 1]
and , # S, clearly t, # S. S is not convex. It is clear that, if x: J � [&B, A]
is a slowly oscillating solution of Eq. (2.1) on (I, J ), then its segments xt

belong to the set S"S0 .
Define

U=[, # LK : ,(s)�0 for all s # [&1, 0], ,(0)=0]

U0=[, # LK : ,(s)=0 for all s # [&1, 0]]

If x: R � [&B, A] is a slowly oscillating solution of Eq. (2.1) and z is a
zero with x* (z)<0, then xz # U"U0 . The set U is a compact convex subset
of LK . The next result of Mallet-Paret and Nussbaum [41] shows that, for
any , # U"U0 , there is a sufficiently large t0 such that x, is slowly oscillating
on [t0 , �).

Proposition <I} O�}PI

(i) If , # U0 , then x,(t)=0 for all t�0.
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(ii) If , # U"U0 , then define

q0=sup[t: x,(s)=0 for all 0�s�t]

Define

q1=inf[t>q0 : x,(t)=0]

and q1=� if x,(t)<0 for all t>q0 . If qk is finite, define

qk+1=inf[t>qk : x,(t)=0]

and qk+1=� if x(t){0 for all t>qk . If qk=�, then define
qk+1=�. Then q0<1, q1&q0>1, and qk+1&qk>1 for all k
such that qk<�. If qk=� for some k, then limt � �x,(t)=0.

Remark 5.2. Setting

U� =[, # LK : ,(s)�0 for all s # [&1, 0], ,(0)=0]

for each , # U� "U0 , an analogous statement to Proposition 5.1(ii) holds.
We shall make use of a return map on the compact convex set U. For

every k # N"[0] Proposition 5.1 permits us to define a map Pk : U � U by

Pk(,)=F(q2k , ,) if , # U"U0 and q2k<�

Pk(,)=0 if , # U0 or , # U"U0 and q2k=�

Pk(,) is the k th intersection of the trajectory x,
t with U provided

q2k(,)<�.
If R is large, then Pk is not, in general, continuous at nonzero elements

of U0 . Let us choose l # N such that 2l�R. Then we have the following
result.

Proposition <I/I Pl is continuous.

Proof. First, we prove the following claim.

Claim. For every =>0, there exists T=T (=)>0 such that if , #
U"U0 and q2l�2lT, then &Pl (,)&<=.

Proof of the Claim. If q2l=�, then Pl (,)=0 and thus &P l (,)&=0.
So, it suffices to deal with those , # U"U0 for which q2l<�. Let T>2R.
If q2l�2lT; then there exists a k # [1, 2,..., 2l ] such that qk&qk&1�T.
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Then from Eq. (2.1), |x| is decreasing on [qk&1+R, qk], and for all
t # [qk&1+R, qk] we have

|x* (t)|� &+ |x(t)|

|x(t)|�|x(qk&1+R)| e +(qk&1+R&t)�max[A, B] e +(qk&1+R&t)

It follows that

&xqk
&�max[A, B]e +(2R&T )

Since x#0 is a solution of Eq. (2.1), by Lemma 2.4, for each #>0
there exists $=$(#)>0 such that &,&<$ and , # LK imply &x,

t &<# for all
t # [0, R].

We assert that for every #>0, &xqj
&<$(#) implies &xqj+1

&<#.
Assume that &xqj

&<$(#). The case qj+1&q j�R is obvious. If q j+1&qj

>R, then |x| is decreasing on [qj+R, qj+1]. By the definition of $(#),
&xqj+R&<#. Consequently,

&xqj+1
&<&xqj+R&<#

Therefore, it can be shown by induction that there exists '='(=)>0 such
that

&xqk
&<' implies &xq2l

&<=

If

T>
1
+

log
max[A, B]

'(=)
+2R

then &xqk
&<'. This completes the proof of the claim.

We now prove the proposition. Let a sequence (,n)�
0 in U and , # U

be given with ,n � , as n � �. Write xn=x,n
, x=x, and qn

k=qk(,n),
qk=qk(,) if ,n, , # U"U0 , respectively. We divide the proof into three
cases.

Case 1. , # U"U0 and q2l<�. We have ,n # U"U0 for all sufficiently
large n # N, say for n�n0 . Proposition 5.1 implies that q0<1, qn

0<1,
q1&q0>1, and qn

1&qn
0>1 for all n�n0 . It follows that qn

1>1 and q1>1
for all n�n0 and x(1)<0. Lemma 2.4 implies that for any positive number
=>0 and any number T with q2l<T<q2l+1 there exists n1(=, T ) with

sup[ |xn(t)&x(t)| : 1�t�T ]<= for all integers n�n1(=, T )
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For a given positive number $<min[ 1
2 , T&q2l ] we can assume (by

taking = as small as needed) that |x(t)|�= for all t # [1, T] �2l
j=1 [t # R :

|t&qj |�$]. For n�n1(=, T ), it follows that xn(t){0 for all t #
[1, T] �2l

j=1 [t # R : |t&q j |�$] and that xn(t) has a zero on the intervals
[qj&$, qj+$], j=1, 2,..., 2l. By Proposition 5.1, it follows that |qn

j &q j |
<$ for all integers n�n1(=, T ). Since $>0 can be arbitrarily small, it
follows that qn

j � qj as n � �, j=1, 2,..., 2l. Then Lemma 2.4 implies Pl (,n)
� Pl (,) as n � �.

Case 2. , # U"U0 and q2l=�. Then Pl (,)=0. For each real T>0
one can prove as in Case 1, by using Lemma 2.4 and Proposition 5.1, that
qn

2l�T for all sufficiently large n. Then the Claim implies that, for any
given =>0, &Pl (,n)&<= for all sufficiently large integers n.

Case 3. , # U0 . Then Pl (,)=0. We may assume that ,n # U"U0 for
all n, since Pl (�)=0 for � # U0 . Take =>0 and, applying the Claim above,
select T such that &Pl (,n)&<= for all n such that qn

2l�T. By Lemma 2.4,
there exists n2(=, T ) such that if n�n2(=, T ) then sup[ |x,n

(t)|:
0�t�T ]<=. In the case qn

2l�T, from qn
k&qn

k&1>1, k=1, 2,..., 2l, and
2l�R, it follows that qn

2l>R, and consequently &P l (,n)&=&F(qn
2l , ,n)&<=

for all integers n�n2(=, T ). Therefore, &Pl (,n)&<= for both cases qn
2l�T

and qn
2l<T provided n�n2(=, T ). g

The next result shows that the set S is positively invariant under the
semiflow F.

Proposition <I�I F(R+_S)/S.

Proof. Let , # S and write x=x,.

Case 1. sc(,, [&1, 0])=0. If , # (U _ U� ) & S, then Proposition 5.1
and Remark 5.2 can be used to conclude that xt # S for all t�0. If
, � U _ U� , then ,(0){0 and either x(t){0 for all t�0 or there exists a
smallest zero z>0 of x. If x(t){0 for all t�0, then xt # S clearly holds for
all t�0. Otherwise, xz # (U _ U� ) & S and, by applying again Proposition 5.1
and Remark 5.2, we easily obtain that xt # S for all t�0.

Case 2. sc(,, [&1, 0])=1. There exists s0 , s1 # (&1, 0) with s0<s1

such that either ,(s0)<0 and ,(s1)>0 or ,(s0)>0 and ,(s1)<0. We
consider only the first possibility since the second one is analogous. Set

z0=inf[t: ,(s)�0 for t�s�0]

z1=sup[t: x(s)�0 for 0�s�t]
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Clearly, &1<z0<0, z1 # [0, �], ,(z0)=0, and if z1<�, then x(z1)=0.
Moreover,

,(s)�0 for &1�s�z0

,(s)�0 for z0�s�0

If z1=�, then xt # S follows for all t�0. Assume that z1<�. We have

,(s)�0 for all s # [max[&R, s1&1], z0]

since , # S and thus , cannot have two sign changes on the interval
[max[&R, s1&1], s1]. We assert that z1&z0�1. If z1&z0<1, then there
exists =>0 such that

max[&R, s1&1]�t&r(x(t))<z0 for all t # (z1 , z1+=)

since z1&r(x(z1))=z1&1 # [&1, z0) and t&r(x(t))�&R for all t�0.
Hence, for t # (z1 , z1+=), from Eq. (2.1) we obtain

e +x(t)=|
t

z1

e +sf (x(s&r(x(s)))) ds�0

This contradicts the definition of z1 . Therefore z1&z0�1. Thus xz1
# U

follows. Then Proposition 5.1 and the definition of z1 combined imply that
the distance of consecutive zeros of x in [z1 , �) is greater than 1. Hence
we conclude that xt # S for all t�0. g

Consider a complete metric space M, a semiflow G: R+_M � M, and
a subset N/M. The set N is called invariant if G(t, N )=N for all t�0.
The set N is said to attract a set N$/M if for every open set O/M with
N/O there exists t�0 such that [G(s, u) : u # N$]/O for all s�t.
A global attractor is a compact invariant set which attracts every bounded
subset of M. The bounded complete orbits, i.e., the sets [u(t) : t # R] with
u: R � M satisfying u(t)=G(t&s, u(s)) for all reals t�s, with compact
closures are contained in the global attractor.

Since LK is a compact metric space, [25, Theorem 3.4.2] implies that
the semiflow F has a global attractor A(F ). By Proposition 5.4, the restric-
tion of F to R+_S defines a semiflow FS on the compact metric space S.
Define

A=A(FS)= ,
t�0

F(t, S)
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Proposition <I<I

(i) A is the global attractor of the semiflow FS .

(ii) The map FA : R_A % (t, ,) [ x,
t # A is a continuous flow.

(iii) A is connected.

(iv) The following statements are equivalent.

(a) , # A"[0].

(b) There is a solution x: R � [&B, A] with x0=, and xt # S"S0

for all t # R.

(c) There is a slowly oscillating solution x: R � [&B, A] with
x0=,.

(d) There is a nonzero solution x: R � [&B, A] such that x0=,,
xt | [&r(x(t)), 0]{0 and V(x, [t&r(x(t)), t])=1 for all t # R.

Proof. 1. By Proposition 5.4, the compact set S attracts all subsets
of S. Therefore, [25, Theorem 3.4.2] implies that A is the global attractor
of FS .

2. It also follows from [25, Theorem 3.4.2] that FA is a continuous
flow provided F(t, } ) is injective on A for all t�0. Let ,, � # A and
assume that F(t, ,)=F(t, �) for some t�0. Since A is invariant, there
exist solutions x, y: R � [&B, A] with x0=, and y0=�. Then Lemma 2.7
yields ,=�. Thus, F(t, } ): A � A is injective.

3. Suppose that A is not connected. Then there are open disjoint
subsets V1 , V2 of S such that A/V1 _ V2 , A & V1{<, A & V2{<. We
have F(t, S)#F(t, A)=A for all t�0 since A is invariant. As A attracts S,
there exists t�0 such that

[F(t, ,) : , # S ]/V1 _ V2

Then

F(t, S) & V1#A & V1{<{A & V2/F(t, S) & V2

and hence it follows that F(t, S) cannot be arcwise connected.
On the other hand, S is arcwise connected since [&1, 1]S/S. Then

F(t, S) is also arcwise connected as it is the continuous image of S. This is
a contradiction.

4. Let , # A"[0]. The facts that A is invariant, FA is a flow on A,
and FA(t, 0)=0 for all t # R combined yield the existence of a unique solu-
tion x: R � [&B, A] such that x0=, and xt # A"[0] for all t # R. The
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definition of A implies A/S. Hence xt # S follows for all t # R. If xs # S0

for some s # R, then, by, Proposition 5.1, xt=0 for all sufficiently large t,
a contradiction. Therefore, (a) O (b).

Assume that (b) holds. We have to show that x is a slowly oscillating
solution. Let z$>z be two zeros of x. In order to show that z$&z>1, it
suffices to find a t0�z&1 such that xt0

# U"U0 , since Proposition 5.1
applied to ,=xt0

# U"U0 implies that z$=qj (xt0
) and z=qk(x t0

) for some
integers k> j�1, which gives z$&z>1. From Lemma 2.2 it follows that
x has arbitrarily large negative zeros. For every real T, x takes both
positive and negative values in (&�, T]. Indeed, assuming the contrary,
Eq. (2.1) implies that |x| is decreasing on (&�, T]. This, together with the
existence of arbitrary large negative zeros, implies that x(s)=0 for all
s�T, a contradiction. Select s1 and s2 such that s1<s2<z&1 and
x(s1)>0, x(s2)<0. Define

t0=sup[t: x(s)�0 for all s1�s�t]

We claim that xt0
# U"U0 . Since xt0

# S"S0 and x(t0)=0 follows from the
definition of t0 , it is enough to prove that x(s)�0 for all s # [t0&1, t0].
This is the case if t0�s1+1. If t0<s1+1 and x(s)�0 for all s # [t0&1, t0]
does not hold, then there exists t1 # (t0&1, s1) such that x(t1)<0. Consider
the sign changes of x on the interval [t1 , t1+1]. The definition of t0

implies that there is a positive sequence ($n)�
0 such that $n � 0 as n � �

and x(t0+$n)<0 for all n # N. Hence and from t1+1>t0 , x(t1)<0 and
x(s1)>0, it follows that sc(x, [t1 , t1+1])�2, a contradiction to xt1+1 # S.
Thus, (b) O (c).

Assume that x: R � [&B, A] is a slowly oscillating solution. Consider
the interval [t&r(x(t)), t]. We claim that x cannot have more than one
zero in [t&r(x(t)), t]. If z1<z2 were two zeros in [t&r(x(t)), t], then
z2&z1>1 and r(x(z2))=r(0)=1 would imply that z2&r(x(z2))=z2&1>z1 .
Using that R % t [ t&r(x(t)) # R is increasing by Lemmas 2.2 and 2.5, we
obtain from t�z2 that t&r(x(t))�z2&r(x(z2))>z1 , a contradiction to
z1�t&r(x(t)). Therefore, (c) O (d).

Let x: R � [&B, A] be a nonzero solution such that V(x,
[t&r(x(t)), t])=1 for all t # R. Lemmas 2.2 and 2.5 yield that the function
R % t [ t&r(x(t)) # R is strictly increasing. We assert first that the set N$=
[xt : t # R] is a subset of S. We have to show that, for any t # R, x cannot
have more than one sign change in [t&1, t]. The case when x has no zero
in [t&1, t] is obvious. Let s denote the largest zero of x in [t&1, t]. Then
r(x(s))=1. The case s=t is again obvious since sc(x, [t&1, t])�V(x,
[t&1, t])=1. If s<t, then by the monotonicity of t&r(x(t)) and s&1=
s&r(x(s))<t&1, we find t$ # (s, t) such that [t&1, s]/(t$&r(x(t$)), t$].
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By the definition of s, x has the same sign on (s, t]. Therefore, sc(x, [t&1, t])
=sc(x, [t&1, t$])�sc(x, [t$&r(x(t$)), t$])�V(x, [t$&r(x(t$)), t$])=1.
Thus, N$ is a subset of S. The set N$ satisfies F(t, N$)=N$ for all t�0.
As A attracts N$, it follows that N$/A, and in particular x0=, # A.
x0=,=0 is impossible since x is a nonzero solution. So (d) O (a), and the
proof is complete. g

Corollary <I>I

(i) If (,n)�
0 is a sequence in A and , # A such that ,n � . as n � �,

then x,n
(t) � x,(t) as n � � uniformly on each compact subinter-

val of R.

(ii) The topologies induced on A from C([&R, 0], R) and
C1([&R, 0], R) are equivalent.

Proof. 1. Let I be a compact interval. Choose k # N such that
I/[&kR, kR]. The continuity of FA( jR, } ) by Proposition 5.5(ii) implies
that for every given =>0 there exist $j>0 such that from &,n&,&<$j

it follows that &F( jR, ,n)&F( jR, ,)&<=. Taking $=min[$j : j # [&k,
&k+1,..., k]], it follows from &,n&,&<$ that sup[ |x,n

(t)&x,(t)| : t # I ]
<=.

2. It suffices to show that if ,n, , # A and &,n&,& � 0 as n � �,
then &,4 n&,4 & � 0. By statement (i), &x,n

&R&x,
&R & � 0 follows. Then

Lemma 2.2 implies &,4 n&,4 & � 0 as n � �. g

We turn to the map Pl . Since U is compact, it follows from [25,
Theorem 2.4.2] that the set

A(Pl)= ,
�

n=0

Pn
l (U )

is the global attractor of Pl , that is, it is a compact invariant subset of U
attracting all bounded subsets (which in our case means all subsets) of U.
Since U is compact and convex, the closed convex hull of A(Pl) is a subset
of U. Then the arguments from the proof of [25, Lemma 2.4.1] show that
A(Pl) is connected.

Proposition <I�I A & U=A(Pl).

Proof. It is clear that 0 is an element of A & U and A(P).
Let , # (A & U )"[0]. Proposition 5.5 implies that there is a slowly

oscillating solution x: R � [&B, A] such that x0=,. Using Eq. (2.1) and
r(0)=1 we obtain that all zeros of x are simple. From Lemma 2.2 it
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follows that x has arbitrary large negative zeros. If 0=z0>z1> } } } are the
zeros of x in (&�, 0], then from x0 # U"U0 it follows that xz2ln # U"U0

and, by Proposition 5.1, Pl (xz2l (n&1))=xz2ln for all n # &N. Then ,=x0=
Pn

l (xz&2ln) for all n # &N, and thus , # A(Pl).
Let , # A(Pl)"[0]. Clearly, , # U"U0 . There is a trajectory (,n)0

&� of
the map Pl in U with ,0=,. Clearly ,n # U"U0 for all n # &N. Let (qn

j )�
j=0

denote the sequence associated with ,n by Proposition 5.1(ii). The fact
,n{0 for all n # &N yields qn

2l<� for all n # &N. Then by the definition
of Pl it is not difficult to see that x: R � R defined by

x(t)=F \t+ :
0

j=n

q j
2l , ,n+ for t # _& :

0

j=n

q j
2l , �+

gives a solution of Eq. (2.1) with x(R)/[&B, A], and x&�0
j=n q j

2l
=,n.

Propositions 5.1(ii) and 5.5(iv) combined yield , # A"[0]. The proof is
complete. g

Corollary <I�I A & U is compact and connected.

Using Proposition 5.1, the definition of P1 , and the fact that A is
invariant under F, we obtain

P1(A & U )/A & U

Set

B=[, # A & U : P1(,){0]

Define the map

P: B % , [ P1(,) # LK

Proposition <I�I P1| A & U is continuous. P is a homeomorphism from B

onto A & U"[0].

Proof. The proof of the continuity of P1| A & U is essentially the same
as that of Pl . We used only in Case 3 of the proof of Proposition 5.3 that
2l�R. If , # U0 & (A & U ), then ,=0 by Proposition 5.5. Let a sequence
(,n)�

0 in A & (U"U0) be given so that ,n � 0 as n � �. Let xn=x,n
,

qn
2=q2(,n). Let =>0 be fixed. Analogously to the claim in the proof of

Proposition 5.3, we find T>0 such that &P1(,n)&<= for all n # N with
qn

2�T. By Lemma 2.4 there exists n0 such that sup[ |x,n
(t)|: &R�t�T ]

<= follows for all n�n0 . So, &P1(,n)&<= follows for all n�n0 . Therefore,
P1|A & U is continuous.
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The injectivity of P on B follows from the backward uniqueness of
solutions on A. If , # A & U"[0], then Proposition 5.5 implies that there is
a unique slowly oscillating solution x: R � [&B, A] with x0=.. Lemma 2.2
implies that x has arbitrary large negative zeros. We have x(0)=0 since
x0=, # U. Let z&3<z&2<z&1<0 be defined such that z&3 , z&2 , z&1 , 0
are consecutive zeros of x. Then z&2&z&3>1, z&1&z&2>1, and
z&1<&1. From x0=, # U, it follows that x(s)>0 for all s # (z&1 , 0), and
hence x* (z&1)�0. We also have x(s){0 for all s # (z&2 , z&1) _ (z&3 , z&2).
Since x(z&1)=0, r(x(z&1))=1, and z&1&z&2>1, we obtain x* (z&1){0
from Eq. (2.1). Therefore x* (z&1)>0 and x(s)<0 for all s # (z&2 , z&1).
Continuing the same argument, we obtain that x* (z&2)<0 and x(s)>0 for
all s # (z&3 , z&2). Clearly xz&2

# A & U and P1(xz&2
)=,. Therefore P(B)=

A & U"[0]. As the inverse of P is given by

A & U"[0] % , [ xz&2
# B

the continuity of the inverse of P follows from Corollary 5.6. g

Let P&1 : A & U"[0] � B denote the inverse of P.
Let , # A"[0] and x=x,. Proposition 5.5 implies that x is slowly

oscillating and V(x, [t&r(x(t)), t])=1 for all t # R. All zeros of x are simple
since x is slowly oscillating. Let z&2(,) denote the largest negative zero of
x, with x* ,(z&2(,))<0. Using also Lemma 2.2 and Proposition 5.1 the next
proposition easily follows and thus the proof is omitted.

Proposition <I}�I

(i) If , # A"[0] and x=x,, then the zeroset of x is given by a
sequence (zj (,))J(,)

&� , where J(,)=� if the zeroset is unbounded
from above, J(,) # Z if the zeroset is bounded from above.
Moreover, zj&1(,)<zj (,)&1 and x* (zj (,)){0 for all j # Z with
j�J(,).

(ii) If , # A & U"[0] and x=x,, then J(,)�0 and

t � [zj (,): j # Z, j�J(,)] O xt � U

J # Z, 2j�J(,) O xz2j (,) # A & U"[0]

j # Z, 2j�J(,) O P(xz2j&2(,))=xz2j (,)

j # Z, 2j�J(,) O P&1(xz2j (,))=xz2j&2(,)

The next proposition contains information about slowly oscillating
periodic solutions of (2.1).
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Proposition <I}}I Assume that , # A"[0] and x=x, is a periodic
solution of Eq. (2.1) with minimal period p>0. Then

(i) p=z2(,)&z0(,) and x* has exactly one zero between two con-
secutive zeros of x,

(ii)

V(xt&xt&{ , [&r(x(t)), 0])=1 for all { # (0, p) and t # R

Proof. 1. (i) is contained in [41, Theorem 2.6].

2. The periodicity of x and Proposition 4.2(i) imply that, for every
fixed { # (0, p),

V(xt&xt&{ , [&r(x(t)), 0])

is independent of t. Thus, it suffices to show that

V(xz2(,)&xz2(,)&{ , [&1, 0])=1 for all { # (0, p)

This holds if we prove that, for every { # (0, p), xz2(,)&xz2(,)&{ has at most
one zero in [&1, 0]. By way of contradiction, let t1 , t2 # [z2(,)&1, z2(,)]
be such that t1<t2 and

x(t1)=x(t1&{), x(t2)=x(t2&{)

From (i) it follows that there is a unique s # (z1(,), z2(,)) so that x* (s)=0
and x is strictly monotone on the intervals (z1(,), s) and (s, z2(,)). Using
also the facts that the signs of x on (z0(,), z1(,)) and on (z1(,), z2(,)) are
different and that x is p-periodic and { # (0, p), we conclude that

s�t1<t2 O z1(,)�t2&{<t1&{�s

t1<t2�s O s& p�t2&{<t1&{�z0(,)

t1<s<t2 O s& p<t1&{�z0(,), z1(,)�t2&{<s

In the first two cases we get t2<t1 . In the third case t2&t1�z1(,)&z0(,)
>1 follows. This is a contradiction and the proof is complete. g

6. ASYMPTOTIC EXPANSION FOR SLOWLY OSCILLATING
SOLUTIONS

In this section we prove an asymptotic expansion for slowly oscillating
solutions converging to zero as t � &�. In the constant delay case, Cao
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[10] proved asymptotic expansions in more general situations than slowly
oscillating solutions converging to zero. Our proof can be extended to get
the same type of results for solutions of Eq. (2.1).

Recall that u0=max Re(7), where 7 denotes the spectrum of the
generator of the solution semiflow (T (t))t�0 of Eq. (3.1). If u0>0, then 7
consists of a complex conjugate pair [u0\iv0] with v0 # (?�2, ?). Recall
that Q and L are the realified generalized eigenspaces associated with the
spectral sets ��

k=1 (7 & Sk) and 7 & S0 , respectively.
Observe that Q and L are also the realified generalized eigenspaces

of T (1) associated with the spectral sets [e* : * # ��
k=1 (7 & Sk)] _ [0] and

[e* : * # 7 & S0], respectively. Define TL(1): L % , [ TL(1) , # L.
We want to apply the variation-of-constants formula from [17]. Let

us recall a few basic facts about dual semigroups. It is convenient to denote
dual spaces and adjoint operators by an asterisk in the sequel. The
elements ,x # C* for which the curve

R+
% t [ T (t)* ,x # C*

is continuous form a closed subspace C x which is positively invariant
under the adjoints T (t)*, t�0. The operators

T x(t): C x
% ,x [ T (t)* , # C x, t�0

constitute a strongly continuous semigroup on C x. Repeating this process
we obtain a subspace C xx/C x*. The original state space C is sun-
reflexive in the sense that there exists a norm-preserving linear map
j: C � C x* with jC=C xx.

For every continuous map g~ : R � Cx* and reals c�d the weak-star
integral

|
d

c
T x(d&t)* g~ (t) dt # C x*

is defined by

\|
d

c
T x(d&t)* g~ (t) dt+ (,x)=|

d

c
(T x(d&t)* g~ (t))(,x) dt

for all ,x # C x. One finds that all such weak-star integrals are elements of
the subspace C xx= jC.

There is, an isomorphism k: C x* � R_L�(&1, 0; R). Set rx*=
k&1(1, 0).
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If g: R � R is continuous and if x: R � R is a solution of the linear
inhomogeneous equation

x* (t)=&+x(t)+ f $(0) x(t&1)+ g(t)

then the curve u: R % t [ xt, C # C satisfies

ju(t)= jT (t&_) u(_)+|
t

_
T x(t&s)*(g(s) rx*) ds

for all reals t, _ with t�_.
The spectra of the generators of the semigroups (T (t))t�0 and

(T x(t))t�0 coincide. Let PrL and PrL
x denote the spectral projection

operators in L(C, C ) and L(C x, C x) which are associated with the
spectral set [u0\iv0]. We have PrLC=L. The adjoint operator PrL

x* #
L(C x*, C x*) satisfies

PrL
x*C x*= jL, PrL

x* b j= j b PrL

and for g, x, u as before

PrL
x* ju(t)=PrL

x* jT (t&_) u(_)+|
t

_
T x(t&s)* PrL

x*(g(s) rx*) ds (6.1)

and

(id&PrL
x*) ju(t)=(id&PrL

x*) jT (t&_) u(_)

+|
t

_
T x(t&s)* (id&PrL

x*)(g(s) rx*) ds (6.2)

for all reals t�_. T x(t)* can be extended to a one-parameter group on
PrL

x*C x* and (6.1) is valid for all t, _ in R.
There exist K0>0 and $>0 such that

&T x(t)* PrL
x*&�K0 e(u0+$) t, t�0 (6.3)

&T x(t)* PrL
x*&�K0 e(u0&$) t, t�0 (6.4)

&T x(t)* (id&PrL
x*)&�K0 e(u0&$) t, t�0 (6.5)

Proposition >I}I Assume that u0>0 and x: R � [&B, A] is a slowly
oscillating solution of Eq. (2.1) with limt � &�x(t)=0. Then there exist real
numbers =>0 and a, b such that

x(t)=eu0 t(a cos(v0t)+b sin(v0 t))+O(e(u0+=) t) as t � &�
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Proof. Select real numbers ; and $ such that

; # (max[eu1, eu0&$�2], eu0), 2$<u0 , $<u0&u1

where u1=max Re(��
k=1 (7 & Sk)). There is a norm | } | on C which is

equivalent to the supremum-norm & }&C on C and

|(TL(1))&1|<
1
;

First, we claim that there exists K1>0 such that

&xt, C&C�K1e(log ;) t for all t�0 (6.6)

It is easy to see that (6.6) follows from

lim sup
t � &�

|xt&1, C |
|xt, C |

<
1
;

(6.7)

If (6.7) does not hold, then there exists #�1�; and a sequence (tn)�
0 in

(&�, 0] with tn � &� and |xtn&1, C |�|xtn, C | � # as n � �. Define

zn : R % t [
x(tn+t)
|xtn, C |

# R

The function zn satisfies

z* n(t)=&+zn(t)+|
1

0
f $(sx(tn+t&r(x(tn+t)))) ds

_zn(t&r(x(tn+t))), t # R

and |zn
0, C |=1. Let vn : R % t [ e +tzn(t) # R. Then

v* n(t)=|
1

0
f $(sx(tn+t&r(x(tn+t)))) ds e +r(x(tn+t))vn(t&r(x(tn+t))) (6.8)

for all t # R. From the fact that x is slowly oscillating, it follows that V(x,
[tn + t & r(x(tn + t)), tn + t])=V(zn, [t & r(x(tn + t)), t]) = V(vn, [t &
r(x(tn+t)), t])=1. We also have

|r(x(s1))&r(x(s2))|�max[r$(u): u # [&B, A]] K |s1&s2 |
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Using also min[r(u): u # [&B, A]]>0 and f $<0, it is not difficult to see
that Proposition 4.3 can be applied to get K$1>0 and :$1>0 such that

|vn(t)|�K$1e:$1 |t| for all t�0 and n # N (6.9)

Using the facts x(t) # [&B, A] for all t # R, 0<inft # R r(x(t))�
supt # R r(x(t))�R, (6.8), (6.9) and the method of steps, we find K1>0 and
:1>0 such that

|vn(t)|�K1 e:1 |t| for all t # R and n # N

Hence we obtain an exponential bound also for zn on R independently
of n. The right-hand sides of the differential equations for zn are bounded
on each compact subinterval of R. Therefore (zn)�

0 is a uniformly bounded
and equicontinuous sequence of functions on each compact subinterval
of R. By the Arze� la�Ascoli theorem and the diagonalization process, there
is subsequence (znk)�

k=0 and a continuous function z: R � R such that

znk(t) � z(t) as k � � uniformly on compact subsets of R

Using the differential equation for znk we obtain that (z* nk)�
k=0 also con-

verges uniformly on compact subsets of R. Moreover, from x(t) � 0 as
t � &� it follows that

|
1

0
f $(sx(tn+t&r(x(tn+t)))) ds � f $(0),

r(x(tn+t)) � 1, as n � �

uniformly on compact subsets of R. Consequently, z is differentiable on R
and satisfies z* (t)=&+z(t)+ f $(0) z(t&1) for all t # R; moreover, |z0, C |
=1, |z&1, C |=#�1�;. The fact that x is a slowly oscillating solution and
Lemmas 2.6 and 4.4 combined yield

V(x, [tn+t&r(x(tn+t)), tn+t])=1 for all t # R, n # N

Then

V(zn, [t&r(x(tn+t)), t])=1 for all t # R, n # N

Applying also Lemma 4.1(i) and the facts that zt, C{0 for all t # R,
r(x(tn+t)) � 1 as n � � for all t # R, and znk � z as k � � uniformly on
compact subsets of R, we obtain

V(z, [t&1, t])=1 for all t # R
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Hence, by Lemmas 3.1(v) and 4.4, zt, C # L for all t�0. Then from
|(TL(1))&1|<1�;, it follows that

|z&1, C |<
1
;

|z0, C |=
1
;

a contradiction. Therefore (6.7) and consequently (6.6) hold.
We want to apply the variation-of-constants formula from [17]. We

may write

x* (t)=&+x(t)+ f $(0) x(t&1)+h(t)

for all t # R, where

h: R % t [ f (x(t&r(x(t))))& f $(0) x(t&1) # R

is a continuous function. Using assumption (H1), the Taylor formula, and
the mean value theorem, for every t # R, we find reals !, ', % between 0,
x(t&r(x(t))) and 1, r(x(t)) and 0, x(t), respectively, so that

h(t)=f (x(t&r(x(t))))& f $(0) x(t&r(x(t)))+ f $(0)[x(t&r(t)))&x(t&1)]

=
f "(!)

2
x2(t&r(x(t)))+ f $(0) x* (t&')[1&r(x(t))]

=
f "(!)

2
x2(t&r(x(t)))& f $(0) x* (t&') r$(%) x(t)

From (H1), (6.6), and Eq. (2.1), it follows that there exists K$2>0 such that

|x* (t)|�K$2e(log ;) t for all t�0

Therefore, there exists K2>0 such that

|h(t)|�K2e2(log ;) t for all t�0 (6.10)

Applying (6.3) and (6.10), for all ,x # C x with &,x&�1 and reals
s�t�0, we obtain

|[T x(t&s)* PrL
x*(h(s) rx*)](,x)|

�&T x(t&s)* PrL
x*& |h(s)| &rx*&�K0K2 &rx*& e(u0+$) te(u0&2$) s (6.11)

Analogously, from (6.5) and (6.10), for all ,x # C x with &,x&�1 and reals
s�t�0, we get

|[T x(t&s)* PrL
x*(h(s) rx*)](,x)|�K0K2 &rx*& e(u0&$) teu0 s (6.12)
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The last two inequalities, (6.4), and u0>2$>0 combined yield that, for
every t�0 and _�0, the weak-star integrals

|
t

&�
T x(t&s)* (id&PrL

x)(h(s) rx*) ds,

|
t

&�
T x(t&s)* PrL

x*(h(s) rx*) ds, |
_

&�
T x(t&s)* PrL

x*(h(s) rx*) ds

exist. Moreover, these integrals are elements of C xx.
From (6.5), (6.6), and the choice of ;, $ it follows that, for all

_�t�0,

&(id&PrL
x*) jT (t&_) u(_)&=&T x(t&_)* (id&PrL

x*) ju(_)&

�K0 K1 e(u0&$)(t&_)e(log ;) $

�K0 K1 e(u0&$)(t&_)e(u0&$�2) _

�K0 K1 e(u0&$) te($�2) _

Consequently, letting _ � &� in (6.2) with g=h, we conclude that

(id&PrL
x*) ju(t)=|

t

&�
T x(t&s)* (id&PrL

x*)(h(s) rx*) ds, t�0

Using the above equality, (6.11), and the definition of weak-star integrals,
we find

&(id&PrL
x*) ju(t)&�

K0K2&rx*&
u0

e(2u0&$) t, t�0

For all t�0 we have

|
t

0
T x(t&s)* PrL

x*(h(s) rx*) ds

=|
t

&�
T x(t&s)* PrL

x*(h(s) rx*) ds&|
0

&�
T x(t&s)* PrL

x*(h(s) rx*) ds

=|
t

&�
T x(t&s)* PrL

x*(h(s) rx*) ds

&T x(t)* |
0

&�
T x(&s)* PrL

x*(h(s) rx*) ds
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The integral �0
&� T x(&s)* PrL

x*(h(s) rx*) ds is an element of PrL
x*C x*

= jL. Set

�xx=|
0

&�
T x(&s)* PrL

x*(h(s) rx*) ds

Inequality (6.12) and the definition of weak-star integrals yield

"|
t

&�
T x(t&s)* PrL

x*(h(s) rx*) ds"�
K0 K2 &rx*&

u0&2$
e(2u0&$) t, t�0

Therefore

ju(t)=PrL
x* jT (t) u(0)&T x(t)* �xx+O(e2u0&$) t) as t � &�

Using the relations PrL
x*jT (t)= jT (t) PrL and j &1T x(t)*=T (t) j &1, the

fact that the term O(e(2u0&$) t) above is an element of C xx, and applying
j &1, we conclude that

xt, C=T (t)(PrLx0, C& j &1�xx)+O(e(2u0&$) t) as t � &�

Since PrLx0, C& j &1�xx # L, there exist reals a, b with

T (t)(PrLx0, C& j &1�xx)(0)=eu0 t[a cos(v0 t)+b sin(v0 t)]

for all t # R. Consequently, the assertion holds with ==u0&$. g

7. SIGN CHANGES FOR DIFFERENCES IN A

In this section we show that for two different elements , and � of A

and the corresponding solutions x=x,: R � [&B, A] and y= y�: R �
[&B, A], we have

V(x& y, [t&r(x(t)), t])=1 for all t # R (7.1)

This fact is important in the proof of the injectivity of a map from A into
R2 in Section 8.

We first remark that (7.1) implies that

V(x& y, [t&r( y(t)), t])=1 for all t # R (7.2)
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Indeed, if x(t)& y(t){0 for all large negative t, then V(x& y, [t&r( y(t)), t])
=1 for all large negative t because of the definition of V. Then, by Lemma 2.5,
the monotonicity property of V in Lemma 4.2(i) can be applied to get (7.2).
If x(tn)& y(tn)=0 for a sequence [tn] with tn � &� as n � �, then
r(x(tn))=r( y(tn)) and V(x& y, [tn&r( y(tn)), tn])=1. Hence the monoto-
nicity of V implies (7.2).

Proposition �I}I V(,&�, (&r(,(0)), 0])=1 for all ,, � in A with
,{�.

Proof. Let ,, � # A with ,{�. Set x=x,, y= y� and define ': R %

t [ t&r(x(t)) # R. Recall, from Proposition 5.5, that: xt{ yt for all t # R,
and x and y are either slowly oscillating or zero. It is also true that

(x& y)|[t&r(x(t)), t]�0, (x& y)| [t&r( y(t)), t]�0, for all t # R

Indeed, assume that (x& y)|[t&r(x(t)), t]#0 for some t # R. Let t0=inf[s:
x(u)= y(u) for all s�u�t]. We have t&R<t0�t&r(x(t)). Then x* (s)+
+x(s)= y* (s)++y(s) and r(x(s))=r( y(s)) for all s # [t0 , t]. The equations
for x, y and the injectivity of f imply that

x(s&r(x(s)))= f &1(x* (s)++x(s))= f &1( y* (s)++y(s))

= y(s&r( y(s)))= y(s&r(x(s)))

for all s # [t0 , t]. Hence x(u)= y(u) follows for all u # [min[s&r(x(s)) :
t0�s�t], t]. This contradicts the definition of t0 since min[r(u) :
&R�u�0]>0.

In the remaining part of the proof we distinguish several cases and
subcases.

Case 1. :(,)=:(�)=[0]. Either ,{0 or �{0. We may assume
,{0 since, by the remark preceding the proposition, there is a symmetry
in the role of , and �. Then x(t) � 0 as t � &�. So, there exists a
sequence (tn)�

0 in (&�, 0] such that tn � &� as n � � and

|x(tn)|=sup[ |x(tn+t)| : t�0]

Define

zn: (&�, 0] % t [
x(tn+t)
|x(tn)|

# R
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The functions zn satisfy

z* n(t)=&+zn(t)+\|
1

0
f $(sx('(tn+t))) ds+ x('(tn+t))

|x(tn)|
for all t�0

and |zn(t)|�1 for all t�0. There is a uniform bound for the right-hand
side of the differential equations for zn, n # N, on (&�, 0]. Therefore (zn)�

0

is a uniformly bounded and equicontinuous sequence of functions on
(&�, 0]. By the Arze� la�Ascoli theorem and the diagonalization process,
there is subsequence (znk)�

k=0 and a continuous function z: (&�, 0] �
[&1, 1] such that

znk(t) � z(t) as k � � uniformly on compact subsets of (&�, 0]

Using the differential equations for znk we obtain that (z* nk)�
k=0 also con-

verges to z* uniformly on compact subsets of (&�, 0]. Moreover, from the
fact x(t) � 0 as t � &�, it follows that

|
1

0
f $(sx('(tn+t))) ds � f $(0), r(x(tn+t)) � 1, as n � �

uniformly in (&�, 0]. Consequently, z satisfies

z* (t)=&+z(t)+ f $(0) z(t&1) for all t�0

and |z(0)|=1, &zt &�1 for all t�0. Then Lemma 3.1(ii) implies u0�0,
where u0 denotes the maximum of the real parts of the points in the
spectrum of the generator of the solution semiflow of Eq. (3.1).

Case 1.1. u0=0. From x(t)& y(t) � 0 as t � &�, it follows that
there exists a sequence (tn)�

0 in (&�, 0] with tn � &� as n � � and

|x(tn)& y(tn)|=sup[ |x(tn+t)& y(tn+t)| : t�0]

Define

zn: (&�, 0] % t [
x(tn+t)& y(tn+t)

|x(tn)& y(tn)|
# R

Then the functions zn satisfy

z* n(t)=an(t) zn(t)+bn(t) zn(t&r(x(tn+t))), t�0
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with

an: (&�, 0] % t [ &+

&|
1

0
f $[[1&s] y(tn+t&r( y(tn+t)))+sy(tn+t&r(x(tn+t)))] ds

_|
1

0
y* [[1&s](tn+t&r( y(tn+t)))+s(tn+t&r(x(tn+t)))] ds

_|
1

0
r$[[1&s] x(tn+t)+sy(tn+t)] ds # R

bn: (&�, 0] % t

[ |
1

0
f $[[1&s] y(tn+t&r(x(tn+t)))+sx(tn+t&r(x(tn+t)))] ds # R

From x(t) � 0, y(t) � 0 as t � &�, it follows that

an(t) � &+, bn(t) � f $(0), r(x(tn+t)) � 1, as n � �

uniformly in (&�, 0]. Then, in the same way as in Case 1, the Arze� la�
Ascoli theorem can be applied to find a subsequence (znk)�

k=0 of (zn)�
0

converging uniformly on compact subsets of (&�, 0] to a continuously
differentiable function z: (&�, 0] � R satisfying

z* (t)=&+z(t)+ f $(0) z(t&1), t�0

&zt&�|z(0)|=1, t�0

Moreover, (z* nk)�
k=0 converges uniformly on compact subsets of (&�, 0]

to z* . Then Lemma 3.1(iii) implies that

V(z, [t&1, t])=1 for all t�0

Defining

w: (&�, 0] % t [ e +tz(t) # R

we have

w* (t)=e +f $(0) w(t&1) for all t�0

and

V(w, [t&1, t])=1 for all t�0
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Hence Lemma 4.2(iii) implies that w| [t&1, t] # H | [t&1, t] for all t�0. Then
it follows easily that also z|[t&1, t] # H | [t&1, t] for all t�0. Thus Lemma
4.1(iii) can be used to get, for all sufficiently large k # N, that

V(znk, [&r(x(tnk)), 0])=V(z, [&1, 0])=1

By Lemma 2.6, the differential equation for x& y can be transformed to the
form of Eq. (4.1), where x(t)& y(t) and v(t) have the same signs for all
t�0. Hence, Lemma 4.2(i) yields

1�V(,&�, [&r(,(0)), 0])

�V(x(tnk+ } )& y(tnk+ } ), [&r(x(tnk)), 0])

=V(znk, [&r(x(tnk)), 0])=V(z, [&1, 0])=1

for all sufficiently large k # N. Thus, V(,&�, [&r(,(0)), 0])=1.

Case 1.2. u0>0. In the case �{0, also Propositions 5.5 and 6.1
imply that there exist real numbers =x>0, =y>0, a, b, c, d such that with
==min[=x , =y] we have

x(t)=eu0t(a cos(v0 t)+b sin(v0 t))+O(e(u0+=) t)

y(t)=eu0t(c cos(v0t)+d sin(v0 t))+O(e(u0+=) t)

as t � &�. In the case �=0, y#0 and the above asymptotic expansions
hold, with ===x , c=d=0, and a, b, =x , given as above. If (a, b){(c, d ),
then

x(t)& y(t)=eu0 t(- (a&c)2+(b&d )2 sin(v0t+#)+O(e=t))

for some # # [&?, ?] as t � &�. For every integer k, defining

tk=
(k+ 1

2) ?&#
v0

+
1
2

we obtain

\k+
1
2+ ?&

v0

2
�v0 t+#�\k+

1
2+ ?+

v0

2
for tk&1�t�tk

Using v0 # ( ?
2 , ?), we find $>0 such that, for every integer k,

- (a&c)2+(b&d )2 |sin(v0t+#)|�$, tk&1&$�t�tk
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If t � &�, then r(x(t)) � 1. So, for all sufficiently large negative integers k,
r(x(tk))<1+$ and

|x(t)& y(t)|>0 for tk&r(x(tk))�t�tk

Hence, the monotone property of V implies that V(,&�, [&r(,(0)), 0])=1.
Now we show that the case (a, b)=(c, d ) is impossible. Assume

(a, b)=(c, d ). Then there exists K0>0 such that

|x(t)& y(t)|�K0e(u0+=) t, t�0 (7.3)

Then it is easy to see that there exists a sequence (tn)�
0 in (&�, 0] such

that tn � &� as n � � and

|x(tn+t)& y(tn+t)|�|x(tn)& y(tn)| e(u0+=�2) t for all t�0 (7.4)

Define

zn: (&�, 0] % t [
x(tn+t)& y(tn+t)

|x(tn)& y(tn)|
# R

(7.4) implies that

|zn(t)|�e(u0+=�2) t for all t�0 and n # N

and |zn(0)|=1. Similarly to Case 1.1, by the application of the Arze� la�
Ascoli theorem, we find a subsequence of (zn)�

0 converging uniformly
on compact subintervals of (&�, 0] to a solution z of z* (t)=&+z(t)+
f $(0) z(t&1) with

|z(0)|=1, |z(t)|�e(u0+=�2) t, for all t�0

This contradicts Lemma 3.1(iv), and the proof of Case 1.2 is complete.

Case 2. :(,){[0]. The compactness of A implies the existence of
/, \ in A and a sequence (tn)�

0 in (&�, 0] such that /{0, xtn � /,
yt n � \, and tn � &� as n � �. Let w, z denote the solutions of Eq. (2.1)
with w0=/, z0=\.

If /{\, then it suffices to show that

V(w&z, [t&r(w(t)), t])=1

holds for some t�&4R. Indeed, V(w&z, (s&r(w(s)), s])=1 for all s�
&4R implies, by Remark 4.5 and Lemma 4.2(i) and (iii), that

(w&z)|[&r(w(0)), 0] # H[&r(w(0)), 0]
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Since the C and C1 topologies in A are equivalent by Corollary 5.6(ii), it
follows that

xt n& yt n � w0&z0=/&\ as n � �

in the C1-topology. Then Lemma 4.1 (iii) implies that

V(x& y, [tn&r(x(tn)), tn])=1

for all sufficiently large n # N. Hence, by Lemma 4.2(i), V(x& y, [t&
r(x(t)), t])=1 for all t # R, and, in particular, V(,&�, [&r(,(0)), 0])=1.

Now we consider different subcases.

Case 2.1. /{0, \=0. Then z#0. From /{0 it follows that
/ # A"[0], and thus Proposition 5.5 implies that

V(w&z, [t&r(w(t)), t])=V(w, [t&r(w(t)), t])=1, t # R

Case 2.2. /{0, \{0, /{\. By Lemma 2.2, w has arbitrarily large
negative zeros. Lemma 4.2(iii), Remark 4.5, and Proposition 5.5 combined
imply that w is slowly oscillating with simple zeros. If t$<t"�&4R are
consecutive zeros of w and w>0 in (t$, t"), then t"&t$>1 and r(w(t"))=1.
Then w>0 on [t&r(w(t)), t] for all t<t" sufficiently close to t". The func-
tion z is also slowly oscillating with arbitrarily large negative zeros. Conse-
quently, there is s<t$ such that z(u)<0 for all [s&1, s]. In the case z has
arbitrarily large zeros we find _>t" so that z(u)<0 for all [_, &1, _].
Continuity of r, w, z allows us to choose t<t" sufficiently close to t" so
that the reals s, t, _ satisfy s<t<&4R, t<_,

w(t+u)&z(s+u)>0 for all u # [&r(w(t)), 0] (7.5)

and

w(t+u)&z(_+u)>0 for all u # [&r(w(t)), 0] (7.6)

If z(u){0 for all large u, then z(u) � 0 as u � � by Lemma 2.2. In this
case fixing t # (t$, t") so that (7.5) and wt | [&r(w(t)), 0]>0 are satisfied, and
choosing _>t with

max
u # [&r(w(t)), 0]

|z(_+u)|< min
u # [&r(w(t)), 0]

w(t+u)

(7.6) holds.
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Our aim is to show that

V(wt&zt , [&r(w(t)), 0])=1

Assume the contrary, that is, that

V(wt&zt , [&r(w(t)), 0])>1 (7.7)

(7.5) and (7.6) imply that

V(wt&zs , [&r(w(t)), 0])=V(wt&z_ , [&r(w(t)), 0])=1

Define

=s=sup[=�0 : wt |[&r(w(t)), 0]{zs+u | [&r(w(t)), 0] ,

V(wt&zs+u , [&r(w(t)), 0])=1 for all 0�u<=]

and

=_=sup[=�0 : wt |[&r(w(t)), 0]{z_&u | [&r(w(t)), 0] ,

V(wt&z_&u , [&r(w(t)), 0])=1 for all 0�u<=]

(7.5) and (7.6) imply =s>0 and =_>0. We also have =s<t&s and
=_<_&t, since the set

[u # R : wt | [&r(w(t)), 0]{zu | [&r(w(t)), 0] , V(wt&zu , [&r(w(t)), 0])>1]

is open by Lemma 4.1(i), and t belongs to this set by (7.7).

Case 2.2.1. wt | [&r(w(t)), 0]{zs+=s
|[&r(w(t)), 0] . Lemma 4.1(i) implies

that

V(wt&zs+=s
, [&r(w(t)), 0])=1

Then, by Lemma 4.2(i),

V(wt+{&zs+=s+{ , [&r(w(t+{)), 0])=1 for all {�0

Fix {�4R. Lemma 4.2(iii) yields

wt+{&zs+=s+{ # H[&r(w(t+{)), 0]
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Using Lemma 4.2(iii), we find #>0 such that

c<0, |&r(w(t+{))&c|<#, } # C1([c, 0], R)

max
u # [c, 0]

|w(t+{+u)&z(s+=s+{+u)&}(u)|

+ max
u # [c, 0]

|w* (t+{+u)&z* (s+=s+{+u)&}* (u)|<#

imply that

V(}, [c, 0])=1

We claim that there exist ;1>0 and n1 # N such that

V(xt+{+tn& ys+=s+{+;+tn , [&r(x(t+{+tn)), 0])=1 (7.8)

for all integers n�n1 and ; # [0, ;1].
Since z: R � [&B, A] is a solution of Eq. (2.1), we obtain that z* and

z� are bounded functions on R. Hence it follows that

sup
u # R

|z(u)&z(u+;)| � 0, sup
u # R

|z* (u)&z* (u+;)| � 0

as ; � 0. Choose ;1>0 such that

sup
u # R

|z(u)&z(u+;)|+sup
u # R

|z* (u)&z* (u+;)|<
#
3

and wt{zs+=s+; for all ; # [0, ;1].
We have

x(tn+u) � w(u), x* (tn+u) � w* (u) as n � �

y(tn+u) � z(u), y* (tn+u) � z* (u) as n � �

uniformly on compact subsets of R. Hence there exists n0 # N such that

&wt+{&xt+{+tn &C 1<
#
3

&zs+=s+{+;& ys+=s+{+;+tn &C 1<
#
3
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for all integers n�n0 and all ; # [0, ;1]. Let us choose n1 # N such that
n1>n0 and

|r(x(t+{+tn))&r(w(t+{))|<# for all integers n�n1

Fixing n�n1 , ; # [0, ;1], and choosing c=&r(x(t+{+tn)) and }(u)
=x(t+{+tn+u)& y(s+=s+{+;+tn+u), we obtain V(}, [c, 0])=1.
Consequently, (7.8) holds for all integers n�n1 and all ; # [0, ;1].

Now, for any n�n1 , pick k # N such that k�n1 and tn&tk&{�0.
There is such a k since tk � &� as k � �. Then t+{+tk�t+tn. There-
fore, using (7.8) and Lemma 4.2(i),

1=V(xt+{+tk& ys+=s+{+;+t k , [&r(x(t+{+tk)), 0])

�V(xt+t n& ys+=s+;+tn , [&r(x(t+tn)), 0])

for all integers n�n1 and all ; # [0, ;1]. Hence Lemma 4.1(i) implies that

V(wt&zs+=s+; , [&r(w(t)), 0])=1

for all 0�;�;1 . This contradicts the definition of =s .

Case 2.2.2. wt | [&r(w(t)), 0]{z_&=_
|[&r(w(t)), 0] . We get a contradiction

analogously to Case 2.2.1. We have

V(wt&z_&=_
, [&r(w(t)), 0])=1

and for fixed {�4R

wt+{&z_&=_+{ # H[&r(w(t+{)), 0])

The application of Lemma 4.1(iii) gives ;2>0 and n2 # N such that

V(xt+{+tn& y_&=_+{+t n&; , [&r(x(t+{+tn)), 0])=1

for all n�n2 and all ; # [0, ;2]. Hence, in the same way as in Case 2.2.1,
the monotonicity of V implies that

V(xt+t n& y_&=_+t n&; , [&r(x(t+tn)), 0])=1

for all n�n2 and all ; # [0, ;2]. The lower semicontinuity of V gives

V(wt&z_&=_&; , [&r(w(t)), 0])=1

for all ; # [0, ;2], contradicting the definition of =_ .
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Case 2.2.3. wt | [&r(w(t)), 0] = zs + =s
|[&r(w(t)), 0] = z_ & =_

| [&r(w(t)), 0] . In
this case z is periodic since z is determined by zs+=s

| [&r(z(s+=s)), 0]=
zs+=s

| [&r(w(t)), 0] and s+=s<t<_&=_ . w is also periodic since it is a trans-
late of z. Using also wt{zt , it follows that zt=wt&{ for some { # (0, p),
where p is the minimal period of w. Proposition 5.11(ii) yields

V(wt&zt , [&r(w(t)), 0])=1 for all t # R

Case 2.3. /{0, /=\. Then w�0 is a slowly oscillating solution.
Either w is not periodic or w is periodic with minimal period p>0. Let
=0>0 be arbitrary if w is not periodic; otherwise choose =0 # (0, p). Then

w={w0 for 0<=<=0

For 0<=<=0 , define x=: R % t [ x(=+t) # R. Then

x=
tn � w= , yt n � z0

as n � �. We have

w={0, z0{0, w={z0 , for 0<=<=0

Therefore, replacing x and / with x= and w= , respectively, Case 2.2 can be
applied to obtain

V(x=& y, [t&r(x=(t)), t])=1 for all t # R

We have supu # R |x=(u)&x(u)| � 0 as = � 0. Thus, the lower semicontinuity
of V in Lemma 4.1(i) implies that

V(x& y, [t&r(x(t)), t])=1 for all t # R

and in particular

V(,&�, [&r(,(0)), 0])=1 g

8. THE POINCARE� �BENDIXSON THEOREM ON A

Recall from Proposition 5.5 that for every , # A there is a unique
phase curve R % t [ x,

t # LK in A and |(,), :(,) are nonempty compact
connected and invariant subsets of A.

Theorem �I}I For every , # A, either |(,)=[0] or 0 � |(,) and
|(,) is a slowly oscillating periodic orbit; either :(,)=[0] or 0 � :(,) and
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:(,) is a slowly oscillating periodic orbit. If , # A and x, is neither identi-
cally zero nor periodic, then :(,) & |(,)=<.

Proof. Define

h: A % , [ \ ,(0)
,(&r(,(0)))+ # R2

Clearly, h is continuous. Let ,, � be in A with ,{�, and set x=x,,
y= y�. Then xt , yt are in A and xt{ yt for all t # R. Proposition 7.1
implies that

V(x& y, [t&r(x(t)), t])=1 for all t # R

Then it can be easily shown, by applying Lemma 4.2(ii), that

(x(t)& y(t), x(t&r(x(t)))& y(t&r(x(t)))){(0, 0) for all t # R

In particular,

h(,){\ �(0)
�(&r(,(0))+

If ,(0){�(0), then h(,){h(�). If ,(0)=�(0), then �(&r(,(0)))=
�(&r(�(0))). Therefore,

h(,){h(�)

So, h is injective. Since A is compact, it follows that h(A) is also compact
and h is a homeomorphism.

For each !0 # h(A), there is a unique , # A with h(,)=!0. The unique
solution x, of Eq. (2.1) gives the continuous curve !: R % t [ h(x,

t ) #
h(A)/R2. We call ! the canonical curve through !0. The canonical curves
are C1-curves since the mapping

R % t [
d
dt

h(x,
t )=\ x* ,(t)

x* ,(t&r(x,(t)))[1&r$(x,(t)) x* ,(t)]+ # R2

is continuous.
Define

v+=[(u, v)tr # R2 : u=0, v>0]

Let , # A, x=x, and assume that, for some t # R, h(xt) # v+ , that is,
x(t)=0 and x(t&r(x(t)))=x(t&1)>0. Then ,{0 and Proposition 5.5
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implies that x is a slowly oscillating solution. This fact, x(t&1)>0, and
x(t)=0 combined imply that xt # A & U"[0]. It also follows that x* (t)<0.
Hence we obtain that v+ is transversal to the canonically determined
curves in the following sense:

�(1, 0),
d
dt

h(xt)�=x* (t)<0

This implies that if h(x,
t ) # v+ for some , # A"[0] and t # R, then there

exists =>0 such that h(x,
s ) belongs to the first quadrant of R2 for all

s # (t&=, t) and to the second quadrant of R2 for all s # (t, t+=).
If ,=0, then :(,)=|(,)=[0]. Let , # A"[0]. Proposition 5.10

implies that there are t # R and � # A & U"[0] such that �=x,
t . Clearly,

:(,)=:(�) and |(,)=|(�). Thus, it is enough to prove the statement of
the theorem for , # A & U"[0].

Let , # A & U"[0] and !0=h(,). Let ! denote the canonical curve
through !0. As x, is a slowly oscillating solution by Proposition 5.5, we
find that

h(A & U"[0])=v+ & h(A) (8.1)

Hence it follows that !(t) # v+ if and only if h&1(!(t))=x,
t # A & U"[0].

Proposition 5.10 yields that, for each t # R,

!(t) # v+ if and only if t # [z2j (,) : j # Z, 2j�J(,)]

where (zj (,))J(,)
&� is the zeroset of x,. Let

! j=!(z2j (,))=h(x,
z2j (,)) for j # Z, 2j�J(,)

and define s j so that x,
s j=h&1(! j ) or, equivalently, !(s j )=! j. (! j )J*

&� is a
sequence in h(A & U"[0])/v+ , where J*=� if J(,)=�, and J* # Z if
J(,) # Z. Clearly, the sequence (s j )J*

&� is increasing.
The sequence (! j )J*

&� is monotone with respect to the natural ordering
<v of [(u, v)tr # R2 : u=0]. Indeed this follows from the Jordan curve
theorem and the facts that FA is a flow on A and h is a homeomorphism
of A onto h(A).

Define

!&�= lim
j � &�

! j

!�={lim j � � ! j

(0, 0)tr

if J*=�
if J* # Z
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!&� , !� # h(A & U )/v+ _ [(0, 0)tr] since h(A & U ) is a compact subset
of R2. Now we need the following two claims.

Claim 1. (i) If ! j � !� as j � &� and !� # v+ , then !� # h(A & U"
[0]), xh&1(!� ) is a slowly-oscillating periodic solution of (2.1) and :(,)=
[xh&1(!� ): t # R].

(ii) If J*=� and ! j � !� as j � � and !� # v+ , then !� # h(A & U"
[0]), xh&1(!� ) is a slowly oscillating periodic solution of (2.1) and |(,)=
[xh&1(!� )

t : t # R].

Proof of Claim 1. Suppose that ! j � !� as j � &� and !� # v+ . We
have ! j, !� # h(A & U"[0]) for all integers j�J*. Proposition 5.10 implies
that

P&1(h&1(! j ))=h&1(! j&1) for all integers j�J*

Using that h&1(! j ), h&1(!� ) # A & U"[0] and that h&1 is continuous on
h(A) and P&1 is continuous on A & U"[0], by letting j � &�, we obtain

P&1(h&1(!� ))=h&1(!� )

Therefore, h&1(!� )=P(h&1(!� ))=F(q2(h&1(!� )), h&1(!� )) and thus xh&1(!� ) is
q2(h&1(!� ))-periodic. Proposition 5.1 implies that q2=q2(h&1(!� )) is the
minimal period and xh&1(!� ) is slowly oscillating. Let O=[xh&1(!� )

t : 0�t
�q2]. We have to show that dist(x,

t , O) � 0 as t � &�. Let =>0 be
given. From Lemma 2.4 and Proposition 5.1 it follows that there exists
$=$(=)>0 so that for every � # A & U"[0] with &�&h&1(!� )&<$ we
have

dist(x�
s , O)<= for all s # [0, q2+1]

and

|q2(�)&q2 |<1

There is j0 # Z such that

&h&1(! j )&h&1(!� )&<$ for all integers j� j0

Let t<s j0. Choose j1 # Z so that j1< j0 and s j1�t<s j1+1�s j0. By the
choice of j0 , &h&1(! j1)&h&1(!� )&<$. Hence, using also h&1(! j1) # A &
U"[0], it follows that

q2(h&1(! j1)))<q2+1
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and

dist(xh&1(! j1)
s , O)<= for all s # [0, q2+1]

From x,
s j1+1=F(q2(h&1(! j1)), x,

s j1 ), we obtain t&s j1<q2(h&1(! j1))<
q2+1. Consequently,

dist(x,
t , O)<=

As =>0 was arbitrary, :(,)=O follows, and the proof of assertion (i) in
Claim 1 is complete. The proof of assertion (ii) is analogous.

Claim 2. (i) If ! j � (0, 0)tr as j � &�, then :(,)=[0].

(ii) If J*=� and ! j � (0, 0)tr as j � �, then |(,)=[0].

Proof of Claim 2. Assume that ! j � (0, 0)tr as j � &�. By Lemma 2.4,
for each =>0, there exists $=$(=)>0 so that � # LK and &�&<$ imply
that &x�

s &<= for all s # [0, R]. Let =>0 be fixed. Choose j0 # Z such that
&h&1(! j )&<$($(=)) for all integers j� j0 . Let t<s j0. Choose j1 # Z so that
j1< j0 and s j1�t<s j1+1�s j0. We have &h&1(! j1)&<$($(=)). It follows that
&xh&1(! j1)

s &<$(=) for 0�s�R. We state that

&F(s, h&1(! j1))&<$(=) for 0�s�q1(h&1(! j1)) (8.2)

The case q1(h&1(! j1))�R is obvious. Assume that q1(h&1(! j1))>R.
Propositions 5.1 and 5.10 imply that F(s, h&1(! j1))(0)<0 for all s #
(0, q1(h&1(! j1))). Using Eq. (2.1) and (H1), it follows that the func-
tion [0, �) % s [ F(s, h&1(! j1))(0) # R is increasing on the interval
[R, q1(h&1(! j1))]. Therefore (8.2) holds. Equation (8.2) implies that

&F(s, h&1(! j1))&<= for 0�s�q1(h&1(! j1))+R

Hence, similarly to the proof of (8.2), we obtain

&F(s, h&1(! j1))&<= for q1(h&1(! j1))�s�q2(h&1(! j1)) (8.3)

Since $(=)�=, (8.2) and (8.3) yield

&F(s, h&1(! j1))&<= for 0�s�q2(h&1(! j1))

Observing that t&s j1<q2(h&1(! j1)) follows from s j1�t<s j1+1, we con-
clude that

&x,
t &=&F(t&s j1, h&1(! j1))&<=
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Since =>0 was arbitrary, x,
t � 0 as t � &�, and thus :(,)=[0]. The

proof of assertion (ii) is analogous.
According to the relation between !&� and !� , we consider six cases.

Case 1. !&�=!�=(0, 0)tr. We show that this case cannot occur.
Assume that J*<�. Lemma 2.2 implies that x,(t) � 0 as t � �. Hence
!(t) � (0, 0)tr as t � �. From this fact and the Jordan curve theorem it
follows that (! j )J*

&� is strictly decreasing. Consequently, (0, 0)tr<v !&� ,
a contradiction. So, J*=�. As (! j )�

&� is a monotone sequence in v+ ,
!&�=!�=(0, 0)tr is impossible. Therefore this case cannot occur.

Case 2. (0, 0)tr=!�{!&� . There are two subcases.

Case 2.1. (0, 0)tr=!�{!&� and J*<�. Claim 1 gives that :(,) is
a slowly oscillating periodic orbit. |(,)=[0] follows from Lemma 2.2.

Case 2.2. (0, 0)tr=!�{!&� and J*=�. Claims 1 and 2 imply
that :(,) is a slowly oscillating periodic orbit and |(,)=[0].

In the remaining cases (0, 0)tr<v !� , which implies that J*=�.

Case 3. (0, 0)tr=!&�<v !� . Applying Claims 1 and 2, we get
:(,)=[0] and that |(,) is a slowly oscillating periodic orbit.

Case 4. (0, 0)tr<v !�<v !&� . In this case both :(,) and |(,) are
slowly oscillating periodic orbits by Claim 1. Proposition 5.11 implies that
the intersection of a slowly oscillating periodic orbit with A & U is a single
point. As h&1(!�) and h&1(!&�) are different points of A & U, it follows
that :(,) & |(,)=<.

Case 5. (0, 0)tr<v !&�<v !� . Analogously to Case 4, :(,) and |(,)
are slowly oscillating periodic orbits with :(,) & |(,)=<.

Case 6. (0, 0)tr<v !&�=!� . In this case ! j=!&�=!� for all j # Z.
Claim 1 implies that x, is a slowly oscillating periodic solution.

Observe that, by the uniqueness of the zero solution in A, a slowly
oscillating periodic orbit does not contain 0. The proof is complete. g

9. A IS HOMEOMORPHIC TO THE CLOSED UNIT DISK

Finally, we prove a topological property of A provided A is different
from [0].
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A sufficient (and by Theorem 8.1 also necessary) condition for
A{[0] is the existence of a slowly oscillating periodic solution. From
[41] it can be obtained that if

f $(0)<
+

cos(v(+))

where v(+) # (?�2, ?) is the solution of v=&+ tan v, then Eq. (2.1) has a
slowly oscillating periodic solution, and consequently, A{[0].

Theorem �I}I Assume that A{[0]. Then there exists a slowly
oscillating periodic solution y with minimal period {>0 such that the simple
closed curve ': [0, {] � yt # LK with trace in A satisfies

h(A)=int(h b ')

Consequently, A is homeomorphic to the two-dimensional closed unit disk so
that the unit circle corresponds to a slowly oscillating periodic orbit.

Proof. 1. From (8.1) and h(0)=(0, 0)tr, it follows that

h(A & U )=(v+ _ [(0, 0)tr]) & h(A) (9.1)

Recall that A & U is a connected set by Corollary 5.8. From these facts and
A{[0] we obtain the existence of v* # v+ with

h(A & U )=[sv*: 0�s�1] (9.2)

Set y=xh&1(v*).
We claim that y is periodic. Let (! j )J*

&� be the monotone sequence of
intersections with v+ of the canonical curve ! through v* as defined in the
proof of Theorem 8.1. We have !0=v*. The sequence (! j )J*

&� is either con-
stant or strictly increasing since (1, �) v* & h(A)=< by (9.1) and (9.2).
Define !&� and !� as in the proof of Theorem 8.1. If (! j )J*

&� is strictly
increasing, then necessarily J*<� and thus !�=(0, 0)tr since !0=v* and
(1, �) v* & h(A)=<. On the other hand, by the increasing property of
(! j )J*

&� , we have (0, 0)tr=!�>v !&��v (0, 0)tr, a contradiction. There-
fore, (! j )J*

&� is a constant sequence and J*=�. Analogously to Case 6
of the proof of Theorem 8.1, we conclude that y is a slowly oscillating
periodic solution.

2. Let {>0 denote the minimal period of y, and set ': [0, {] % t [
yt # LK . Propositions 5.10 and 5.11 and the fact that h is a homeomorphism
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combined imply that the curve h b ' is simple closed and has values in
h(A)"[(0, 0)tr]. Let ext(h b ') and int(h b ') denote the unbounded and
bounded components of R2"|h b '|, respectively. Using that the only inter-
section of h b ' with v+ _ [(0, 0)tr] is v* and (1, �) v* is unbounded, it
follows that (1, �) v*/ ext(h b '). Moreover, since the intersection of h b '
with v+ _ [(0, 0)tr] is transversal at v*, it also follows that

[0, 1) v*/ int(h b ')

In particular, (0, 0)tr # int(h b ').

3. We claim that ext(h b ') & h(A)=<. Suppose that there exists
a point / # h(A) & ext(h b '). Then /{(0, 0)tr and h&1(/){0. Proposi-
tion 5.10 implies that the phase curve R % t [ xh&1(/)

t intersects A & U.
Then the canonical curve !: R % t [ h(xh&1(/)

t ) # R2 through / intersects
h(A & U )=[sv*: 0�s�1]/ int(h b ') _ |h b '|. On the other hand, / #
ext(h b ') implies that !(t) # ext(h b ') for all t # R. This is a contradiction.

4. We remark that h(A) & (int(h b ')"[(0, 0)tr]) is closed in
int(h b ')"[(0, 0)tr] in the relative topology of this set.

We claim that h(A) & (int(h b ')"[(0, 0)tr]) is also open in int(h b ')"
[(0, 0)tr] in the relative topology. Let / # h(A) & (int(h b ')"[(0, 0)tr]). We
have to show that there is an open disk D in R2 containing / so that
D/h(A) & (int(h b ')"[(0, 0)tr]). As h&1(/) # A"[0], Proposition 5.10
implies that there are � # A & U"[0] and T>0 so that h&1(/)=F(T, �).
Then h(�) # h(A & U"[0])=(0, 1] v*. From / # int(h b ') it follows that
h(�){v*. So, h(�)=s0 v* for some s0 # (0, 1). Let = # (0, min[s0 ,
1&s0 , T ]). Consider the map

g: (&=, =)_(&=, =) % (t, s) [ h(FA(T+t, h&1((s0+s) v*))) # R2

g is continuous since h is a homeomorphism, FA is a flow on A, and
(s0&=, s0+=) v*/h(A). We want to show that g is also injective. Let
(t1, s1), (t2, s2) # (&=, =)_(&=, =) and assume that g(t1, s1)= g(t2, s2).
Without loss of generality, we may assume that t2�t1. Since h is injective,
it follows that

FA(T+t1, h&1((s0+s1) v*))=FA(T+t2, h&1((s0+s2) v*))

As FA is a flow on A, we obtain

h&1((s0+s2) v*)=FA(t2&t1, h&1((s0+s1) v*)) (9.3)
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Assume that t1{t2. Equation (9.3) implies that x=xh&1((s0+s1) v*) is a
t2&t1-periodic solution. By Proposition 5.5, x is slowly oscillating. So,
t2&t1>2 follows. On the other hand, the choice of = implies t2&t1<
2=<2, a contradiction. Therefore t1=t2. Then Eq. (9.3) implies that
h&1((s0+s2) v*)=h&1((s0+s1) v*). Hence s1=s2. Consequently, g is
injective.

It follows that g is an open mapping. As g(0, 0)=/, we obtain that
g((&=, =)_(&=, =)) is an open neighborhood of / in R2. From
(s0&=, s0+=) v*/h(A) it follows that g((&=, =)_(&=, =))/h(A). So, if
we choose an open disk D in R2 with center at / such that D/g((&=, =)_
(&=, =)) and D/ int(h b ')"[(0, 0)tr], then D/h(A) & (int(h b ')"[(0, 0)tr]).

5. int(h b ')"[(0, 0)tr] is an open connected subset of R2. Therefore,
the only nonempty subset of int(h b ')"[(0, 0)tr], which is both closed and
open in int(h b ')"[(0, 0)tr] in the relative topology, is int(h b ')"[(0, 0)tr]
itself. Observe that (0, 1) v*/h(A) & (int(h b ')"[(0, 0)tr]). This fact and
the results of part 4 yield

h(A) & (int(h b ')"[(0, 0)tr])=int(h b ')"[(0, 0)tr]

Using (0, 0)tr # h(A), |h b '|/h(A) and the result of part 3, we conclude
that

h(A)=int(h b ') _ |h b '|=int(h b ')

The Schoenfliess theorem [48] gives that int(h b ') is homeomorphic to the
two-dimensional closed unit disk so that |h b '| corresponds to the unit
circle. This completes the proof. g
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