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We present an approach for the resolution of a class of differential equations
with state-dependent delays by the theory of strongly continuous nonlinear semi-
groups. We show that this class determines a strongly continuous semigroup in a
closed subset of C0, 1. We characterize the infinitesimal generator of this semi-
group through its domain. Finally, an approximation of the Crandall–Liggett type
for the semigroup is obtained in a dense subset of (C, || · ||.). As far as we know this
approach is new in the context of state-dependent delay equations while it is classical
in the case of constant delay differential equations. © 2002 Elsevier Science (USA)

1. INTRODUCTION

We consider the differential equation with state-dependent delays,

˛x
−(t)=f(x(t−r(xt))), for t \ 0
x0=j ¥ C0, 1,

(1)

where f is a function from IR into IR and r is a function from C into
[0, M] (here C :=C([−M, 0], IR) is the Banach space of continuous
functions from [−M, 0] into IR, endowed with the norm || · ||., M is a
positive constant). Finally, we denote by xt the element of C defined by

xt(h)=x(t+h), for h ¥ [−M, 0].



The notation C0, 1=C0, 1([−M, 0]; IR) stands for the Banach space of
Lipschitz continuous functions from [−M, 0] into IR, endowed with the norm

||j||0, 1=max{||j||., ||j −||L.}.

Differential equations with state-dependent delays arise in various
applications, in particular, in mathematical ecology and bio-economics, see
notably the work of Bélair [4], Arino et al. [2], and Aiello et al. [1].

Qualitative and quantitative studies of these equations developed actively
within the last ten years. At the qualitative level, Mallet-Paret et al. [8],
Kuang and Smith [7], and Arino et al. [3] discuss existence of periodic
and slowly oscillating periodic solutions. As for the quantitative aspects,
state-dependent delay equations brings specific problems, the Cauchy
problem associated with these equations is not well posed in the space of
continuous functions, due to the non-uniqueness of solutions whatever the
regularity of the functions f and r. Uniqueness holds in C0, 1; however, the
equation does not yield a strongly continuous semigroup in this space
either (see Section 3, Proposition 5(b)).

In this work, we present an approach by the theory of strongly continuous
nonlinear semigroups. We show that Eq. (1) determines a strongly continuous
semigroup in a closed subset of C0, 1. We characterize the infinitesimal
generator of this semigroup in terms of its domain. Finally, an approximation
of the Crandall–Liggett type for the semigroup is obtained in a dense subset
of (C, || · ||.). As far as we know this approach is new in the context of state-
dependent delay equations while it is classical in the case of constant delay
differential equations; see Webb [14], and Dyson and Villella-Bressan [6].
For the case of neutral delay differential equations, we refer the reader to
Arino and Sidki [12], and Plant [11].

The paper is organized in six sections including the introduction. In the
second section we recall some basic framework related to semigroup
theory. Section 3 deals with the nonlinear semigroup solution of Eq. (1).
Section 4 investigates smoothness properties of the equation. Section 5 is
devoted to the characterization of the infinitesimal generator of the semi-
group. In the last section we present the result about the Crandall–Liggett
approximation of this semigroup.

2. PRELIMINARIES

Equation (1) can be written in the following form,

˛x
−=F(xt)
x0=j,

(2)
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where

F(j)=f(j(−r(j))), for j ¥ C.(3)

Notice that the functional F is defined on C, but it is clear that it is neither
differentiable nor locally Lipschitz continuous, whatever the smoothness of
f and r.

Throughout the paper f and r satisfy part or all of the assumptions:

(H 1) f: IRQ IR is locally Lipschitz continuous and r: CQ [0, M] is
Lipschitz continuous on the bounded subsets of C.

(H 2) There exist two constants a and b such that |f(x)| [ a |x|+b,
for every x ¥ IR.

(H 3) The functions f and r are of class C1.

We denote lip(h) the Lipschitz constant of any Lipschitz continuous
function h.

For each k > 0 we denote:

lipk(f)=sup 3 |f(x)−f(y) |
|x−y|

; 0 [ |x|, |y| [ k4 ,

lipk(r)=sup 3 |r(j)−r(k)|
||j−k||.

; 0 [ ||j||., ||k||. [ k4 ,

Finally, we denoteC1, respectivelyC2, the space of continuously differentiable
functions on [−M, 0], (resp. twice continuously differentiable functions),
endowed with the natural norm derived from the sup norm.

By a solution of Eq. (2), we mean a function x defined on [−M, a] for
some a positive such that x is continuous on its domain, differentiable on
]0, a] and satisfies Eq. (2).

Theorem 2.1 [8]. Suppose H 1 and H 2 hold. Then for each initial datum
j0 ¥ C0, 1, Eq. (2) has a unique solution xj0(t) defined on [−M,.[.

Remark 2.2. (a) If H 1 is satisfied, then for every k > 0 and every
j0 ¥ C0, 1 and j1 ¥ C such that 0 [ ||j0 ||., ||j1 ||. [ k we have

|F(j1)−F(j0)| [ lipk(f){lipk(r) lip(j0)+1} ||j1−j0 ||..(4)

(b) Assumption H 3 is useful in showing that the restriction of F to
the space of C1-functions is continuously differentiable.

We will now recall some definitions and results related to the Crandall–
Liggett approximation.
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Definition 2.3 [13]. Let S(t), t \ 0 be a family of operators in a
Banach space X. We say that S(t), t \ 0, defines a strongly continuous
semigroup in a closed subset Y of X if

(i) S(t) is continuous from Y into Y, for each t \ 0,
(ii) S(0)=IY, S(t+s)=S(t) p S(s), for each t, s \ 0, x ¥ Y

(iii) t- S(t) x is continuous from [0,.[ into Y, for each fixed x ¥ Y.

Definition 2.4 [13]. The infinitesimal generator of the semigroup
S(t), t \ 0, is the operator L: YQX given by

Lx=lim
tQ 0

1
t
(S(t) x−x),

defined at each x ¥ Y where this limit exists.

Denote D(L) the domain of L.
It is well known, see for instance [10, 13], that in the linear case the limit

exists at each point of a dense subset of X. However, in the nonlinear case,
the generator does not exist necessarily and the domain may be empty [5].

Definition 2.5 [10, 13]. Let X be a Banach space and L an operator
defined on a subset of X with values into X. We say that L

(a) is accretive if ||(I+lL) x−(I+lL) y|| \ ||x−y||, for each x, y ¥
D(L), l > 0,

(b) is m-accretive if L+mI is accretive, for some m > 0.

Theorem 2.6 [5]. Let L be an operator with domain contained in X. If
there exists m ¥ IR, such that L is m-accretive and the range of I+lL,
denoted R(I+lL), is equal to X for each l > 0 small enough, then

lim
nQ 0
(I+(t/n) L)−n x :=S(t) x

exists, for x ¥ D(L), t \ 0. Furthermore, S(t), t \ 0 is a strongly continuous
semigroup on D(L) such that

||S(t) x−S(t) y|| [ exp(mt) ||x−y|| for every x, y ¥ D(L), t \ 0.

3. THE SEMIGROUP ASSOCIATED WITH EQ. (2)

Consider the family of operators T(t), t \ 0 defined by T(t) j=xjt , for
each j ¥ C0, 1, where xj(t) is the solution of Eq. (2). In the sequel, we will
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show that T(t) is a strongly continuous semigroup in a closed subset E of
C0, 1.

We first show that strong continuity does not occur in the space C0, 1.

Proposition 3.1. Suppose H 1 and H 2 hold. Then,

(a) the family of operators T(t), t \ 0 satisfies

T(0)=I,

and

T(t+s)=T(t) T(s), -t, s \ 0,

that is, (T(t))t \ 0 is analgebraic semigroup.

(b) (T(t))t \ 0 is not strongly continuous in C0, 1

Proof. (a) This assertion follows from the existence and uniqueness of
the solution of Eq. (2).

(b) Choose as an initial function

j0(h)=˛h+M if h ¥ 5−M, −M
2
6

M
2

if h ¥ 5−M
2
, 06.

We select a number t0, 0 < t0 <
M
2 and a second number t, 0 < t [ t0, that

will further be moved towards t0. Put xt=x
j
t . We have

xt(h)=˛
M
2

if h ¥ 5−M
2
−t, −t6

h+M+t if h ¥ 5−M, −M
2
−t6 .

So, we have

(xt0 −xt)(h)=˛
t0−t if h ¥ 5−M, −M

2
−t06

−h−
−M
2
−t if h ¥ 5−M

2
−t0, −

M
2
−t6

0 if h ¥ 5−M
2
−t, −t06 .

EQUATIONS WITH STATE-DEPENDENT DELAYS 5



Observe that || ddh (xt0 −xt)||L. \ 1. Then we have

lim
tQ t0
||T(t0) j0−T(t) j0 ||0, 1 \ 1.

We conclude that

T( · ) j0: [0,.[Q (C0, 1, || · ||0, 1)
t- T(t) j0,

is not continuous. More precisely, we have proved that T( · ) j0 is not
continuous at any point t0 ¥ ]0,

M
2 [. L

Note that the example built in b) of proposition 3.1 is independent of the
equation.

We now consider the subset E of C0, 1 defined by

E={f ¥ C0, 1 : tQ T(t) f is continuous from IR+ into (C0, 1, || · ||0, 1)}.(5)

Remark 3.2. The set E is non-empty, E contains the set

C1F={j ¥ C
1 : j −−(0)=F(j)},(6)

where j −−is the left hand derivative. Under the assumption (H1), C
1
F is a

closed subset of C1, dense in the space C. Moreover, C1F is a locally
Lipschitz submanifold of C1, a property that will not used in this work.

Proposition 3.3.

E=C1F.

which in particular entails that E is a subset of C1.

Proof. In view of Remark 3.2, it is sufficient to show that

C1F ‡ E.

Let j ¥ E, and t0 \ 0. Put x(t)=xj(t). We start by showing that x −t0 is
equal almost everywhere (with respect to the Lebesgue measure l) to a
continuous function in [−M, 0]. This will be done in two steps: in step 1,
we show that x −t0 is continuous on [−M+e, 0] for any e > 0 small enough,
and in step 2, we show the continuity of x −t0 on [−M, −e] for any e > 0
small enough. Continuity on [−M, 0] follows directly.
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Step 1. Note that, j being in E implies that tQ T(t) j=xt is
continuous from IR+ into C0, 1, which yields two consquences:

(i) continuity of tQ xt, from IR+ into C;
(ii) continuity of tQ x −t, from IR+ into L..

Given e > 0, n0 >
1
e. We define the sequence of functions (gn)n \ n0 on

[−M+e, 0] by

gn(h)=n F
1
n

0
x −(t0+h−u) dl(u).(7)

The family of functions F={gn: n \ n0} is uniformly equicontinuous. In
fact, for each real h small enough and h ¥ [−M+e, 0] such that
h+h ¥ [−M+e, 0] and t0+h \ 0 we have

|gn(h)−gn(h+h)| [ ||x
−

t0+h−x
−

t0 ||L..

In view of (ii) above, we have that ||x −t0+h−x
−

t0 ||L. goes to zero as h goes
which yields the desired equicontinuity of the sequence (gn).

Since the functions gn, n \ n0 are uniformly bounded (||gn ||. [ ||x −t0 ||L.),
the Ascoli theorem implies that F is relatively compact in C.

gn(h)=
xt0 (h)−xt01h−

1
n
2

1
n

being Lipschitz continuous, the function xt0 is a.e. differentiable, therefore,
for almost every h ¥ [−M, 0], gn(h) converges towards x −t0 (h).

On the other hand, we have just shown that, for every e > 0, gn converges
to some continuous function ge defined on [−M+e, 0], we deduce that
x −t0 is equal a.e. to a continuous function on [−M+e, 0].

Step 2. In the same manner, substituting [−M, −e] for [−M+e, 0],
and

gn(h)=n F
0

−1n

x −(t0+h−u) dl(u),

for gn, we obtain that x −t0 is equal a.e. to a continuous function on
[−M, −e]. This holds for any e > 0 small enough.

As a conclusion of steps 1 and 2, we thus established the existence of a
continuous function g on [−M, 0] such that x −t0=g almost everywhere on
[−M, 0].
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Since xt0 is absolutely continuous it can be written as

xt0 (h)=xt0 (0)+F
h

0
x −t0 (u) dl(u)(8)

=xt0 (0)+F
h

0
g(u) du, for all h ¥ [−M, 0].

The latter equality, with g continuous, gives that xt0 is of class C1.
In particular, x0=j ¥ C1. On other hand, taking t0=

M
2 , for example,

and taking into account continuity of the right and left derivative of xM/2
at h=−M2 , we deduce that j −−(0)=F(j). L

Corollary 3.4. Let j ¥ E: x=xj. Then x is of class C1 on [−M,+.[.

Proposition 3.5. Suppose H 1 and H 2 hold. Then for each t0 > 0, k > 0
and for each j and k of C0, 1 such that ||j||., ||k||. [ k, we have

||T(t)(j)−T(t)(k)||0, 1 [ max{g, 1} exp(gt) ||j−k||0, 1, -t ¥ [0, t0],(9)

where

g=g(j, k, t0)=lipc1 (f){lipc1 (r) c0+1},(10)

c0=c0(j, k, t0)=lip(j)+a(bt0+k) exp(at0)+b,(11)

and

c1=c1(k, t0)=(bt0+k) exp(at0).(12)

Proof. Given t0 > 0, k > 0, let j and k be two elements of C0, 1 such
that ||j||. [ k, ||k||. [ k. For each t ¥ [0, t0], if x=xj is the solution of
equation (2) with initial datum j, we obtain

|x(t)| [ |x(0)|+F
t

0
|F(xv)| dv.(13)

From assumption H 2, we have

|x(t)| [ |x(0)|+F
t

0
(a ||xv ||.+b) dv.
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So,

|x(s)| [ ||j||.+F
t

0
(a ||xv ||.+b) dv, 0 [ s [ t,

Then,

||xt ||. [ ||x0 ||.+F
t

0
(a ||xv ||.+b) dv.

By the Gronwall lemma, we obtain

||xt ||. [ (||x0 ||.+bt) exp(at),

and also, for 0 [ t [ t0,

||xjt ||. [ (k+bt0) exp(at0),(13)

for each j ¥ C0, 1 ||j||. [ k. From inequality (13), we have

: d
dt
xj(t) :=|F(xjt )| [ a ||xjt ||.+b(14)

[ a(bt0+k) exp(at0)+b, for each j ¥ C0, 1,

such that ||j||. [ k.

Using (4), we obtain

|F(xjt )−F(x
k
t )| [ g ||x

j
t −x

k
t ||.,

where g, c0, and c1 is defined in Proposition 3.5 by (10), (11), and (12).
From the inequality

||xjt −x
k
t ||. [ ||j−k||.+F

t

0
|F(xjt )−F(x

k
t )| ds,

we deduce that

||xjt −x
k
t ||. [ ||j−k||.+g F

t

0
||xjt −x

k
t ||. ds.

Using again the Gronwall lemma, we obtain

||xjt −x
k
t ||. [ exp(gt) ||j−k||., 0 [ t [ t0.
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We also have

: d
dt
xj(t)−

d
dt
xk(t) :=|F(xjt )−F(xkt )|

[ g ||xjt −x
k
t ||.

[ g exp(gt) ||j−k||., 0 [ t [ t0.

By combining the above inequalities and using monotonicity of the function
exp(gt), we deduce the desired estimations. L

Note that for each t, t0, k, j and g taken as in Proposition 3.5, we have

||xj−xk||C0, 1([0, t0]) [ max{g, 1} exp(gt0) ||j−k||.,

Remark 3.6. From the proof of the above proposition, we deduce that
if f and r are Lipschitz continuous and if |f| is bounded by a constant
r > 0, we have

||T(t)(j)−T(t)(k)||0, 1 [ max{g, 1} exp(gt) ||j−k||0, 1,

t \ 0, for each j, k ¥ C0, 1,

where g=g(j, r)=lip(f){lip(r)(lip(j)+r)+1}.

Corollary 3.7. Assume assumptions H 1 and H 2 be satisfied. Then, E is
closed and the restriction of the family of operators T(t), t \ 0 to E, also
denoted T(t), t \ 0, is a strongly continuous semigroup on E.

For brevity, we will occasionally use the word semigroup to mean ‘‘strongly
continuous semigroup’’.

Proposition 3.8. Suppose H 1 and H 2 hold. Then, for each t ¥ [M,.],
the operator T(t) is completely continuous on (E, || · ||0, 1).

Proof. Given t \M. Continuity of T(t) is taken from Proposition 3.5.
Then, we only have to show that the operator is compact.

Let B be a bounded subset of E. We will show that T(t)(B) is relatively
compact. We denote r=sup {||j||0, 1: j ¥ B}.

If j ¥ B, and x(t)=xj(t), is the solution of Eq. (2), then procceding in
the same manner as in (13), (14), and (15), we obtain

˛ ||xt ||. [ (bt+r) exp(at)=c1,
|x −(t)| [ a(bt+r) exp(at)+b.
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Thus,

||x −t ||. [ a(bt+r) exp(at)+b=c0.(16)

On the other hand,

|x −(t+h1)−x −(t+h2)|=|F(xt+h1 )−F(xt+h2 )|

[ lipc1 (f){lipc1 (r)(c0+r)+1} ||xt+h1 −xt+h2 ||.

[ lipc1 (f){lipc1 (r)(c0+r)+1} c0 |h1−h2 |.

We deduce that the family {(xjt )
−: j ¥ B} is uniformly Lipschitz continuous

with the Lipschitz constant

LB [ lipc1 (f){lipc1 (r)(c0+r)+1} c0.(17)

The Ascoli Arzela theorem applied to the family H={(xjt ,
d
dh x

j
t ) : j ¥ B}

for each t \M implies that H is relatively compact in C×C. Then
{xjt : j ¥ B} is relatively compact in C1 for each t \M. The conclusion
follows from the fact that E is a closed subset of C1. L

4. SMOOTHNESS OF THE SOLUTION OF EQ. (2)

Let E1 be the set defined by

E1={j ¥ C1 : j − ¥ C0, 1 and j −(0)=F(j)}(18)

Proposition 4.1. Suppose assumptions H 1, H 2, and H 3 hold. Then, for
each j0 ¥ E1 the solution x :=xj0 of (2) is C2 on the interval [0,.[. More-
over, if we denote x' the second order derivative of x, then we have

x'(t)=f −(x(t−r(xt))) x −(t−r(xt)){1−Dr(xt) x
−

t}, t \ 0.(19)

In order to show this result, we need the following lemma:

Lemma 4.2. Suppose assumption H 3 holds. Then, F| C1, the restriction of
F to C1 is of class C1. Moreover, if we denote by Lj0 the derivative of F| C1 at
j0, then

Lj0 (k)=f
−(j0(−r(j0))){k(−r(j0))−j

−

0(−r(j0)) Dr(j0) k},

for each k ¥ C1,

where Dr: CQL(C; IR) is the Frechet derivative of the function r.
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Proof of Lemma 4.2. Let j and j0 betwo elements of C1. Using the
Taylor expansion of f in the neighborhood of j0(−r(j0)) yields

F(j)−F(j0)=f −(j0(−r(j0))){j(−r(j))−j0(−r(j0))}

+o(|j(−r(j))−j0(−r(j0))|),

We then note that

j(−r(j))−j0(−r(j0))=(j(−r(j))−j0(−r(j)))

+(j0(−r(j))−j0(−r(j0)).

The first expression on the right can be decomposed as

(j(−r(j))−j0(−r(j)))=(j−j0)(−r(j0))(20)

−(j−j0) − (−r(j0))(r(j)−r(j0))

+1F 1
0
(j−j0) − (−r(j0)+t(r(j)−r(j0)2

−(j−j0) − (−r(j0)) dt)(r(j)−r(j0)).

The integral term is of the order of o(r(j)−r(j0)) when j is close enough
to j0 in C1. On the other hand, we have

|r(j)−r(j0)| [ ||Dr(j0)||L(C; IR) ||j−j0 ||.+o(||j−j0 ||.),

so,

(j(−r(j))−j0(−r(j)))=(j−j0)(−r(j0))(21)

−(j−j0) − (−r(j0)) Dr(j0)(j−j0)

+o(||j−j0 ||0, 1)

which reads

(j(−r(j))−j0(−r(j)))=(j−j0)(−r(j0))+o(||j−j0 ||0, 1).(22)

Using now the Taylor expansion of j0 at −r(j0), we have

(j0(−r(j))−j0(−r(j0))=j
−

0(−r(j0))(r(j0)−r(j))

+o(|r(j0)−r(j)|)

=j −0(−r(j0)) Dr(j0)(j−j0)

+o(||j−j0 ||0, 1).
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Putting all these quantities together, we obtain

F(j)−F(j0)=f −(j0(−r(j0))){(j−j0)(−r(j0))(23)

+j −0(−r(j0)) Dr(j0)(j−j0)}

+o(||j−j0 ||0, 1)

which shows that F is differentiable at j0 in C1 and

Lj0 (k)=f
−(j0(−r(j0))){k(−r(j0))+j

−

0(−r(j0)) Dr(j0) k}.

Clearly the formula shows that the map j0 - Lj0 is continuous, which
yields that the restriction of F to C1 is of class C1

Remark 4.3. One can improve the result of Lemma 4.2 to obtain the
following result: Under the assumption H 3, for each j0 ¥ C1, R > 0 and
e > 0, there exists c(e) > 0, such thatj ¥ C1, ||j−j0 ||. [ c(e) and ||(j−j0) −||.
[ R, imply that |F(j)−F(j0)−Lj0 (j−j0)| [ eR ||j−j0 ||..

Proof of Proposition 4.1. Let j0 ¥ E1(where E1 is defined in (18)). It
follows that x=xj0 is C1 on the interval [−M,.[. Given t \ 0 and e > 0,
we have

lip(j0)+sup{|x −(t)| : s ¥ [−M, t+e]}=r <..

For each real number h small enough such that |h| [ e and t+h \ 0, we
have

x −(t+h)−x −(t)
h

=
F(xt+h)−F(xt)

h
(24)

=Lxt 1
xt+h−xt
h
2+1
h
o(||xt+h−xt ||0, 1).

We will show that

||xt+h−xt ||0, 1=O(h).(25)

Recall that

||xt+h−xt ||0, 1=max{||xt+h−xt ||., ||x
−

t+h−x
−

t ||.}

and observe that

||xt+h−xt ||.=sup{|x(t+h+h)−x(t+h)| : h ¥ [−M, 0]}

[ r |h|.
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To conclude, it is then sufficient to show that there exists a constant K \ 0
such that

||x −t+h−x
−

t ||. [K |h|.(26)

From inequalities (4), (13), (14), and (15), there exists a constant g > 0 such
that

|F(xs)−F(xs −)| [ g ||xs−xs − ||., for each s, s − ¥ [0, t+1].(27)

Let h ¥ [−M, 0].

First Case. t+h \ 0. If t+h+h \ 0, then

|x −t+h(h)−x
−

t(h)|=|F(xt+h+h)−F(xt+h)|.

From (27), we deduce that

|x −t+h(h)−x
−

t(h)| [ g ||xt+h+h−xt+h ||..

Thus,

|x −t+h(h)−x
−

t(h)| [ gr |h|.

If t+h+h [ 0, then t+h [ |h|, and

|x −t+h(h)−x
−

t(h)|>=|j
−

0(t+h+h)−F(xt+h)|(28)

[ |j −0(t+h+h)−j
−

0(0)|+|F(x0)−F(xt+h)|

[ r |t+h+h|+g ||xt+h−x0 ||.

[ 2r |h|+gr |h|.

Then we have

|x −t+h(h)−x
−

t(h)| [ 3r max(1, g) |h|.

Second Case. t+h [ 0. Similarly as in the first case, we obtain

|x −t+h(h)−x
−

t(h)| [ 3r max(1, g) |h|.

Then

||x −t+h−x
−

t ||. [ 3r max(1, g) |h|.

Hence, the claimed inequality (26) holds with K=3r max(1, g).
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Finally, using Eqs. (24), (26), and Lemma 4.2, we obtain

lim
hQ 0

x −(t+h)−x −(t)
h

(29)

=lim
hQ 0
f −(x(t−r(xt)))

×31xt+h−xt
h
2 (−r(xt))−x −(t−r(xt)) Dr(xt) 1

xt+h−xt
h
24

=f −(x(t−r(xt))){x −(t−r(xt))−x −(t−r(xt)) Dr(xt) x
−

t}.

Since the second quantity in the right hand side of expression (28) is con-
tinuous with respect to t \ 0, we deduce that x' exists and is continuous at
each point t \ 0. Moreover, we have

x'(t)=f −(x(t−r(xt))) x −(t−r(xt)){1−Dr(xt) x
−

t}, t \ 0. L

Corollary 4.4. Suppose that H 1, H 2, and H 3 hold. For each j0 ¥ C0, 1

the solution xj0 of Eq. (2) is C2 on the interval [M,.[. Furthermore, the
second order derivative of xj0 is given by formula (19).

Proof. Let j0 ¥ C0, 1, and t \M. We know that xt :=x
j0
t is C1 and

satisfies the condition: x −t(0)=F(xt). Moreover, (17) implies that x −t ¥ C
0, 1.

Then using Proposition 4.1, we conclude that d
dt x

j0(t) is differentiable at
each t \M. L

Corollary 4.5. Suppose that H 1, H 2, and H 3 hold. For each
j0 ¥ C, xj0 (where xj0 is any solution of Eq. (2) with j0 as initial function) is
C2 on the interval [2M,.[. Moreover, the second order derivative of xj0 is
given by formula (19).

Proof. Let j0 ¥ C0, 1, and t \ 2M. If xj0 is a solution of (2), we have
xj0(t)=xx

j0
M (t−M). By Corollary 4.4 and the fact xj0M ¥ C1, we conclude

that ddt x
j0 is differentiable at each t \ 2M. L

5. THE INFINITESIMAL GENERATOR OF THE SEMIGROUP

In this section we characterize the infinitesimal generator of the semi-
group T(t), t \ 0, that is to say, the operator A defined as

Aj=lim
t s 0

T(t) j−j
t
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when this limit exists, in C0, 1. Clearly, Aj=j −.What makes A unique is its
domain, that is, the set

D(A)=3j ¥ E : lim
t s 0+

T(t) j−j
t

exists4 .

Defining the set

E2={j ¥ C2 : j −−(0)=F(j) and j'−(0)=Lj(j −)}

we have the following

Proposition 5.1. Suppose H 1, H 2, and H 3 hold. Then,

D(A)=E2.(30)

Proof. Observe that j ¥ D(A) if and only if there exists k ¥ C0, 1 such
that

lim
t s 0+
>T(t) j−j

t
−k>

.

=0(31)

and

lim
t s 0+
> d
dh
1T(t) j−j

t
−k2>

L.
=0,

that is,

lim
t s 0+
>x −(t+· )+x −( · )

t
−k −>

L.
=0,(32)

where x −= d
dt x

j. We know that (31) is equivalent to j ¥ C1,j −=k and
j −(0)=F(j) (see [14, Proposition 3.1]).

We start by showing that each element of D(A) is of class C2. Let
j ¥ D(A). Set x=xj; let (tn)n \ 0 be a decreasing sequence of positive
numbers, with limnQ. tn=0, and denote zn=(x −(tn+·)−x −( · ))/tn. From
(32) we deduce that (zn) is a Cauchy sequence in L.. We know from
Proposition 3.3 that the solutions starting in E are C1 on their domain.
Denote z=limnQ. zn. Since zn converges almost a.e to j' (j' is the
derivative of j −), then j'=z So, j' is continuous. Proceeding as in the
proof of Proposition 3.3 (see (8)) we deduce j − ¥ C1, so j is C2.

16 LOUIHI, HBID, AND ARINO



We now prove that j −−(0)=Lj(j −).
The functions in formula (32) are continuous, thus the converence holds

in C, that is, we can write

lim
t s 0+
>x −(t+· )−x −( · )

t
−k −>

.

=0,

in particular, we have

lim
t s 0+
:x −(t)−x −(0)

t
−j'(0) :=0.(33)

By using Proposition 4.1, Lemma 4.2, and (33) we deduce that

j'−(0)=Lj(j −).

Thus, we have proved that

D(A) … E2.

Conversely, let j ¥ C2 be such that j−(0)=F(j), and j'(0)=Lj(j −).
Proposition 4.1 implies that the solution x of the equation (2) is twice
continuously differentiable on the interval [−M,.[. One deduces that
(30) and (31) are satisfied with k=j −. This completes the proof of the
proposition. L

Corollary 5.2. Suppose H 1, H 2 and H 3 hold. If we choose an initial
datum j ¥ D(A), then the solution of (2) xj is C2 on the interval [−M,.[.

Corollary 5.3. Suppose H1, H 2, and H 3 hold. Then, we have:

(a) T(t)(E2) ı E2, for each t \ 0.
(b) T(t)(C0, 1) ı E2 for each t \ 2M.

From Proposition 4.1, we can deduce the following result.

Proposition 5.4. Suppose H 1, H 2, and H 3 hold. Then, the closure of the
domain E2 in the space (C0, 1, || · ||0, 1) is the set E.

The proof of Proposition 5.4 hinges on two auxiliary results.
Let us first introduce further notations:

C0={j ¥ C1 : j(0)=0}
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C10 is the subspace of C1, defined by

C10={j ¥ C
1 : j, j − ¥ C0},(34)

A0 is the operator defined in C10 by

D(A0)={j ¥ C
1
0 : j

− ¥ C10}

A0(j)=j −.
(35)

Lemma 5.5. For each j ¥ C10, we have

lim
lQ 0
||(I−lA0)−1 j−j||1=0,(36)

where || · ||1 is the norm of the space C1, defined by

||j||1=max{||j||., ||j −||.}

Proof of Lemma 5.5. It is known (see, for example, [14]) that

˛y
−(t)=0
y0=j

determines on C (first) and on C0 (by restriction) a C0-semigroup T0(t),
which has the operator B0 defined by

˛D(B0)={j ¥ C0 : j
− ¥ C0}

B0f=f −,

as an infinitesimal generator. On the other hand, the operator

J: C0 0 C10

j- F
0

·
j(s) ds

is an isomorphism between (C0, || · ||.) and (C10, || · ||1). It is not difficult to
see that the family of operators defined by

S(t)=J p T0(t) pJ−1, for each t \ 0,

is an C0-semigroup. We prove that S(t) has A0 (the operator defined on C10 by
(35)) as an infinitesimal generator. Let k ¥ C10. Then limt s 0+((S(t) k−k)/t)
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exists in (C10, || · ||1) if and only if limt s 0+((T0(t) pJ−1k−J−1k)/t) exists in
(C0, || · ||.), i.e. : J−1k ¥D(B0). Since, J−1k=−k −, we deduce that k is in
the domain of the infinitesimal generator of S(t) if and only if k ¥D(A0) and
limt s 0+((S(t) k−k)/t)=J(B0J−1k)=k −. We deduce that A0 is the infini-
tesimal generator of the C0-semigroup S(t). The result follows from the
Hille–Yoshida theorem (see, for example, [9]). L

We now introduce a function q defined on ]−., 0] with values in
[0, 1], and satisfying the following properties

(i) q is C2,

(ii) q(s)=0 if s ¨ [−1, 0],

(iii) q(s) [ 1,

(iv) q(0)=1,

(v) q −(0)=0.

(37)

Lemma 5.6. If q satisfies conditions (i)–(v) of (37), then

(a) The function

Ye : [−M, 0] 0 IR

h-
h

e
q 1h
e
2 ,

(38)

is bounded independently of e > 0.
(b) The function C(a, b, e) of C1([−M, 0], IR) defined, for all (a, b, e) ¥

IR×IR×IRg
+ by

C(a, b, e)(h)=ahq 1
h

e
2+1
2
b
h2

e
q 1 h
e2
2 , for all h ¥ [−M, 0],

converges to zero in the space (C1, || · ||1), as (e, a, b) tends to (0, 0, 0).

Proof of Lemma 5.6. (a) Let e > 0, h ¥ [−M, 0]. If h
e [ −1, then

q(he)=0. If he ¥ [−1, 0], then

:h
e
q 1h
e
2 : [ :q 1h

e
2 : [ 1.

So, we deduce that ||Ye ||. [ 1, for each e > 0.
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(b) Notice that C is, for each fixed value (a, b, e) ¥ IR×IR×IR+g , of
class C1 on [−M, 0].We will evaluate ||C(a, b, e)( · )||1. From (a), we have

|C(a, b, e)(h)| [ e |a| :
h

e
q 1h
e
2 :+1
2
e |bh| : h

e2
q 1 h
e2
2 :(39)

[ e |a|+
1
2
e |b| M.

and

: d
dh
C(a, b, e)(h) :=:aq 1

h

e
2+a h

e
q − 1h
e
2+b h

e
q 1 h
e2
2+1
2
b
h2

e3
q − 1 h
e2
2 :(40)

[ |a|+e |b|+|a| :h
e
q − 1h
e
2 :+1
2
e |b| : h

e2
q − 1 h
e2
2 : : h
e2
: .

In the same way as in (a), one can show that the function h- |he q
−(he)| is

bounded independently of e > 0.We have

:h
e
q − 1h
e
2 : [ ||q −||..

We also have

: h
e2
q − 1 h
e2
2 : [ ||q −||..

Moreover,

q − 1 h
e2
2=0 for |h| \ e2.

Thus, we deduce that

: d
dh
C(a, b, e) (h) : [ |a|+e |b|+|a| sup

IR
|q −|+

e

2
|b| sup

IR
|q −|,(41)

and we have the convergence of C to 0 in C1, as (a, b, e)Q 0.

Proof of the Proposition 5.4. Let f ¥ E. Our goal here is to approximate
this function in (C0, 1, || · ||0, 1), by a sequence of functions in E2.
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For each e > 0, a ¥ IR, and b ¥ IR, we define the functions fe and fe, a, b
by

fe(h)=(I− eA0)−1 (f0)(h)+hf −(0)+f(0),

fe, a, b(h)=fe(h)+C(a, b, e)(h), h ¥ [−M, 0],
(42)

where f0(h)=f(h)−hf −(0)−f(0), h ¥ [−M, 0]. Lemmas 5.5 and 5.6 imply
that

lim
e, a, bQ 0

||f−fe, a, b ||1=0.(43)

Given t > 0. From property (43), there exist e1=e1(t) > 0, a1=a1(t) > 0,
and b1=b1(t) > 0, such that

||f−fe, a, b ||1 [ t, for each (e, a, b) ¥ B1,(44)

where

B1=]0, e1]×[−a1, a1]×[−b1, b1].

So, it is sufficient to determine(e, a, b) ¥ B1, such that fe, a, b ¥ E2. Observe
that the functions fe and fe, a, b are C2 and satisfy fe(0)=f(0), f

−

e(0)=
f −(0), f'e (0)=0, (d/dh) fe, a, b(0)=a+f

−(0) and (d2/dh2) fe, a, b(0)=b/e.
This implies that fe, a, b ¥ E2 if and only if (i) and (ii) hold at the same time
where

(i) f −(0)+a=F(fe, a, b)
(ii) b

e=Lfe, a, b (
d
dh fe, a, b).

The end of the proof is done in two parts. First, we look for the elements
of the set B1 which satisfy (i). Second we show that amongst these elements
there exists at least one element for which (ii) holds.

Claim 1. There exist 0 < b̄ < b1, 0 < ē < e1, such that for each (e, b) ¥ B̄1
=]0, ē]×[− b̄, b̄]. Equation (i) has at least one solution a.

We have to solve equation G(e, a, b)=a, (e, a, b) ¥ B1, where G is a
function defined from B1 into IR by G(e, a, b)=F(fe, a, b)−f −(0).

We now consider the sequence of functions defined by

an(e, b)=G(e, an−1(e, b), b)

a0(e, b)=0.
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We show that there exists (e −, b −) ¥ ]0, e1]×]0, b1] such that the sequence
of functions (an(e, b))n \ 1 converges to a function ã(e, b) which is continuous
in b, on the set ]0, e −]×[−b −, b −]. We have

lim
eQ 0

sup 3 : “
“a
G(e, a, b) : ; a ¥ [−a1, a1] et b ¥ [−b1, b1]4=0.(45)

In fact, Lemma 4.2 implies that the function G is differentiable with respect
to a and

“

“a
G(e, a, b)=Lfe, a, b1 ( · ) q 1

·
e
22 .(46)

Lemmas 4.2 and 5.6 and inequalities (4), (44) imply that for l small enough

:F 1fe, a, b+l( · ) q 1
·
e
22−F(fe, a, b) :

l
[ Q >( · ) q 1 ·

e
2>
.

(47)

[ eQ, for each (e, a, b) ¥ B1,(48)

whereQ=lipc(f){lipc(r) c+1}, and c=(||f||1+1). Taking (46) into account,
we deduce

: “
“a
G(e, a, b) :=lim

lQ 0

:F 1fe, a, b+l( · ) q 1
·
e
22−F(fe, a, b) :

l
(49)

[ eQ, -(e, a, b) ¥ B1.(50)

This proves (45).
Using the above results we obtain the existence of (e', b') ¥ ]0, e1]×
[−b1, b1] such that

|G(e, a, b)| [ a1, for each (e, a, b) ¥ ]0, e']×[−a1, a1]×[−b', b'].
(51)

From (45), there exists e2 ¥ ]0, e1] such that

sup 3 “
“a
G(e, a, b); a ¥ [−a1, a1] and b ¥ [−b1, b1]4(52)

[
1
2
, for each e ¥ ]0, e2].
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Equation (43) and the fact that f ¥ E, imply that

lim
(e, a, b)Q (0, 0, 0)

G(e, a, b)=0.

Then, we deduce the existence of (e3, b2) ¥ ]0, e2]×]0, b1], such that

|G(e, 0, b)| [
a1
2
, for each (e, b) ¥ ]0, e3]×]0, b2].(53)

So, by combining (52), and (53), we obtain (51), with e'=e3 and b'=b2.
From inequalities (51) and (52), we have

˛ (an(e, b))n \ 0 … [−a1, a1], for each (e, b) ¥ ]0, e3]×[−b2, b2]=B42,

|an(e, b)−am(e, b)| [
1
2m
a1, for each n \ m \ 1, (e, b) ¥ B42.

Since the function G(e, a, b) is continuous in (a, b), and the functions
an(e, b), n \ 1, are continuous in b, then the sequence (an(e, b))n \ 0 converges
uniformly on the set B42, to a function ã defined from B42 into [−a1, a1],
continuous in b, and satisfying ã(e, b)=G(e, ã(e, b), b), for each (e, b) ¥ B42.
Thus Claim 1 holds with ē=e3, b̄=b2, B̄1=B42.

Claim 2. There exists 0 < ē̄ < ē such that if we denote Ve, a(b)=
eLfe, a, b (

d
dh fe, a, b), a=ã(e, b) then equation Ve, a(b)=b has at least one a

solution for each e ¥ ]0, ē̄]

Using the same arguments as in (47) and (50), we can show that there
exists a positive constant Q such that

|Ve, a(b)| [ eQ >
d
dh
fe, a, b>

.

.(54)

By differentiating in (42) we have

d
dh
fe, a, b(h)=

d
dh
(I− eA0)−1 (f0)(h)+f −(0)+

d
dh
C(a, b, e)(h).(55)

From (41) we obtain

e : d
dh
C(a, b, e)(h) : [ e 1a1+eb2+a1 sup

IR
|q −|+

e

2
b2 sup

IR
|q −|2,(56)

for each (e, a, b) ¥ ]0, e3]×[−a1, a1]×[−b2, b2].
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By using (54), (56), (55), and Lemma 5.5 we deduce that

lim
eQ 0

sup {|Ve, a(b)| : (a, b) ¥ [−a1, a1]×[−b2, b2]}=0.

Therefore, there exists e4 ¥ ]0, e3] such that, for each 0 < e [ e4, we have

˛ |Ve, a(b)| [ b2, (a, b) ¥ [−a1, a1]×[−b2, b2],
|Ve, ã(e, b)(b)| [ b2, b ¥ [−b2, b2].

We conclude that for each fixed e ¥ ]0, e4], the function Ve, ã(e, · )( · ): [−b2, b2]
Q [−b2, b2] is continuous and has a fixed point b(e) in the interval
[−b2, b2].
Then the proof of Claim 2 is complete.

To summarize, the values a=ã(e, b(e)) and b=b(e) determined in
Claim 1 and Claim 2, respectively, are such that

fe, a, b ¥ E2 and ||fe, a, b−f||1 [ t.

This completes the proof of Proposition 5.4. L

6. APPROXIMATION OF THE SEMIGROUP

In this section we establish an approximation result of the semigroup
solution, T(t), t \ 0 based on the Crandall–Liggett theorem. Our method
uses a technique developed in the case of neutral delay equations by Plant
[11].

In the sequel, for each k > 0 and c > 0 , we denote || · ||1, c, the norm on
C1, equivalent to || · ||1, defined by

||j||1, c=||j||.+
1
c
||j −||., j ¥ C1,(57)

Bc(k) is the ball of centre 0 and radius k > 0 of C1, endowed with the norm
|| · ||1, c. Define the following function

Vc(j)=˛
j if ||j||1, c [ 1,
j

||j||1, c
if ||j||1, c \ 1.

(58)
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Vc is a retraction on the ball of center 0 and radius 1, with respect to the
norm || · ||1, c, We also define the retraction to the ball of center 0 and radius
1, with respect to the norm || · ||.

V(j)=˛j if ||j||. [ 1,
j

||j||.
if ||j||. \ 1.

Fc, k is the function defined on C1 by

Fc, k(j)=f 1k 1Vc 1
1
k
j22 1−r 1k 1V 11

k
j22222 , for each j ¥ C1

(59)

We denote by Ek the subset of C1 defined by

Ek={j ¥ C1 : j −−(0)=Fk(j)},(60)

where

Fk=F1+lipk(f), k.(61)

Ak is the operator defined on C1 by

D(Ak)={j ¥ C2 : j −−(0)=Fk(j)}

Akj=j −.
(62)

Finally, A1 is the operator defined by

D(A1)={j ¥ C2 : j −−(0)=F(j)},

A1j=j −.
(63)

Lemma 6.1. Suppose H 1 and H 2 be satisfied. Then for each real k > 0
and c > 0, there exists a continuous function Fc, k: C1Q IR, such that

(a) F(k)=Fc, k(k) for each k ¥ Bc(k),
(b)

|Fc, k(k)−Fc, k(j)| [ r ||k−j||.+
lipk(f)
c

||k −−j −||. for each k, j ¥ C1,

where r=r(c, k)=2 lipk(f)(ck lipk(r)+1).
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Proof. Let c > 0 and k > 0.We have

||Vc(j)−Vc(f)||. [ ˛
1

sup {||j||1, c, ||k||1, c}
12 ||k−j||.+

1
c
||k −−j −||.)

if ||j||1, c \ 1 or ||k||1, c \ 1,

||k−j||. if ||j||1, c [ 1 and ||k||1, c [ 1.

(64)

The case where ||j||1, c [ 1 and ||k||1, c [ 1 is evident. It remains to discuss
three possible cases :

First Case. If ||j||1, c \ 1 and ||k||1, c \ 1, we have

||Vc(j)−Vc(k)||.=>
j

||j||1, c
−
k

||k||1, c
>
.

[
1

||j||1, c ||k||1, c
{||k||1, c ||j−k||.+|||k||1, c−||j||1, c | ||k||.}

[
1
||j||1, c
12 ||k−j||.+

1
c
||k −−j −||. 2.

Second Case. If ||j||1, c [ 1 and ||k||1, c \ 1, we obtain

||Vc(j)−Vc(k)||.=>j−
k

||k||1, c
>
.

[
1
||k||1, c

{| ||k||1, c−1| ||j||.+||j−k||.}

[
1
||k||1, c

{| ||k||1, c−||j||1, c | ||j||.+||j−k||.}

[
1
||k||1, c

{||k−j||1, c+||j−k||.}

[
1
||k||1, c
12 ||k−j||.+

1
c
||k −−j −||. 2.

By the same arguments we show that (64) holds true if ||j||1, c \ 1 and
||k||1, c [ 1. From inequality (64), we deduce that

>Vc 1
1
k
j2−Vc 1

1
k
k2>

.

(65)

[
2
k
||k−j||.+

1
ck
||k −−j −||., for each k, j ¥ C1, k > 0.
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On the other hand, we know from a result obtained in [10] that the
function V satisfies

||V(j)−V(k)||. [ 2 ||j−k||..

The function Fc, k, defined by (59), is the same as the function in
Lemma 6.1. In fact, for each j ¥ Bc(k), we have kVc(

1
k j)=j and kV(1k j)

=j. Then, F(j)=Fc, k(j). Furthermore, using (65), we have

|Fc, k(j)−Fc, k(k)|

[ lipk(f) k : 1Vk 1
1
k
j22 1−r 1kV 11

k
j222

−1Vk 1
1
k
k22 1−r(kV 11

k
k222 :

[ lipk(f) k :Vk 1
1
k
j22 1−r 1kV 11

k
j222

−1Vk 1
1
k
j22 1−r 1kV 11

k
k222 :

+lipk(f) k : 1Vk 1
1
k
j22 1−r 1kV 11

k
k222

−1Vk 1
1
k
k22 1−r 1kV 11

k
k222 :

[ lipk(f) k{2c lipk(r) ||k−j||.}

+lipk(f) 32 ||k−j||.+
1
c
||k −−j −||. 4

[ lipk(f){2ck lipk(r)+2} ||k−j||.+
lipk(f)
c

||k −−j −||.,

for all j, k ¥ C1. L

Theorem 6.2 (11). Suppose that there exist constants c > 0, s \ 0, and
0 [ cs < 1 such that

|F(j)−F(k)|

[ c ||j−k||.+cs sup
h ¥ [−M, 0]

{exp(−sh) |j −(h)−k−(h)|}, for each j, f ¥C1.
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Then the operator A1 generates a shift semigroup T1(t) in the sense of
Theorem 2.6, on the set E. Moreover, the function x(t; j) defined, for each
j ¥ E, by

x(t; j)=˛j(t) if −M [ t [ 0
(T1(t) j)(0) if t > 0,

is the solution of Eq. (2).

Theorem 6.3. Suppose that H 1 and H 2 hold. For every j ¥ E and
t0 > 0, k > 0 such that ||j||1, lipk(f)+1 [ k, we have

lim
nQ.

>1Id− t
n
Ab2

−n

j−T(t) j>
1
=0, for each t ¥ [0, t0],

where b=b(t0, k)=(a/(lipk(f)+1)+1)(bt0+k) exp(at0)+(b+k)/(lipk
(f)+1).

Proof. Let k > 0, t0 > 0, and j ¥ E, such that ||j||1, lipk(f)+1 [ k. Denote
by b, the number b(t0, k) given in Theorem 6.3. Observe that j ¥ Eb. From
Lemma 6.1, the function Fb satisfies the conditions of Theorem 6.2. Then
the operator Ab generates a shift semigroup Tb(t), in the sense of Theorem
2.6, on the set E. Moreover, the function

y(t)=˛ (T
b(t) j)(0) if t \ 0

j(t) if −M [ t [ 0,

satisfies

˛y
−(t)=Fb(y(t)), t \ 0
y0=j.

(66)

If x=xj is the solution of Eq. (2), then

|x(t)| [ |x(0)|+F
t

0
|F(xv)| dv.(67)

From inequalities (14) and (15) we obtain

1
lipk(f)+1

||x −t ||. [
a

lipk(f)+1
(bt0+k) exp(at0)+

b+||j −||.
lipk(f)+1

.(68)
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We deduce that for each t ¥ [0, t0]

||xt ||1, lipk(f)+1 [ 1
a

lipk(f)+1
+12 (bt0+k) exp(at0)+

b+k
lipk(f)+1

(69)

=b.

Lemma 6.1 and inequality (69) imply

x −(t)=F(xt)(70)

=Fb(xt), for each t ¥ [0, t0].

From (70) and the uniqueness of the solution of (66) we conclude that

x(t)=y(t), for each t ¥ [0, t0],

and

T(t) j=Tb(t) j, for each t ¥ [0, t0]. L
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