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Abstract. This paper deals with attractiveness and Hopf bifurcation for func-
tional differential equations. The method used is based on the center manifold
reduction and the h-asymptotic stability related to the Poincaré procedure.

1. Introduction. In this paper we are concerned with Hopf bifurcation for the
following functional differential equation

d

dt
x(t) = f(µ, xt), (1.1)

where
(H0) f is a Ck+1-smooth mapping, k ≥ 3, from ]− µ̄, µ̄[×C([−r, 0],Rn) into Rn,

with f(µ, 0) = 0 for all µ ∈]− µ̄, µ̄[,
(H1) The characteristic equation

det ∆(λ, µ) = 0, where ∆(λ, µ) = λId −Dϕf(µ, 0)eλ.I, (1.2)

has simple roots ±iω0, ω0 > 0, at µ = 0 and all other roots have negative real part,
(H2) Re(λ′(0)) 6= 0, where λ(µ) is the branch of roots of the characteristic

equation (1.2) through iω0 at µ = 0.
Hypothesis (H0) is a smoothness assumption. It can be weakened with respect to
the parameter, particularly when we take the delay as a parameter, (see [9], [13], [3],
[22]...). This hypothesis also guarantees that x = 0 is a solution for all values of µ.
Hypothesis (H1) is a necessary condition to have an attractive bifurcating branch,
while hypothesis (H2) is a transversality condition.

This type of bifurcation was pointed out for the first time for ordinary differential
equations by Hopf [15], in 1942, who proved the existence of a branch of periodic
solutions bifurcating from the origin. This result is commonly known as the Hopf
bifurcation theorem.

For functional differential equations, the first results on Hopf bifurcation dated
back to 1971, with a work by Chafee [6], who considered a situation where in
addition to (H1), the origin remains uniformly asymptotically stable at µ = 0.
According to Hale [14], the first proof of the Hopf bifurcation theorem for functional
differential equations under analytically computable conditions was presented by
Chow and Mallet-Paret [7] in 1977. Since then, a considerable number of works
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have been developed by many authors, treating many aspects related to bifurcation
of periodic solutions.

For existence, uniqueness and regularity of the bifurcating branch, several ap-
proaches have been undertaken: the averaging method was notably developed by
Gumowski [12] and Chow and Mallet-Paret [7]. Another approach based on integral
manifolds, has been developed by Hale [14] and further extended to infinite delay
by Stech [23]. Arino [2] treated the same problem by formulating an “adapted”
implicit function theorem. Diekmann et al.[8] have tackled the problem of the lack
of regularity of the solution operator associated with a delay equation. Using the
sun-star theory of dual semigroups, these authors have reduced the problem of bi-
furcation, on a center manifold, to a planar ordinary differential equation. In [10],
Faria and Magalhães have studied the Hopf bifurcation problem by developing a
normal form theory for functional differential equations. The list is not exhaustive.

Concerning the qualitative aspects of the bifurcating branch, the methods were
essentially based on the Floquet theory, see for instance Stech [23]. However, the
works of Chow and Mallet-Paret [7], and Faria and Magalhães [10] give, without
reference to the Floquet theory, efficient procedures for determining the direction of
the bifurcation curve, the magnitude and attractiveness of the bifurcating orbits. In
their book [8], Diekmann et al. showed that under the hypothesis of attractiveness of
the center manifold, local attractiveness of the bifurcating branch is reduced to the
attractiveness within a center manifold. Recently, Gil in [11] stated an existence and
stability result of periodic solutions for a class of neutral type functional differential
equations.

All these methods make easy the study of the stability of the bifurcating branch,
but what is still lacking is a geometric description of the stability.

Our aim here is to deal with some geometric aspects of attractiveness for the
functional differential equation (1.1). The method followed in this work consists of:
1) Reducing this equation, on a center manifold, to a planar differential system. 2)
Using the h-asymptotic stability theory, developed, for ordinary differential equa-
tions, by Negrini, Salvadori, Bernfeld and others [19], [5], we study the problem of
bifurcation for this ordinary reduced system. Especially, we derive some estimates
of the displacement of the solution after each rotation, this permits us to describe in
a geometric way the attractiveness of the bifurcating periodic orbits for the reduced
ordinary differential system. This approach suits, in our viewpoint, to this situa-
tion, for two reasons: First, the h-asymptotic stability theory allows us to estimate
the displacement function which permits to describe in a geometric way the attrac-
tiveness of the bifurcating periodic orbits. Then, this property can be recognized by
means of the Poincaré procedure, see Negrini and Salvadori [19], (the reader is re-
ferred to Arino and Hbid [4] for a detailed algorithm of this procedure). 3) We give
some estimates between the solutions of the functional differential equation (1.1)
and the reduced ordinary differential system, this allows us to derive similar results
for the functional differential equation (1.1). In this way, we obtain an equivalent
to the notion of h-attractiveness for the functional differential equation (1.1).

Our method is then an attempt to extend the h-asymptotic stability theory to
functional differential equations. This not only permits us to determine stability,
but also provides an approximation of the bifurcating branch of the functional
differential equation.

2. Reduction on a Center Manifold. The linear part of equation (1.1) is given
by

d

dt
x(t) = Lµxt, (2.1)

where Lµ := Dϕf(µ, 0).
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The solutions of equation (2.1) define a linear C0 semigroup on C, Tµ(t)t≥0.
The infinitesimal generator Aµ of Tµ(t)t≥0 is defined by Aµϕ = ϕ′, with domain
D(Aµ) = {ϕ ∈ C1 : ϕ′(0) = Lµϕ}, where ϕ′ denotes the derivative of ϕ and
C1 := C1([−r, 0],Rn) is the space of continuously differentiable functions from
[−r, 0] into Rn. It is known (see for instance Hale [14]), that the spectrum σ(Aµ)
of the infinitesimal generator Aµ coincides with its point spectrum σp(Aµ), and
λ(µ) ∈ σ(Aµ) if and only if it satisfies the characteristic equation det ∆µ(λ) = 0,
where ∆µ(λ) = λI − Lµeλ.I. Let N (resp. Nᵀ) be the generalized eigenspace
related to Λ = {i,−i} of the infinitesimal generator A0 (resp. Aᵀ0) associated with
the semi-group T0(t)t≥0, (resp. T ᵀ0 (t)t≥0), given by the linearized system (2.1) (resp.
the transposed equation of (2.1)) for µ = 0.

Let Φ := (ϕ1, ϕ2) and Ψ := col(ψ1, ψ2) be the bases for the generalized eigenspaces
N and Nᵀ respectively, such that 〈Ψ,Φ〉 := (ψj , ϕk), j, k = 1, 2 is the identity ma-
trix, where (., .) denotes the formal dual product.

Set S := {ϕ ∈ C : (ψj , ϕ) = 0, j = 1, 2}. The space C can be decomposed
according to the eigenvalues Λ = {i,−i}, as C = N ⊕ S. This decomposition of C
defines two projection operators πN : C → N, πNN = N, πS : C → S, πSS = S.
These projections are given by πNϕ := ϕN = Φ〈Ψ, ϕ〉 and πS = IC − πN , IC is
the identity on C. Let K(t, τ) denote the kernel of Volterra given by K(t, τ)(θ) =∫ τ

0
X(t+ θ− s)ds where X(.) denotes the fundamental matrix solution of the linear

equation (2.1) for µ = 0, we have KN (t, τ) = Φ〈Ψ,K(t, τ)〉 =
∫ τ

0
T0(t− s)ΦΨ(0)ds

and KS(t, τ) = IC −KN (t, τ).
There exist two positive constants M,α such that{

‖T0(t)ϕs‖ ≤ M exp(−αt)‖ϕs‖
V ar[0,t)K

s(t, .) ≤ M exp(−αt), t ≥ 0.

Returning to equation (1.1), it is convenient to supplement it with the trivial
equation dµ

dt = 0. We have the following system




d

dt
x(t) = L0xt + F̃ (µ, xt),

d

dt
µ(t) = 0,

(2.2)

where F̃ (µ, ϕ) := f(µ, ϕ)− L0ϕ with F̃ (0, 0) = 0 and D(µ,ϕ)F̃ (0, 0) = 0.
Then equation (2.2) has a local center manifold (µ, Y ) → h(µ, Y ) := hµ(Y ). On

this center manifold the flow of the functional differential equation (1.1) is given by
the ordinary differential system

d

dt
Y (t) = BY (t) + Ψ(0)F̃ (µ,ΦY (t) + hµ(Y (t))). (2.3)

3. Bifurcation for the Reduced Ordinary Differential System. We start this
section by recalling some results about the h-asymptotic stability theory related to
the Poincaré procedure for ordinary differential equations.

The linear part of equation (2.3) is given by the matrix

Cµ = B + Ψ(0)(Lµ − L0)Φ(0).

This matrix has a complex pair of eigenvalues α(µ)± iβ(µ) with α(0) = 0, β(0) = 1,
and α′(0) 6= 0.

A suitable linear transformation can be found so that (2.3) takes the form




d

dt
y1 =α(µ)y1 − β(µ)y2 + P(µ, y1, y2),

d

dt
y2 =α(µ)y2 + β(µ)y1 +Q(µ, y1, y2),

where P(µ, 0, 0) = Q(µ, 0, 0) = 0, and DP(µ, 0, 0) = DQ(µ, 0, 0) = 0.
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Converting this system into polar coordinates by letting y1 = % cos θ, y2 = % sin θ,
we have {

%
′
(t) =α(µ)% + P∗(µ, %, θ) cos θ +Q∗(µ, %, θ) sin θ,

%(t)θ
′
(t) =β(µ)% +Q∗(µ, %, θ) cos θ −P∗(µ, %, θ) sin θ,

where

P∗(µ, %, θ) = P(µ, % cos θ, % sin θ) and Q∗(µ, %, θ) = Q(µ, % cos θ, % sin θ).

Set 



Θ(µ, %, θ) =β(µ) +
Q∗(µ, %, θ) cos θ − P∗(µ, %, θ) sin θ

%
for % 6= 0,

Θ(µ, 0, θ) =β(µ).

Since β (0) > 0, and P∗(µ, %, θ), Q∗(µ, %, θ) are o(%), there exist µ̃, %̃, b > 0
such that θ̇ > b for all µ ∈] − µ̃, µ̃[, % ∈ [0, %̃). Moreover, for every %0 ∈ [0, %̃), and
θ0 ∈ R, the orbit of (2.3) passing through (%0, θ0) will be represented by the solution
%(µ, θ, %0, θ0) of

d%

dθ
= R(µ, %, θ), %(θ0) = %0, (3.1)

where

R(µ, %, θ) =
α(µ)% + P∗(µ, %, θ) cos θ +Q∗(µ, %, θ) sin θ

Θ(µ, %, θ)
.

Remark 3.1. [19] Since θ̇ > b, we have that the following three stability properties
concerning the origin of equation (2.3) are equivalent: asymptotic stability [resp.
complete instability], attractiveness [resp. repulsivity], 0 is an attracting [resp. re-
pulsing] focus. This implies that the solution Y (t) has a sequence of return times
(Tj)j≥1 (i.e. Y1(Tj) > 0 and Y2(Tj) = 0).

Since R(µ, ., .) is Ck we have

%(µ, θ, c) = u1(µ, θ)c + u2(µ, θ)c2 + ...... + uk(µ, θ)ck + ς(µ, θ, c), (3.2)

where ς(µ, θ, c) is of order greater than k. Moreover, by substituting (3.2) in (3.1),
we have for each µ close enough to 0 the following system





u1(µ, θ) = exp(
α(µ)
β(µ)

θ),

∂

∂θ
ui(µ, θ) =

α(µ)
β(µ)

ui + Ui(u1, u2, ..., ui−1, θ),

ui(µ, 0) = 0, i = 2, 3, ..., k.

(3.3)

We now define the displacement function V (µ, c) for (2.3), given by

V (µ, c) = ρ(µ, 2π, c)− c.

The nontrivial periodic orbits of (2.3) are given by the nontrivial zeros of V (µ, c).

Theorem 3.2. [19] There exist a positive number ε small enough and a function
µ ∈ Ck−1([0, ε[,R), with µ(0) = 0 and µ′(0) = 0, such that given any c ∈ [0, ε[ and
µ ∈ R close to 0, the orbit of (2.3) passing through (c, 0) is closed if and only if
µ = µ(c).

In Theorem 3.2 the authors state the existence and the regularity of a branch
of bifurcating periodic orbits. In order to check attractiveness of this branch they
introduced the notion of h-asymptotic stability.

For µ = 0, equation (2.3) becomes

d

dt
Y (t) = BY (t) + Ψ(0)F (0, ΦY (t) + h0(Y (t))) (3.4)
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Definition 3.3. [19] Let h be an integer, h ∈ {2, ..., k} . The solution y1 = y2 = 0
of (3.4) is said to be h-asymptotically stable (resp. h-completely unstable) if,

(i) for every τ, ζ ∈ C (
B2 (a) ,R

)
of order greater than h, the solution y1 = y2 = 0

of the system




d

dt
y1 =− y2 + X2(y1, y2) + · · ·+ Xh(y1, y2) + τ(y1, y2),

d

dt
y2 = y1 + Y2(y1, y2) + · · ·+ Yh(y1, y2) + ζ(y1, y2)

(3.5)

is asymptotically stable (resp. completely unstable),
(ii) property (i) is not satisfied when h is replaced by any integer m ∈ {2, ..., h− 1} .

The occurrence of h-asymptotic stability or h-complete instability can be recog-
nized by means of the Poincaré procedure [21], which consists in seeking a Lyapunov
function F , an integer m, and a constant Gm such that

.

F (3.4)(y1, y2) = Gm(y1 + y2)
m
2 + χ(y1, y2)

where χ is of order greater than m, and Ḟ(3.4)(y1, y2) denotes the derivative of F
along solutions of (3.4). We have the following relationship between the Poincaré
procedure and the concept of h-asymptotic stability.

Proposition 3.4. [19] Let h be an odd integer. The solution y1 ≡ y2 ≡ 0 of
(3.4) is h-asymptotically stable (resp. completely unstable) if and only if Gi = 0,
i = 2, 4, ..., h− 1, and Gh+1 < 0 (resp. > 0).

In [19], Negrini and Salvadori have established a relationship between h-asymptotic
stability, h-complete instability of the origin of system (3.4) and the displacement
function of system (3.4) V (0, c) evaluated at the origin.

Proposition 3.5. [19] Let h be an integer, 2 ≤ h ≤ k. The following assertions are
equivalent:

(1) The solution y1 ≡ y2 ≡ 0 of (3.4) is h-asymptotically stable (resp. h-
completely unstable);

(2) One has

∂iV

∂ci
(0, 0) = 0 for 1 ≤ i ≤ h− 1 and

∂hV

∂ch
(0, 0) < 0 (resp. > 0).

In addition, if either (1) or (2) holds, then h is odd.

In what follows we recall the results of Negrini and Salvadori [19] concerning the
relationship between h-asymptotic stability of the origin and attractiveness of the
bifurcating periodic orbits.

Now, given any odd integer h ∈ {3, ..., k} we want to consider the case of bifurcat-
ing attracting (or repulsive) periodic orbits in which this structure is preserved under
modifications of the right hand side of (2.3) that do not change the functions α, β
and those terms of X, Y having degree ≤ h. Denote by Sh = S(X2, ..., Xh, Y2, ..., Yh)
the set of pairs (P,Q) of functions ∈ Ck+1(]− µ̄, µ̄[×B(a),R) such that P (µ, 0, 0) =
Q(µ, 0, 0) = 0, DY P (µ, 0, 0) ≡ DY Q(µ, 0, 0) ≡ 0, [P (0, y1, y2)]i = Xi(y1, y2) and
[Q(0, y1, y2)]i = Yi(y1, y2), i ∈ {2, ..., h}. For (P,Q) ∈ Sh, let VP,Q and µP,Q be the
displacement and the bifurcation function (µ = µP,Q(c)) respectively for the one
parameter family of differential systems





d

dt
y1 =α (µ) y1 − β (µ) y2 + P (µ, y1, y2) ,

d

dt
y2 =α (µ) y2 + β (µ) y2 + Q (µ, y1, y2) .

(3.6)
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Definition 3.6. [19] Let h ∈ {3, ..., k} be odd. The bifurcating periodic orbits of
(2.3) are said to be h-attracting (resp. h-repulsive) if:

(i) For every (P, Q) ∈ Sh the periodic orbits of (3.6) are attracting (resp. repul-
sive).

(ii) Condition (i) is not satisfied when h is replaced by any odd integer m ∈
{3, ..., h− 2}.

The properties of the periodic orbits given in Definition 3.6 are completely char-
acterized by the following theorem.

Theorem 3.7. [19] The bifurcating periodic orbits of (2.3) are h-attracting [resp.
h-repulsive] if and only if 0 is h-asymptotically stable [resp. h-completely unstable]
for µ = 0.

In view of Theorem 3.7, we have that under the hypothesis of h-asymptotic
stability the bifurcating periodic branch is h-attractive. Our aim in this section
is to give, under the same hypothesis, more information on attractiveness of this
branch. Denote by p(t, c) the periodic solution of the reduced ordinary differential
system (2.3), for µ = µ(c), with initial data, p(0, c) = (c, 0), c > 0.

Let Y ∗(t) be the solution of the ordinary reduced differential system (2.3), for
µ = µ(c), with initial data, Y ∗(0) = (c′, 0), c′ > 0. We know from Remark 3.1 that
Y ∗(t) has a sequence of return times (T∗j )j≥1 (i.e. Y ∗

1 (T∗j ) > 0 and Y ∗
2 (T∗j ) = 0).

The following result yields to attractiveness for the reduced equation.

Proposition 3.8. Suppose for µ = 0, the origin of (2.3) is h-asymptotically stable.
There exists a positive constant K1 such that for each γ > 0 and c > 0 close to
zero, if |c′ − c| ≤ γc

3
2 , then we have

‖Y ∗(T∗1)− p(0)‖ ≤ |c′ − c|(1−K1c
h−1). (3.7)

Proof. We have ‖Y ∗(T∗1, c
′) − p(0)‖ = |%∗(µ(c), 2π, c′) − c| = |V (µ(c), c

′
) + c

′ − c|.
On the other hand

V (µ(c), c
′
) = V (µ(c), c) +

∂V

∂c
(µ(c), ε)(c

′ − c),

=
[∂V

∂c
(0, ε) +

∂2V

∂µ∂c
(υµ(c), ε)µ(c)

]
(c
′ − c)

(3.8)

for some ε ∈]min(c, c′), max(c, c′)[ and υ ∈]0, 1[.
If the origin of (2.3) is h-asymptotically stable, then, from Proposition 3.5, we

have
∂jV

∂cj
(0, 0) = 0, j = 0, 1, ...h− 1 and

∂hV

∂ch
(0, 0) < 0. (3.9)

Moreover, differentiating the identity V (µ(c), c) = 0 with respect to c, we obtain
from (3.9)

µ(j)(0) = 0, j = 0, 1, ..., h− 2 and µ(h−1)(0) = − 1
h

∂hV

∂ch
(0, 0)/

∂2V

∂µ∂c
(0, 0). (3.10)

If |c− c′| ≤ γc
3
2 , then, |c− ε| ≤ γc

3
2 . Hence, from (3.9) and (3.10) we obtain

lim
c→0

1
ch−1

(∂V

∂c
(0, ε) +

∂2V

∂µ∂c
(υµ(c), ε)µ(c)

)

=
1

(h− 1)!

(∂hV

∂ch
(0, 0) +

∂2V

∂µ∂c
(0, 0)µ(h−1)(0)

)

=
(h− 1)

h!
∂hV

∂ch
(0, 0).

Thus V (µ(c), c
′
) = −ch−1W (c, c′), with W (c, c

′
) tends to − (h−1)

h!
∂hV
∂ch (0, 0) > 0 as

c goes to zero with (c, c′) satisfying the condition |c− c′| ≤ γc
3
2 . This implies the
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existence of a positive constant K1 (we can chose K1 := − 1
2

(h−1)
h!

∂hV
∂ch (0, 0)) such

that, for each (c
′
, c) satisfying the hypothesis of the proposition with c small enough

we have W (c, c
′
) ≥ K1 > 0. Thus

|V (µ(c), c
′
) + c

′ − c| = |c′ − c||1− ch−1W (c, c
′
)| ≤ |c′ − c|(1−K1c

h−1).

Remark 3.9. From Proposition 3.8, we obtain the attractiveness of the bifurcating
periodic orbits for the reduced system (2.3). In fact, after j rotations the above
estimates become ∥∥Y ∗(T∗j )− p(0)

∥∥ ≤ |c− c′| (1−K1c
2)j (3.11)

where T∗j denotes the jth time return for Y ∗(t).This permits us to estimate the
displacement of the solution Y ∗(t) after each rotation and then give a geometric
description of the attractiveness of the bifurcating periodic orbits for the reduced
system (2.3).

4. Bifurcation for the Functional Differential Equation. We know from the
Hopf Bifurcation theorem (see Diekmann and van Gils [8]) that, under the hypothe-
ses (H0), (H1) and (H2), the functional differential equation (1.1) has a branch of
periodic solutions P (., c) c > 0, bifurcating from the trivial equilibrium 0, when the
parameter µ is close to bifurcation value µ = 0. We also know (see Diekmann and
van Gils [8]) that if a center manifold is attractive, then local attractiveness of the
bifurcating branch is reduced to the attractiveness of this branch within the center
manifold.

In what follows we shall exploit the results obtained in section 3 to generalize this
stability result to h-asymptotic stability. This permits us to give more information
about attractiveness of this branch. For some simplification reasons, we restrict
ourselves to the case h = 3.

Let us suppose our basic assumption

(H3) For µ = 0, the origin of (2.3) is 3-asymptotically stable.

Let ϕ := Φξ + ϕs where ξ = (c
′
, 0) and c

′
is a positive constant small enough.

Denote by x(t) (resp. x∗(t)) the solution of the functional differential equation (1.1)
with initial condition x0 = Φξ + ϕs, (resp. x∗0 = Φξ + hµ(c)(ξ)), obtained for the
value of the parameter µ = µ(c).

We are interested in determining the behavior of solutions in a neighborhood of
the bifurcating branch. When the initial data ϕ = Φξ + ϕs is close to P0(., c), we
have that Φξ + hµ(c)(ξ) is close to P0(., c), and then the solution x∗(t) tends to the
periodic orbit P (t, c) and we can also estimate the displacement after each rotation.
Our aim is to give a similar result for the solution x(t) of equation (1.1). For this,
we shall need some estimates between x(t) and x∗(t).

We know, by the invariance of a center manifold that the periodic orbit P (., c)
is given by Pt(., c) = Φp(t, c) + hµ(c)(p(t, c)), where p(t, c) is the bifurcating peri-
odic solution for the reduced ordinary differential system (2.3), obtained for the
value of the parameter µ = µ(c). Moreover, we have x∗t = ΦY ∗(t) + hµ(c)(Y ∗(t))
where Y ∗(t) = eBtξ +

∫ t

0
eB(t−τ)Ψ(0)F̃ (µ(c), ΦY ∗(τ) + hµ(c)(Y ∗(τ)))dτ . With the

decomposition C = N ⊕ S, we can write xt = ΦY (t) + xs
t , with





Y (t) = eBtξ +
∫ t

0

eB(t−τ)Ψ(0)F̃ (µ(c), ΦY (τ) + xs
τ )dτ

xs
t = T0(t)ϕs +

∫ t

0

dKS(t, τ)F̃ (µ(c), ΦY (τ) + xs
τ )dτ,
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where KS(., .) denotes the projection on the space S of the Volterra kernel given
by the variation of constant formula in Hale [14].

Select any T > 2π. We have the following lemma:

Lemma 4.1. There exists M1 = M1(T) > 0 such that for each function ε(c) satis-
fying lim

c→0
ε(c) = 0, there exists c0 = c0(T, ε) > 0, such that for each c ∈]0, c0[ and

each function ϕ satisfying the condition ‖ϕ‖ ≤ ε(c) we have

‖xt − Pt‖ ≤ M1‖ϕ− P0‖
for each t in [0, T].

Proof. For all t ∈ [0, T], we have

xt − Pt = T0(t)(ϕ− P0) +
∫ t

0

dK(t, τ)
[
F̃ (µ(c), xτ )− F̃ (µ(c), Pτ )

]
dτ.

On the other hand,

‖F̃ (µ(c), xτ )− F̃ (µ(c), Pτ )‖ ≤ sup
θ∈[0,1]

‖DϕF̃ (µ(c), Pτ + θ [xτ − Pτ ]) ‖ ‖xτ − Pτ‖

≤ ξ(c, T) max
0≤τ≤T

‖xτ − Pτ‖,

where ξ(c, T) = max
0≤τ≤T

sup
θ∈[0,1]

‖DϕF̃ (µ(c), Pτ + θ [xτ − Pτ ]) ‖. This implies that

‖xt − Pt‖ ≤ M(T)
[‖ϕ− P0‖+ ξ(c, T) max

0≤τ≤T
‖xτ − Pτ‖

]
.

Then we obtain

(1−M(T)ξ(c, T)) max
0≤t≤T

‖xt − Pt‖ ≤ M(T)‖ϕ− P0‖.

As ‖ϕ‖ ≤ ε(c), we have that xτ tends to zero as c tends to 0 (uniformly with respect
to τ in the interval [0, T]).

From Theorem 3.2, we know that µ(c) and Pτ tend to 0 as c goes to zero (the
convergence of Pτ is uniform with respect to τ in the interval [0, T]). Taking into
account that DϕF̃ (0, 0) = 0, we obtain that

sup
θ∈[0,1]

‖DϕF̃ (µ(c), Pτ + θ [xτ − Pτ ]) ‖ tends to zero as c tends to 0 uniformly with

respect to τ in the interval [0, T]. In other words, the function ξ(c, T ) tends to 0 as

c tends to 0. Then for c close to 0, 1−M(T)ξ(c, T) >
1
2
, then we obtain

max
0≤t≤T

‖xt − Pt‖ ≤ 2M(T)‖ϕ− P0‖.

The result follows from this by taking M1(T) = 2M(T).

Proposition 4.2. Still given a function ε(c), such that lim
c→0

ε(c) = 0, we can take

c0 = c0(T, ε) > 0, small enough such that for each c ∈]0, c0[ and each function ϕ
satisfying the conditions ‖ϕ‖ ≤ ε(c) and ‖ϕs − hµ(c)(p(0, c))‖ = O(c), we have

‖Y (t)− Y ∗(t)‖ ≤ Mυ(c)e
−αt
2 c‖ϕs − hµ(c)(ξ)‖,

‖xs
t − hµ(c)(Y ∗(t))‖ ≤ Mυ(c)e

−αt
2 ‖ϕs − hµ(c)(ξ)‖,

for each t in [0, T], Where υ(c) is a function satisfying υ(c) > 1 and lim
c→0

υ(c) = 1.

Proof. For all t ∈ [0, T] we have

Y (t)− Y ∗(t) =
∫ t

0

eB(t−τ)Ψ(0)
[
F̃ (µ(c), xτ )− F̃ (µ(c), x∗τ )

]
dτ
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and

xs
t − hµ(c)(Y ∗(t)) =

∫ t

0

dKs(t, τ)
[
F̃ (µ(c), xτ )− F̃ (µ(c), x∗τ )

]
dτ

+ T0(t)(ϕs − hµ(c)(ξ)).
On the other hand we have

‖F̃ (µ(c), xτ )− F̃ (µ(c), x∗τ )‖ ≤ sup
ϑ∈[0,1]

‖DϕF̃ (µ(c), x∗τ + ϑ(xτ − x∗τ ))‖

· (‖Φ(Y ∗(τ)− Y (τ))‖+ ‖hµ(c)(Y ∗(τ))− xs
τ‖

)
.

From Lemma 4.1 we see that x∗τ and xτ are at least of the order of c uniformly with
respect to τ in the interval [0, T]. Since DϕF̃ (0, 0) = 0, we obtain that,

sup
ϑ∈[0,1]

‖DϕF̃ (µ(c), x∗τ + ϑ(xτ − x∗τ ))‖ = O(c),

uniformly with respect to τ in [0, T]. Then there exists K ′ = K ′(T ) > 0 such that
for c close to 0 we have

‖Y (t)− Y ∗(t)‖ ≤ K ′c
(

max
0≤τ≤t

‖Y (τ)− Y ∗(τ)‖+ max
0≤τ≤t

‖xs
τ − hµ(c)(Y ∗(τ))‖

)
(4.1)

and

‖xs
t − hµ(c)(Y ∗(t))‖ ≤K ′c

∫ t

0

e−α(t−τ)
(‖Y (τ)− Y ∗(τ)‖+ ‖xs

τ − hµ(c)(Y ∗(τ))‖)dτ

+ M‖ϕs − hµ(c)(ξ)‖.
(4.2)

From (4.1), we obtain for c small enough

max
0≤τ≤t

‖Y (τ)− Y ∗(τ)‖ ≤ K ′c
1−K ′c

max
0≤τ≤t

‖xs
τ − hµ(c)(Y ∗(τ))‖. (4.3)

Inequality (4.2) implies

eα t
2 ‖xs

t − hµ(c)(Y ∗(t))‖ ≤K ′c
∫ t

0

e−
α
2 (t−τ)

[
eα τ

2 ‖Y (τ)− Y ∗(τ)‖

+ eα τ
2 ‖xs

τ − hµ(c)(Y ∗(τ))‖]dτ + M‖ϕs − hµ(c)(ξ)‖
≤K ′′c

[
max

0≤τ≤t
eα τ

2 ‖Y (τ)− Y ∗(τ)‖

+ max
0≤τ≤t

eα τ
2 ‖xs

τ − hµ(c)(Y ∗(τ))‖
]

+ M‖ϕs − hµ(c)(ξ)‖.

From this we have for c small enough

max
0≤τ≤t

eα τ
2 ‖xs

τ − hµ(c)(Y ∗(τ))‖ ≤ M

1−K ′′c
‖ϕs − hµ(c)(ξ)‖

+
K ′′c

1−K ′′c
max

0≤τ≤t
eα τ

2 ‖Y (τ)− Y ∗(τ)‖.
(4.4)

We then obtain

max
0≤τ≤t

eα τ
2 ‖xs

τ − hµ(c)(Y ∗(τ))‖ ≤ Mυ(c)‖ϕs − hµ(c)(ξ)‖,

where

υ(c) =
(1−K ′c)

(1−K ′′c) (1−K ′c)−K ′K ′′eα T
2 c2

satisfies υ(c) > 1 and lim
c→0

υ(c) = 1.

The function Y (t) being close to Y ∗(t) we can easily show that it has a sequence
of return times (Tj)j≥1, Tj > 0. The following lemma gives us an estimate between
the return times of Y (t) and those of Y ∗(t).
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Lemma 4.3. Still lim
c→0

ε(c) = 0, given a function ϕ such that ‖ϕ‖ ≤ ε(c) and ‖ϕs −
hµ(c)(p(0))‖ = O(c), there exists a positive constant M2 such that for all j ≥ 1 we
have

|Tj − T∗j | ≤ M2υ(c)‖ϕs − hµ(c)(ξ)‖.
Proof. Writing Y ∗(t) in polar coordinates we have

Y ∗(t) = (%∗(t) cos θ∗(t), %∗(t) sin θ∗(t))

where 



d

dt
%∗(t) =α(µ)%∗ + P∗(µ, %∗, θ∗) cos θ∗ +Q∗(µ, %∗, θ∗) sin θ∗

%∗(t)
d

dt
θ∗(t) =β(µ)%∗ +Q∗(µ, %∗, θ∗) cos θ∗ − P∗(µ, %∗, θ∗) sin θ∗

where
d

dt
θ∗(t) > β for some β > 0 and c > 0 small enough,

|θ∗(Tj)− θ∗(T∗j )| = | d
dt

θ∗(τ)||Tj − T∗j |, for some τ ∈ (Tj , T
∗
j ),

this implies that

|Tj − T∗j | <
1
β
|θ∗(Tj)− θ∗(T∗j )|.

The return time Tj is in a small neighborhood of T∗j , then θ∗(Tj) − θ∗(T∗j ) is close

to zero. This implies that θ∗(Tj)− θ∗(T∗j ) ' sin(θ∗(Tj)− θ∗(T∗j )) ≤
‖Y ∗(Tj)−Y ∗(T∗j )‖

‖Y ∗(T∗j )‖ .

Then |Tj − T∗j | < 1
β

‖Y (Tj)−Y ∗(T∗j )‖
‖Y ∗(T∗j )‖ . We know from Remark 3.9 that

‖Y ∗(T∗j )− p(0)‖ ≤ γc
3
2

this implies that c − γc
3
2 ≤ ‖Y ∗(T∗j )‖, then for c small enough we have 1

2c ≤
‖Y ∗(T∗j )‖. From Proposition 4.2, we have that ‖Y (Tj) − Y ∗(T∗j )‖ < Mcυ(c)‖ϕs −
hµ(c)(ξ)‖. We then obtain that |Tj−T∗j | < 2

β Mυ(c)‖ϕs−hµ(c)(ξ)‖.We end the proof
by taking M2 = 2

β M .

Denote by T1 := Tj1 the first return time of Y (t) such that Me−α
T1
2 < 1. We

have the following result.

Proposition 4.4. There exist positive constants K, γ and η such that for each
c > 0 small enough and ϕ := Φξ + ϕs satisfying

|c′ − c| ≤ γc
3
2 and ‖ϕs − hµ(c)(p(0))‖ ≤ ηc

5
2 ,

we have
(1) ‖Y (T1)− p(0)‖ ≤ γc

3
2 (1− c2K),

(2) ‖xs
T1
− hµ(c)(p(0))‖ ≤ ηc

5
2 (1− c2K).

Proof. We have

‖Y (T1)− p(0)‖ ≤ ‖Y (T1)− Y ∗(T1)‖+ ‖Y ∗(T1)− Y ∗(T∗j1)‖+ ‖Y ∗(T∗j1)− p(0)‖.
From the previous results we deduce that

‖Y (T1)− p(0)‖ ≤ ηM2c
7
2 + ηK4c

7
2 + γc

3
2 (1−K1c

2).

The result follows immediately by the choice of η small enough, satisfying ηM2 <
K1
4 , ηK4 < K1

4 and K = K1
2 .

In the same manner, we obtain the other inequality.

‖xs
T − hµ(c)(p(0))‖ ≤ ‖xs

T − hµ(c)(Y ∗(T ))‖+ ‖hµ(c)(Y ∗(T ))− hµ(c)(p(0)))‖.
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The center manifold hµ(c) satisfies hµ(c)(0) = h′µ(c)(0) = 0, this implies that

‖hµ(c)(Y ∗(T1))− hµ(c)(p(0))‖ ≤ ‖h′′µ(c)(ν(p(0) + θ(Y ∗(T1)− p(0))))‖
· ‖p(0) + θ(Y ∗(T1)− p(0))‖.

for some ν and θ in [0, 1]. Then

‖hµ(c)(Y ∗(T1))− hµ(c)(p(0))‖ ≤ K ′′c
(‖Y ∗(T1)− Y ∗(T∗j1)‖+ ‖Y ∗(T∗j1)− p(0)‖)

≤ K ′′c(ηM2c
7
2 + γc

3
2 (1−K1c

2))

we deduce that
‖xs
T1
− hµ(c)(p(0))‖ ≤ ‖xs

T1
− hµ(c)(Y ∗(T1))‖+ ‖hµ(c)(Y ∗(T1))− hµ(c)(p(0)))‖

≤ ηMϑ(c)e−α
T1
2 c

5
2 + K ′′c(ηMϑ(c)c

7
2 + γc

3
2 (1−K1c

2))

≤ η(
Mϑ(c)e−α

T1
2

(1−K1c2)
+ K ′′Mϑ(c)c2)c

5
2 (1−K1c

2)

+ γK ′′c
5
2 (1−K1c

2)

≤ c
5
2 (1−K1c

2)
[
γK ′′ + η

(Mϑ(c)e−α
T1
2

(1−K1c2)
+ K ′′Mϑ(c)c2

)]

Since lim
c→0

(
Mϑ(c)e−α

T1
2

(1−K1c2) + K ′′Mϑ(c)c2
)

= Me−α
T1
2 < 1, then for c0 small enough

there exists a positive constant ε < 1 such that
(

Mϑ(c)e−αT2
(1−K1c2) +K ′′Mϑ(c)c2

)
< ε < 1

for all c < c0. Then

‖xs
T1
− hµ(c)(p(0))‖ ≤ (ηε + γK ′′) c

5
2 (1−Kc2).

The result follows by choosing γ small enough so that ηε + γK ′′ < η.

Starting with an initial data ϕ := Φξ0 + ϕs
0 such that

‖ξ0 − p(0)‖ ≤ γc
3
2 and ‖ϕs

0 − hµ(c)(p(0))‖ ≤ ηc
5
2 ,

the solution, xT1 = ΦY (T1)+xs
T1

, of the functional differential equation (1.2) satisfies

‖Y (T1)− p(0)‖ ≤γc
3
2

‖xs
T1
− hµ(c)(p(0))‖ ≤ ηc

5
2 .

Then there exists T2 such that Y1(T2) > 0, Y2(T2) = 0. Similarly, we obtain a
sequence of time return (Tj)j≥i, Tj > 0, (i.e. Y1(Tj) > 0, Y2(Tj) = 0). After j
rotations, we have the following attractiveness result:

Theorem 4.5. Under hypotheses (H0), (H1), (H2) and (H3), the bifurcating pe-
riodic orbit is attractive. More precisely, there exist positive constants K, γ and η
such that for each c small enough and ϕ := Φξ + ϕs satisfying

|c′ − c| ≤ γc
3
2 and ‖ϕs − hµ(c)(p(0))‖ ≤ ηc

5
2 ,

we have
‖Y (Tj)− p(0)‖ ≤ γc

3
2 (1− c2K)j ,

‖xs
Tj
− hµ(c)(p(0))‖ ≤ ηc

5
2 (1− c2K)j.

Remark 4.6. Theorem 4.5 gives us the exponential asymptotic stability of the bifur-
cating periodic orbits. Moreover, a simple review of the calculus done in the previous
results, shows that, although terms of order greater than 3 change in equation (1.1),
we have the same estimation given in Theorem 4.5 (with the same constant K and
suitable constants γ and η). Thus stability is preserved under perturbations of order
greater than 3. This may be viewed as a 3-asymptotic stability for the functional
differential equation.
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