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ABSTRACT. A formula for the rate of recruitment of the
anchovy in the late larval stage is proposed. Recruitment is
assumed to occur when the weight crosses a threshold value.
The study is undertaken in the framework of a model of fish
dynamics which is presented in the first part of the paper.
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1. Introduction. The fishing of small clupeids represented 25% of
world tonnage of fish in 1993 with 21 million tons, see Csirke [1995] for
more details. But, between the years 60/70, the tonnage was reduced
by half. On the whole, between France and Spain, the value of this
fishery comes to about US$80 millions. More than 400 ships and
between 2,000 and 3,000 fishermen are involved. Thus, there exists
an increasing economic need for evaluating the abundance of anchovy
and its variations.

The anchovy species that we study here is ‘Engraulis encrasicolus’ of
the Bay of Biscay. As with most fish, the life cycle of the anchovy is
divided essentially into four distinct stages marked by specific physio-
logical behavioral traits: the egg stage, the larval stage, the juvenile and
the adult stages. The first two stages can be subdivided into shorter pe-
riods, each of them being associated with the acquisition of a particular
organ in the development of the embryo or of a function during the lar-
val growth. Two especially crucial steps in the development are 1) the
resorption of the yolk-sac, when the larva switches from endogenous to
exogenous feeding (Regner [16]); 2) the period when the swimbladder
becomes functional, allowing the larva to control its vertical movement.
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In this paper we are interested in modeling only the segment of the
larval stage which extends from the resorption of the yolk-sac to the
beginning of the active vertical movement. During this period, the
larvae are still passive. Whereas, during the egg stage and the early
larval stage, until the resorption of the yolk-sac, the anchovy is self-
sufficient and its mortality is mainly caused by predation, including
cannibalism, and natural mortality, this is not so in the next part of
the larval stage, after the larva switches to exogenous feeding. This is a
period when the larva is the most sensitive to its environment because
it must find food to survive. But, its active movement is restricted
since the swimbladder is not functional yet, thus, it does not control
its vertical movement. Its survival is highly dependent on the presence,
in its immediate vicinity, of a sufficient density of phytoplankton, its
principal food. At the end of this period, the larva is active and it
starts to gather with other anchovies and form fish schools. This is the
beginning of the late larval stage.

The main purpose of the work we present here is to describe a model of
population dynamics for the anchovy in the last segment of the passive
larval stage, from the resorption of the yolk-sac to the beginning of
the late larval stage. The model takes into account, in two separate
equations, both the demography and the biology. Demography means
the number of individuals in terms of time and space; while biology
refers to the mechanisms by which the individuals grow and progress
through the various stages. We assume that these mechanisms can be
globally represented by the weight; that is, we model the variation of
weight, at the individual level, as a balance of the phytoplankton eaten,
on the one hand, and the cost incurred by larval activity on the other
hand. The other purpose of this work, not completed yet, is to estimate
the density of larvae arriving in the late larval stage. More precisely,
we aim at estimating a probability of recruitment of the post-yolk-sac
larvae into the active stage (late larvae) in terms of some parameters
and as a function of time. This is similar in spirit to a previous work
by Arino et al. [1] on the sole of the Bay of Biscay, Solea solea, where
such an estimate was obtained for a much simpler model. What we
present here on this subject is only preliminary.

This paper is organized as follows. In the next section we will present
the state variables; in Section 3 we will set up the model which will be
considered throughout the paper. We determine an equation for each
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of the state variables. Section 4 is devoted to the estimation of the
number of larvae entering the active vertical movement. We follow the
line of research initiated by Arino et al. [1]; that is, we are looking for
somewhat explicit formulae allowing in particular the expression of the
late larvae belonging to a particular cohort in terms of the larvae of
the same cohort at the end of the yolk-stage. Section 4 consists of two
main parts: in the first part, we establish a general formula for the
time rate of change of late larvae. In order to keep the computations
simple enough, diffusion is neglected. In the second part, two examples
are presented in detail. The first example is a slight generalization of
the situation considered by Arino et al. [1] for the dynamics of the
sole. Example 2 explores the role played by spatial advection in the
development of larvae. At the expense of further simplifications, we
derive a formula which illuminates the role of space in the recruitment
of larvae. The main part ends with a brief discussion. To simplify the
discussion in this paper we add an Appendix.

2. State variables. In the sequel we consider the evolution of
cohorts of anchovy larvae which are carried by the current in a certain
domain D of the ocean, and we consider that t = 0 stands for the first
day of the current year. We consider four main state variables:

Le(a, t, P ) is, at time t, the density, with respect to age a and position
P of individuals in the passive larval phase. The index e below L stands
for “early.” P ≡ (x, y, z) is a point in the sea: x is the abscissa on a
west-east axis, y is the abscissa on a south-north axis and z is the depth,
oriented positively towards the surface. The domain D is assumed to be
of a size such that the sea surface can be considered a plane. Ideally, D
is a region enclosing an isolated patch of eggs, with lateral boundaries
far enough not to be reached by the eggs and subsequent material
during the time of the observations. The origin is a point in the sea
surface, in the “middle” of D.

We(a, t, P ) is, at time t, the weight density with respect to age and
space of individuals in the passive larval phase.

ϕ(t, P ) is, at time t, the density with respect to space of phytoplank-
ton cells.

N(t, P ) is, at time t, the concentration of nutrients with respect to
space.
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3. The model equations.

3.1 The dynamics of the passive larvae density. The function
Le satisfies the following system of equations

(3.1)
∂Le

∂a
+

∂Le

∂t
+∇P .

[
Le

−→
V (t, P )

]
+

∂

∂z

[
K(t, z)

∂Le

∂z

]
= −µ(a, t)Le,

Le(a, 0, P ) = 0,(3.2)

Le(0, t, P ) = Lr(t, P ).(3.3)

−→
V (t, P ) is the velocity vector field of the sea current. K(t, z) is the
turbulent diffusion coefficient that depends on time and the depth
(Pond and Pickard [1983]).

µ(a, t) is the mortality rate of the passive larvae at age a, due to
natural mortality and the effect of predation.

Lr(t, P ) is the density with respect to t and P of the larvae which
have just gone out of the yolk-sac period. The index r is for “resorbed.”
Integration over a region Ω of the ocean yields the number of larvae
reaching the post yolk-sac stage per unit of time. In this work, Lr is
data for the problem. The only systematic data for anchovy fish larvae
are those collected in egg surveys. Such surveys use sampling devices
which can capture very small biotic material: the higher dispersion of
larvae compared to eggs makes estimation of larval abundance based
on such samples questionable. So, only the eggs at the various stages
of their development can be reasonably, and are in fact, estimated.
The dynamics of the anchovy, from the time when eggs are laid and
fertilized to the end of the yolk-sac period, can be described from
a model of larval growth and survival (see for example Arino et al.
[1999]). The input of the model by Arino et al. [1996] is the time
and space distribution of eggs: size growth of eggs and larvae is
modeled by empirical growth functions determined in the laboratory,
which, under saturated phytoplankton concentration, depend only on
the temperature. This situation suits satisfactorily the early life of the
anchovy when it does not yet feed on phytoplankton.

Boundary conditions both at the sea-bed and on the surface, and in
the horizontal directions (lateral boundaries) are missing. We point out
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that the lateral boundary conditions can be omitted since horizontal
migration is a transport with finite speed and we are assuming that
we start from a patch of eggs which needs more time to reach those
boundaries than the time of observation. This assumption is not
essential, however, and a more general situation could be handled.
The important fact here is that we are not taking into account the
larvae that enter the domain D, from outside, after t = 0. The vertical
boundary conditions should express the fact that both the surface and
the seabed are barriers that none of the materials considered in this
model (larva, phytoplankton, nutrients) can cross. Vertical boundary
conditions are only useful in dealing with the second order diffusion
terms which, for simplicity, we will drop in our study.

3.2 The dynamics of the passive larvae weight. The function
We satisfies the following system of equations

(3.4)
∂We

∂a
+

∂We

∂t
+ ∇P .

[
We

−→
V (t, P )

]
+

∂

∂z

[
K(t, z)

∂We

∂z

]
= k(t)f(t, P, T (t, .),We, ϕ)ϕ− (α + β(w∗ −We)θ)We,

We(a, 0, P ) = 0,(3.5)

We(0, t, P ) = h(t, P ).(3.6)

Here k(t) is a periodic function which models the feeding regime of
the larvae within a 24 hour period. For example, k ≡ 0 during the
night, since the larvae do not regularly feed at night, see Re [1994]
for more details. At the same time, the larvae possess an absorption
capacity f(t, P, T (t, .),We, ϕ), which we assume to increase with weight
and to be nonlinear. The dependence of f on ϕ is more of a threshold
nature: the dependence of f on ϕ is such that f = 0 if ϕ is less than
some threshold value (below a certain density, it is likely that the rate
of capture of the phytoplankton by the larvae will be close to zero).
We assume a functional dependence of f on the temperature. The
larvae lose weight for one main reason, the energy consumption by the
larval metabolism. The model chosen for this takes into account the
observed fact that life is more difficult for underweight larvae than it
is for those whose weight is close to the threshold for reaching the
juvenile stage. Worsening of life condition, as a result of poor feeding,
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is twofold: 1) it costs more energy for a larva to sustain its activity
when it is underweight, which is stressed by the quantity β(w∗ −
We)θ, θ > 0; 2) such larvae get less food than those with larger weights,
which is accounted for by the monotonicity of f(t, P, T (t, .),We, ϕ).
The way food deprivation acts on the feeding capacity is, however,
more complicated than the above point 2) suggests. A more sound
proposition would be that larvae deprived of food for some days will
find it more difficult to successfully catch the prey. So, the rate of
successful encounter of the prey does not just depend on the actual
weight of the larva, it should reflect cumulative loss over some period
of time. The dependence of f on t and P gives the possibility of taking
into account the effect of any admissible abiotic factors we can think of.
For example, this can be the accessibility of the phytoplankton, which
certainly depends on the physical environment of the larvae, or it can
be the temperature, as a global indicator of this environment. Finally,
we note that w∗ is the critical weight that passive larvae have to reach
to cross the passive phase and the function h(t, P ) is the weight of
larvae at the beginning of the exogenous feeding phase, that is to say,
the average weight of the larvae which at time t are in P and start to
feed on phytoplankton.

3.2.1 Remark: weight versus size. We choose the weight as a structure
variable. In the literature, however, the body size, that is, the length of
the body of an individual, is used, rather than the weight, in particular
associated with the completion of physiological stages: on the body
size scale, the late larval stage starts when the larva is around 10 mm
long (Peterman et al. [1988]). This is roughly when the larva starts to
control its vertical movement (functional swimbladder) (Mullin [1993],
Fig. 4.9). There are allometric relationships between the size and the
weight. In terms of such relationships, one can consider the weight and
the body size as equivalent parameters and, in principle, indifferent to
one or the other. It is intuitively clear however that there must be
some fundamental differences between the two quantities. On the one
hand, the weight seems to be more sensitive, especially during the larval
growth, to the daily food regime, while the body length changes at a
slower pace. It is more suited than length to daily bookkeeping. On the
other hand, the respective variabilities of the weight and the length on
completion of developmental stages have been compared: it is higher
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for the weight. So, the length should be preferred to the weight when
setting up threshold values for significant physiological changes. But,
no clear law of variation of the length is known. This explains that,
in spite of its shortcomings, we are using the weight in this paper, and
we use w∗ as a threshold value for the completion of the passive larval
stage.

3.3 The dynamics of phytoplankton cells and nutrient. The
functions ϕ and N satisfy the following system of equations

(3.7)
∂ϕ

∂t
= [α(I)Φ(N) −m]ϕ−∇P .[

−→
V (t, P )ϕ] +

∂

∂z

[
K(z, t)

∂ϕ

∂z

]
,

(3.8)
∂N

∂t
= − γ[α(I)Φ(N)−εm]ϕ−∇P .[

−→
V (t, P )N ]+

∂

∂z

[
K(z, t)

∂N

∂z

]
,

ϕ(0, P ) = ϕ0(P ),(3.9)

N(0, P ) = N0(P ).(3.10)

The specific growth rate for excess nutrient, α(I), was obtained from
the light intensity I at any depth by the ‘tanh’ formula of Jassby and
Platt [1976]

α(I) = α0Pm tanh
(
α′I
Pm

)
,

where α′ is the initial slope of the light saturation curve and Pm is
the assimilation number, α0 is a constant. The extent of reduction in
growth rate by nutrient limitation is determined by a Michaelis-Menten
relation

Φ(N) =
N

N + !
,

where ! is the half-saturation, independent of depth, see MacIsaac
and Dugdale [1969] for more details. The specific loss rate, m, includes
the mortality of cells due to death, grazing and loss due to respiration.
This death regenerates the nutrient with an efficiency ε, ε ∈ [0, 1].
Assuming the nutrient to be nitrogen, γ is the conversion factor. The
role of the anchovy in depleting the phytoplankton is neglected, as
it can be noticed that equation (3.7) does not contain any of the



264 O. PARDO AND O. ARINO

state variables associated with the anchovy. However, equation (3.4)
indicates that the larvae eat phytoplankton, and as a consequence of
the book-keeping principle, the nonlinear term k(t)f(We)ϕ should be
added to equation (3.7) with a negative sign. Accordingly, some part
of the larval biomass should be added to equation (3.8). All this
is considered negligible compared to the other factors acting on the
phytoplankton. In fact, rather than a prey-predator relationship, with
variations on each species induced by the other species, the coupling
between the phytoplankton and the larvae should be thought of as
one between the parameters and the state variables of a system: the
phytoplankton, ideally at a steady state, would be seen as a driving
function entering the equations of the larvae, with possibly a threshold
value ϕ∗ such that, in the regions where ϕ < ϕ∗ or the time periods
when ϕ < ϕ∗, the feeding rate of the larvae will be so low that it will
drive the larvae to extinction. In fact, there should be a family of such
steady-states, dependent upon the values of some external parameters
(wind, temperature, light), some solutions being uniformly above ϕ∗,
some uniformly below ϕ∗, and some crossing the value ϕ∗. Finally,
some sort of stability should hold so that transient solutions arising
from perturbations of the external parameters would rapidly approach
one of the steady-states after the perturbations have faded. Verifying
rigorously such a scenario is a vast mathematical program which is out
of the scope of this paper.

If we suppose that ϕ ≡ ϕ(t, z) and that
−→
V (t, P ) is a constant vector,

then we get the model proposed by Taylor et al. [1986]. We have
performed an analytical study of this model, see Pardo [2000] for more
details.

3.4 The complete system. The complete system is composed of
the four equations, (3.1), (3.4), (3.7) and (3.8) satisfied respectively by
Le, We, ϕ and N , and the initial and boundary conditions, (3.2) and
(3.3) for Le, (3.5) and (3.6) for We and (3.9) and (3.10) for ϕ and N .

We will not deal here with the solution of the system. We will now
elaborate on the computation of a probability of recruitment in the
late larval stage. In order to keep the computations simple enough, we
assume from now on that diffusion is negligible, so that all the equations
reduce to transport equations and can be solved using the method of
characteristic lines.
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3.5 The solution of the equation of larvae. In the sequel we
make the hypothesis of incompressibility (Pond and Pickard 1983]),
that is to say,

div
−→
V (t, P ) = 0.

Thus, equation (3.1) can be rewritten as

(3.11)
∂Le

∂a
+

∂Le

∂t
+
−→
V (t, P ).

−→∇PLe = −µ(a, t)Le.

We reduce the problem to one time variable (instead of a, t, P ) by
restricting equation (3.1) along the characteristic lines of the equation,
that is, the trajectories of the solutions of the system of ordinary
differential equations

(3.12)




da

ds
= 1

dt

ds
= 1

dP

ds
=

−→
V (t(s), P (s)).

Since Le(a, 0, P ) = 0, Le remains identically null along the characteris-
tic lines initiated from the half line t = 0, a > 0. Only the characteristic
lines starting from a = 0, t > 0 are of interest here. The general ex-
pression of such a solution is

a = s, t = s + t0, P = P (s) = P (s, t0, P0)

where P (s, t0, P0) is the position at time t of a particle whose initial
position at time t0 was P0. Later on in the text, we will also use the
flow in the coordinates (t, P ) associated with equation (3.12), that is,

(3.13) Φ(a, t0, P0) = (t0 + a, P (a, t0, P0)).

We denote accordingly,

Le(s) = Le(s, s + t0, P (s, t0, P0)),
µ(s) = µ(s, s + t0),

and, similarly, for the restriction to a characteristic line of any function
of the variables a, t, P .
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The equation satisfied by Le is

dLe

ds
= −µ(s)Le(s).

This equation has for a solution

Le(s) = Le(0) exp−
∫ s

0

µ(σ) dσ.

We have to determine Le(0) = Le(0, t0, P0). In view of (3.3), we have

Le(0, t0, P0) = Lr(t0, P0);

thus,

Le(s) = Lr(t0, P0) exp−
∫ s

0

µ(σ) dσ.

Coming back to the expression of Le, we obtain the following

(3.14) Le(a, t, P ) = Lr(t−a, P (t−a, t, P )) exp−
∫ a

0

µ(σ, t−a+σ) dσ.

4. Estimate of the number of larvae entering the late larval
stage. We start with a brief discussion about the way we want to
compute an estimate of the number of larvae entering the late larval
stage. The method we use is based on the same principle as the
one used in a previous paper by Arino et al. [1996] for estimating a
probability of recruitment of the sole, Solea solea, in the juvenile stage.
The computations in that case were very simple, so we will quickly go
through them in order to explain what we want to do here. First of all,
we underline a distinctive feature of the model under consideration,
also present in Arino et al. [1996], the weight is treated as another
state variable of the population, together with the population density,
that is to say, each cohort is represented, at each time t by the pair
(Le(a, t, P ),We(a, t, P )). Alternatively, one could have considered the
weight as another structure variable of the population density. The
main role of the weight function in the context of this section is to allow
the computation of the time, age and position at which individuals exit
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from the larval stage. In Arino et al. [1996], it was assumed that the
instantaneous rate of variation of the weight is a function g(t, T ) of the
average temperature and time, t, only, not of the space and the actual
weight:

(4.1)
∂We

∂a
+

∂We

∂t
= g(t, T (t)).

We point out that equation (4.1) can be obtained as a special case of
equation (3.4), under a number of assumptions that we are not going
to detail here. Such a simple model can be integrated easily and yields
the following expression for We, neglecting the weight at age a = 0,

(4.2) We(a, t) =
∫ t

t−a

g(s, T (s)) ds.

Assuming that g is positive, one obtains immediately that We(a, t) is
increasing in a, so that the equation

We(a, t) = w∗

has at most one solution. Assuming that there is one for each t, we
denote it a∗(t). The interpretation of a∗(t) is that it is the age of
those larvae that cross the threshold associated with the weight w∗

at time t, and t − a∗(t) is the birth date. Another property that
can be deduced from (4.2) is that a∗′(t) < 1. This property has a
natural interpretation, that is, it means that there is no overlap of
successive cohorts at the point of exit from the larval stage: the first
individuals to be born will be the first to be recruited. In terms of a∗

it is possible to express the exit flow rate as a function of the inflow
rate: the ratio of the first number to the second one gives the rate of
recruitment of the corresponding cohort. A lower estimate of this rate,
independent of the cohorts, was computed, which was taken as the
probability of recruitment. Here, we follow the same general principles
although the situation is a little bit more complicated since the weight
is not monotonically increasing. The lack of monotonicity may be due
to two causes (see equation (3.4) ): the lack of phytoplankton or the
excess of energy cost. For a moment, let us come back to the model of
growth of Arino et al. [1996], modified by introducing an energy cost
of the same type as in equation (3.4). Equation (4.1) becomes

(4.3)
∂We

∂a
+

∂We

∂t
= g(t, T (t)) −We(a, t)γ(We(a, t)).



268 O. PARDO AND O. ARINO

We may again observe that (4.3) is a special case of equation (3.4),
providing we assume that in equation (3.4) we can give the dependence
on We in the righthand side a more general form than it has. It is not
simple enough, however, to be computed. Assuming for making it even
simpler that γ(We) is a constant α > 0, equation (4.3) reduces to

(4.4)
∂We

∂a
+

∂We

∂t
= g(t, T (t)) − αWe(a, t).

Let us remember that we are concerned here with the segment of the
larval life which goes from the moment when the yolk-sac is resorbed
(the beginning of the exogenous feeding), taken as age a = 0, to the
moment when the larva reaches the weight w∗. We assume that the
weight of the larvae at the beginning of exogenous feeding is the same
for all larvae, equal to W0, W0 < w∗. Equation (4.4) is to be solved for
each age cohort in the post yolk-sac period, that is, individuals having
started this period at the same time t0. For such a cohort, there is
the following relationship between the age and the chronological time:
t = t0 + a. Defining

W e(a) = We(a, t0 + a),

equation (4.4) yields the following

(4.5) W
′
e(a) = g(a) − αW e(a),

where g(a) = g(t0 + a, T (t0 + a)). We also have: W e(0) = W0. The
solution reads as

W e(a) = exp(−αa)W0 +
∫ a

0

exp(−α(a− s))g(s) ds

which, in terms of the variables a and t, gives

(4.6) We(a, t) = exp(−αa)W0 +
∫ t

t−a

exp(−α(t− s))g(s, T (s)) ds.

Comparing with equations (4.1) and (4.2), one can see that W e(a) is
always increasing in the case of equation (4.1), while equation (4.5)
shows that the same property holds here only if ḡ(a) > αW e(a),
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which has the obvious interpretation that the weight gained from food
consumption is more than that lost in sustaining activity. We also
noticed that We(a, t) is increasing in a, in the case of equation (4.1);
this ensures that at most one cohort reaches the juvenile stage at a given
time. This is not always true in the case of equation (4.5). Taking the
partial derivative, with respect to a, of formula (4.6) leads to

(4.7)
∂We(a, t)

∂a
= exp(−αa)[−αW0 + g(t− a, T (t− a))].

Formula (4.7) shows that (∂We(a, t)/∂a) has a constant sign along the
trajectory of a cohort determined by the feeding conditions which were
prevailing at the beginning of the trajectory (age a = 0). It is difficult to
interpret this property since it is based at least in part on the technical
assumption that the initial weight is the same for all the cohorts. It
suggests incorporating another threshold in the model, that is, only the
larvae whose endogenous feeding stage ends at a time t such that

(4.8) g(t, T (t)) ≥ αW0

will switch to active feeding at this time. The other ones reach the
value W0 at a time t1 such that

g(t1, T (t1)) < αW0.

No feeding occurs from this time on, so these larvae start to lose weight
exponentially, that is, We(t) = W0 exp(−α(t − t1)), until either the
weight goes below a certain value wmin, a threshold for starvation and
death, whatever future feeding conditions could be, or t2 > t1 exists
such that

g(t2, T (t2)) ≥ αWe(t2) ≥ αwmin.

Active feeding will then start from the very first moment t2 when the
above two inequalities hold simultaneously. The weight starts to grow,
from t2 onwards, according to the same formula as (4.6) with W0

changed to We(t2). Age in active feeding should be initialized to 0
at this time.

The condition g(t, T (t)) ≥ αW0 to be satisfied at the beginning of
the active feeding period would be a rough way to account for the
accessibility of the prey, in particular at a time when the larva has
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not yet adapted to its new feeding habit. Accessibility of the resource
is a concept which combines several factors: the concentration of the
resource (here, the phytoplankton), its quality (some prey will be too
big, others could be too small), as well as the physical environment
(current and turbulence). All these factors together make the resource
more or less available. This degree of availability compares to the cost
incurred by the larva in its effort to catch the prey.

The mechanisms involved in the successful feeding of some larvae
and the failure of probably many others are far from being understood
yet. There is a growing view that larval survival is tightly related with
them aggregating around high concentrations of food. This view is
in particular supported by laboratory experiments which indicate that
the minimum rate of phytoplankton necessary to sustain larval life in
the laboratory is well above the usual concentrations of phytoplankton
observed in the field. It is also believed that such findings should be
made as soon as possible after the resorption of the yolk-sac. Finally,
so to speak, success attracts success and accordingly for failure: larvae
that were able to feed abundantly immediately after they started to look
for food will have the possibility of going through periods of low food
abundance. At the other end, those larvae which were not successful
from the beginning will have more and more difficulty to search. The
effect of entrainment produced by the first feeding success is roughly
reflected by condition (4.8). There are however probably many other
circumstances in its active feeding life time when the larva is faced with
low food accessibility: its ability to withstand such conditions will then
increase with weight (as modeled in equation (3.4) ). A deterministic
description of the succession of bad and good feeding periods and an
estimation of how bad they can be is out of reach. A very preliminary
step in this direction is the choice of the value wmin < W0 such that
no larva, which, after having reached the weight W0, falls below wmin,
will become juvenile.

We now return to equation (3.4) where, as already mentioned, we
assume that K(t, z) = 0, and we assume that the quantities W0, w∗

and wmin are as in the previous discussion. If We(a, t, P ) is a solution
of (3.4), with We(0, t0, P0) = W0, and W e(a) is the restriction of
We(a, t, P ) to a characteristic line starting from (0, t0, P0), then we
follow W e(a) until the first a = a(t0, P0) > 0 such that

W e(a) = w∗
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providing that W e(a) > wmin for every 0 < a < a. In order to compute
the flux of larvae entering the late larval stage, it is first necessary to
determine the set of points (the admissible set) in the space of (a, P )
where, at time t, We(a, t, P ) = w∗. Let (a, t, P ) be a given point. In
terms of the flow Φ defined by (3.13), we have

(t0, P0) = Φ(−a, t, P );

therefore, the characteristic line passing through (a, t, P ) is given by

(t(s), P (s)) = Φ(s− a, t, P ).

So, the relations defining the exit set at time t, R(t) is

(4.9)

We(a, t, P ) = w∗ and
wmin < We(s,Φ(s− a, t, P )) < w∗ for 0 < s < a

R(t) = {(a, P ) : formula (4.9) holds}.

From (4.9), it is clear that to a given (t, P ) is associated with at most
one a such that (4.9) holds. Assuming for simplicity that there is always
a solution, then we can define a∗(t, P ) = a, with a given by (4.9). The
exit set R(t) is the boundary of a larger open set, which we will call
the admissible set, denoted A(t) and defined as follows

(4.10)
A(t) = {(a, P ) : We(a, t, P ) < w∗, and

wmin < We(s,Φ(s− a, t, P )) < w∗ for 0 < s < a}.

We point out that for each (a, P ) ∈ A(t), we have a < a∗(t, P ). The
section of A(t) over a point P is the collection of ages of larvae, all
in between the post yolk-sac and the functional swimbladder period,
susceptible to reach the juvenile stage. We denote

Aσ(t) = {P : ∃a, (a, P ) ∈ A(t)}.

For each point P of the set Aσ(t), we determine all the trajectories
that can be followed by larvae, which at time t are positioned at P ,
and have never experienced starving conditions. For each P ∈ Aσ(t),
the set of a, such that (a, P ) ∈ A(t) is a union of open intervals: each
“hole” between two intervals corresponds to a trajectory crossing an
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inhospitable region where larvae would be deprived of food to the point
of going below the threshold for starvation.

We will now evaluate the variation, within a small time interval [t,
t + ∆t], of the population of larvae, located in a given region Ω of the
ocean, which have the potential to reach the late larval stage. At time t,
the number of larvae in this situation is given by the following integral

(4.11) Lpot(t) =
∫
AΩ(t)

Le(a, t, P ) da dP,

where
AΩ(t) = {(a, P ) : (a, P ) ∈ A(t) and P ∈ Ω} .

We denote Ll(t, P ) the spatial density of the larvae entering the late
larval stage at time t. The variation of Lpot(t) between t and t + ∆t
is caused by four factors: 1) The arrival of new post yolk-sac larvae,
of weight W0; 2) The natural mortality; 3) The advection by currents;
4) The passage into the late larval stage.

New post yolk-sac larvae:

(4.12)
[ ∫

Ω

Le(0, t, P ) dP
]

∆t.

Natural mortality:

(4.13)
[ ∫

AΩ(t)

Le(a, t, P )µ(a, t) da dP
]

∆t.

Advection by currents:

(4.14)[ ∫
∂AΩσ(t)

[ ∫
{a:(a,P )∈A(t)}

Le(a, t, P ) da
]−→
V (t, P ).−→n (P )σ(dP )

]
∆t

in which the notation ∂AΩσ(t) corresponds to the boundary of AΩσ(t),
A(t) is the closure of A(t), −→n (P ) is the unit normal vector to ∂AΩσ(t)
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at the point P , oriented outwards and σ(dP ) is the element of surface
on ∂AΩσ(t).

Passage into the late larval stage. We obtain the following general
formula for the flux of early juveniles

(4.15)

Ll(t, P ) = 1Aσ(t)(P )Le(a∗(t, P ), t, P )

− 1Aσ(t)(P )
[∫ −→∇P 1{a:(a,P )∈A(t)}(a)Le(a, t, P ) da

]

· −→V (t, P ) + 1Σσ(t)(P )Le(a∗(t, P ), t, P )
(∂We/∂t)
|(∂We/∂a)| ,

see Appendix, Section 1, for more details. We will now illustrate
formula (4.15) by two examples.

4.1 Example 1. We consider the situation considered in Arino et al.
[1996], that is, growth is governed by equation (4.1), which integrates
to

We(a, t) = W0 +
∫ t

t−a

g(s, T (s)) ds.

We is increasing along each cohort, which implies that We ≥ W0. So,
A(t) has a simple description: in particular, a∗(t, P ) = a∗(t) and

A(t) = ]0, a∗(t)[ ×D

which yields
Aσ(t) = Σσ(t) = D.

Since A(t) is a product of two sets, with the end points of the set of ages
independent of the position, it implies that

−→∇P 1{a:(a,P )∈A(t)}(a) = 0,
formula (5.14) boils down to

Ll(t, P ) = Le(a∗(t), t, P ) + Le(a∗(t), t, P )
(∂We/∂t)
|(∂We/∂a)| .

Using the notation ḡ(t) = g(t, T (t)), we have

∂We

∂t
= ḡ(t) − ḡ(t− a),

∂We

∂a
= ḡ(t− a).
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Introducing these values in the formula for Ll(t, P ), we obtain

(4.16) Ll(t, P ) = Le(a∗(t), t, P )
ḡ(t)

ḡ(t− a∗(t))
.

Now, differentiating the identity

We(a∗(t), t) = w∗

with respect to t yields

a∗′(t) = − (∂We/∂t)
(∂We/∂a)

.

In terms of a∗(t), formula (4.16) gives

(4.17) Ll(t, P ) = (1 − a∗′(t))Le(a∗(t), t, P )

which is precisely the formula obtained in Arino et al. [1996] for the
sole. Using the expression of Le(a, t, P ) in terms of Lr given in (3.14),
we obtain

(4.18)
Ll(t, P ) = (1 − a∗′(t)) exp−

[ ∫ a∗(t)

0

µ(σ, t− a∗(t) + σ) dσ
]

· Lr(t− a∗(t), P (t− a∗(t), t, P )).

Formula (4.18) gives the flux of larvae entering the late larval stage at
time t and position P in terms of the flux of larvae at the end of the
yolk-sac stage, which, at time t and position P , would be susceptible
to enter the late larval stage. So, the ratio

Ll(t, P )
Lr(t− a∗(t), P (t− a∗(t), t, P ))

gives, at this time and this position, the rate of recruitment of a cohort
of larvae at the end of the yolk-sac stage in the late larval stage. In this
simplified example where we assume that the growth conditions are the
same everywhere, the rate of recruitment is independent of the position;
it is a function of time only. On the other hand, the magnitude of the
flux depends on the position since the ratio compares the number of
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late larvae at a given position P to the number of larvae that were
driven by the current from their previous position P where they were
at time t− a∗(t).

4.2 Example 2. In this example we assume that some spatial
dependence holds for weight growth. Our main assumption is that
the current is constant and is oriented westwards

−→
V (t, P ) =

−→
U = (U1, 0, 0).

This implies that all the properties under consideration in this study
are invariant through time along the north-south and the vertical com-
ponents. We also assume that the nutrient concentration is constant
N = N , which is feasible under the assumption of velocity constancy
(see equation (3.8) ). This gives the equation for phytoplankton (equa-
tion (3.7) ) the following expression

(4.19)
∂ϕ

∂t
= C(N)ϕ− U1

∂ϕ

∂x

in which C(N) is the constant rate of production of phytoplankton due
to the nutrients. We complete the equation for the phytoplankton by
an initial value

ϕ(0, x) = ϕ0(x)

and a boundary condition, which corresponds to a source term

ϕ(t, ξ) = ϕ̃(t).

ξ represents the most coastward abscissa of the region under consider-
ation. Finally, we assume that the growth rate of the weight (equation
(3.4) ) as a result of eating phytoplankton is linear in ϕ, independent
of We, which gives the following equation for the weight

(4.20)
∂We

∂a
+

∂We

∂t
+ U1

∂We

∂x
= k(t)f(t)ϕ− αWe.

It is then possible to integrate the state variables ϕ, Le and We with
respect to the spatial variables y and z and work with the integrated
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state variables, functions of a, t and x only. Thus we obtain (see
Appendix, Section 2, for more details),


Ll(t, x)
=

[
1−U1a

(2)′(x)
]
Le(a(2)(x), t, x) if x > U1t+ ξ and a(2)(x) <+∞,

Ll(t, x) = 0 otherwise.

At this point, it would be possible to continue as has been done in
Example 1: one can express Le in terms of Lr and compute the ratio of
the flux of late larvae to the flux of the larvae at the end of the yolk-sac
stage. We defer this to future work.

5. Discussion. We have described by mathematical equations the
last segment of the passive larval stage of the anchovy, that is, the
part between the resorption of the yolk-sac and the development of an
inflated swimbladder. This is a critical phase when the larva switches
from endogenous to exogenous feeding. Thus, its survival depends
strongly on its ability to find and catch food while its movement in
the water column is impaired by the lack of a functional swimbladder.
Following the same approach as in a previous work by Arino et al.
[1996], the state of the targeted population is determined, at every
moment t, by two densities: one, Le, is associated with demography
while the other one, We, is more reflective of physiology. Competition,
as well as density-dependence effects, have been considered negligible
since, from field data, it seems clear that eggs and early larvae disperse
soon after spawning (Motos et al. [1991]). So, the equation for the
demography is linear. Nonlinear effects and probably also threshold
effects are in action in the variation of weight. The nonlinearity chosen
here is an attempt to account for part of these effects. The main goal
of the work was to derive a general formula for the rate of recruitment
in the late larval stage in terms of the population that has completed
successfully the yolk-sac period. In this respect, formula (4.15) is the
main result of the paper: its generality is broad enough to encompass
two completely different examples, Example 1 concentrating on the role
of temperature on the rate of recruitment, and Example 2 showing the
possible role of spatial heterogeneity. The paper considers a relatively
small segment of the life cycle of the anchovy, seemingly the most
crucial part, since it corresponds to the passage from endogenous to
exogenous feeding (Regner [1985]). A model of the earlier phase from
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the egg stage to the end of the yolk-sac period has been set up by Arino
et al. [1999]. Combined with the result of this paper, it allows the
computation of a rate of recruitment from the egg into the late larval
stage. Finally, the rate of recruitment from the egg into the juvenile
stage, of main interest for fishery management, entails the study of the
late larval stage, until the beginning of filter feeding (Hunter and Dorr
[1982]; Mullin [1993]). This will be considered in future work.

Appendix

1. Determination of the early juveniles flux. The total density
entering the late larval stage during a period ∆t is

(A.1)
[ ∫

Ω

Ll(t, P ) dP
]

∆t.

What we have to do now is to evaluate the difference

(A.2) Lpot(t + ∆t) − Lpot(t)

which we divide into two parts

(A.3) Lpot(t + ∆t) − Lpot(t) = ∆(1)Lpot + ∆(2)Lpot

with

(A.4) ∆(1)Lpot =
∫
AΩ(t+∆t)

[Le(a, t + ∆t, P ) − Le(a, t, P )] da dP

and
(A.5)

∆(2)Lpot =
∫
AΩ(t+∆t)

Le(a, t, P ) da dP −
∫
AΩ(t)

Le(a, t, P ) da dP.

Under some differentiability assumptions on Le that we will not specify,
we can write:

∆(1)Lpot =
[ ∫

AΩ(t)

∂Le

∂t
(a, t, P ) da dP

]
∆t + o(∆t).
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Using equation (3.11), we can change (∂Le/∂t) to −(∂Le/∂a)−−→
V (t, P )·−→∇PLe − µLe, which, if we omit the o(∆t) quantity, yields

(A.6)

∆(1)Lpot = −
[ ∫

AΩ(t)

[
∂Le

∂a
(a, t, P )

]
da dP

]
∆t

−
[ ∫

AΩ(t)

[
−→
V (t, P ) · −→∇PLe + µ(a, t)Le(a, t, P )] da dP

]
∆t.

Let us now consider ∆(2)Lpot. This quantity can be written in the form

(A.7) ∆(2)Lpot =
∫
AΩ(t+∆t)\AΩ(t)

Le(a, t, P ) da dP

−
∫
AΩ(t)\AΩ(t+∆t)

Le(a, t, P ) da dP.

Let us examine the integral over AΩ(t+ ∆t)\AΩ(t). The contributions
of Le which survive for each ∆t > 0 small enough are those in the
vicinity of the surface ΣΩ(t) = {(a, P ) ∈ AΩ(t) : We(a, t, P ) = w∗} and
such that (∂We/∂t)(a, t, P ) < 0. For any point (a, P ) in ΣΩ(t), there
is a small portion of the normal line to ΣΩ(t) at (a, P ) which belongs
to the set AΩ(t+ ∆t)\AΩ(t). An estimate of the length of this portion
is

(A.8)
δ(a, t, P )

∆t
≡ (∂We/∂t)(

|(∂We/∂a)|2 + |∇PWe|2
)1/2

.

The same formula holds for AΩ(t)\AΩ(t + ∆t), with δ > 0 this time.
In terms of δ, we have the following expression for ∆(2)Lpot

∆(2)Lpot = −
∫

ΣΩ(t)

Le(a, t, P )δ(a, t, P ) dΣΩ(t)(a, P ),

where the notation dΣΩ(t)(a, P ) stands for the surface integral over
ΣΩ(t), that is:

dΣΩ(t)(a, P ) =

(
|(∂We/∂a)|2 + |∇PWe|2

)1/2

|(∂We/∂a)| dP
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which yields

(A.9) ∆(2)Lpot = −
∫

ΣΩσ (t)

Le(a∗(t, P ), t, P )
∂We/∂t

|∂We/∂a| dP ∆t.

Coming back to the estimate of the variation of Lpot within the time
interval [t, t + ∆t] we can write, first of all

(A.10)

Lpot(t+∆t)−Lpot(t)

=
[ ∫

Ω

Le(0, t, P ) dP
]

∆t−
[ ∫

AΩ(t)

Le(a, t, P )µ(a, t) da dP
]

∆t

−
[ ∫

∂AΩσ(t)

[ ∫
{a:(a,P )∈A(t)}

Le(a, t, P ) da
]−→
V (t, P ) · −→n (P )σ(dP )

]
∆t

−
[ ∫

Ω

Ll(t, P ) dP
]

∆t

The above expression is to be balanced with the one in terms of
∆(1)Lpot (A.6) and ∆(2)Lpot (A.9), that is,

(A.11)

Jpot(t+∆t)−Jpot(t)

= −
[ ∫

AΩ(t)

[
∂L

∂a
(a, t, P )+

−→
V (t, P ) · −→∇PL+µ(a, t)L(a, t, P )

]
da dP

]
∆t

−
[ ∫

ΣΩσ (t)

L(a∗(t, P ), t, P )
∂W/∂t

|∂W/∂a| dP
]

∆t.

In the expression (A.10), we note that∫
∂AΩσ(t)

[ ∫
{a:(a,P )∈A(t)}

Le(a, t, P ) da
]−→
V (t, P ) · −→n (P )σ(dP )

=
∫
AΩσ(t)

divP

{[∫
{a:(a,P )∈A(t)}

Le(a, t, P ) da
]−→
V (t, P )

}
dP.

The integral over AΩσ(t) breaks down into the sum of two quantities:∫
AΩσ(t)

[ ∫ −→∇P 1{a:(a,P )∈A(t)}(a)Le(a, t, P ) da
]
· −→V (t, P ) dP

+
∫
AΩ(t)

−→∇PLe(a, t, P ) · −→V (t, P ) dP,
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where, for any subset S, we denote 1S the indicator function of S. After
elimination of the quantities which appear in both expressions (A.10)
and (A.11), and division by ∆t, we arrive at a first relationship:

(A.12)∫
Ω

Le(0, t, P ) dP −
∫

Ω

Ll(t, P ) dP

−
∫
AΩσ(t)

[ ∫ −→∇P 1{a:(a,P )∈A(t)}(a)Le(a, t, P ) da
]
· −→V (t, P ) dP

= −
∫
AΩ(t)

∂Le

∂a
(a, t, P ) da dP−

∫
ΣΩσ (t)

Le(a∗(t, P ), t, P )
(∂We/∂t)
|(∂We/∂a|) dP.

From the definition of AΩ(t) and the observation made above that
a∗(t, P ) is, for each P , the lowest upper bound of the a such that
(a, P ) ∈ AΩ(t), we deduce that

(A.13)
∫
AΩ(t)

∂Le

∂a
(a, t, P ) da dP

=
∫
AΩσ(t)

Le(a∗(t, P ), t, P ) dP −
∫

Ω

Le(0, t, P ) dP.

Substituting the righthand side of (5.13) in (5.12), we obtain, after
elimination of

∫
Ω
Le(0, t, P ) dP,

∫
Ω

Ll(t, P ) dP

= −
∫
AΩσ(t)

[∫ −→∇P 1{a:(a,P )∈A(t)}(a)Le(a, t, P ) da
]
d · −→V (t, P ) dP

+
∫
AΩσ(t)

Le(a∗(t, P ), t, P ) dP

+
∫

ΣΩσ (t)

Le(a∗(t, P ), t, P )
(∂We/∂t)
|(∂We/∂a)| dP.

This equality is true for each open subset Ω allows to deduce equality
of the functions under the integrals. We obtain a general formula for
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the flux of early juveniles

(A.14)

Ll(t, P ) = 1Aσ(t)(P )Le(a∗(t, P ), t, P ) − 1Aσ(t)(P )

·
[ ∫ −→∇P 1{a:(a,P )∈A(t)}(a)Le(a, t, P ) da

]
· −→V (t, P )

+ 1Σσ(t)(P )Le(a∗(t, P ), t, P )
(∂We/∂t)
|(∂We/∂a)| .

2. Example 2. We do this and we keep the same notations for
the integrated state variables. In spite of all the above simplifying
assumptions, the problem at hand is not trivial. The main difficulty
is in describing the admissible set A(t), since this time the weight We

is not always increasing with respect to age. In order to determine
A(t), as given by formula (4.10), we first have to compute the flow
Φ = Φ(s, t0, P0) = (t(s), x(s)). The derivation is straightforward

t(s) = s + t0, x(s) = sU1 + x0.

It is also very easy to solve equation (4.20). We arrive at the following
formula

We(a, t, x) = exp(−αa)W0

+
∫ t

t−a

exp[−α(t−σ)]k(σ)f(σ)ϕ(σ, x + (σ−t)U1) dσ(A.15)

where, substituting for ϕ its expression in terms of ϕ0 and ϕ̃ obtained
by solving equation (4.19), that is,

ϕ(t, x) = exp(C(N)t)ϕ0(x− U1t), for x− U1t < ξ

ϕ(t, x) = exp
(
C(N)

x− ξ

U1

)
ϕ̃

(
t− x− ξ

U1

)
, for x− U1t > ξ
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gives

We(a, t, x) = exp(−αa)W0 + ϕ0(x− tU1)

· exp(−αt)
∫ t

t−a

exp[(α + C(N))σ]k(σ)f(σ) dσ

if x− U1t < ξ,(A.16)

We(a, t, x) = exp(−αa)W0 + ϕ̃

(
t− x− ξ

U1

)

· exp
(
− αt + C(N)

x− ξ

U1

)∫ t

t−a

exp[ασ]k(σ)f(σ)

if x− U1t > ξ.

To make the above formula more explicit, we further assume that the
product

k(t)f(t) = κ

is a constant. This leads to

We(a, t, x) = exp(−αa)W0 + κϕ0(x− tU1)

· exp
[
C(N)t

] [
1 − exp−(α + C(N))a

]
(α + C(N))

if x− U1t < ξ,(A.17)

We(a, t, x) = exp(−αa)W0 + κϕ̃

(
t− x− ξ

U1

)

· exp
(
C(N)

x− ξ

U1

)
[1 − exp−αa]

α

if x− U1t > ξ.

We will now restrict our attention to an even more simplified situation
which, however, is feasible: we assume that

ϕ0 = 0 and ϕ̃ is constant, ϕ̃ = ϕ̃C .

This would correspond to the case of phytoplankton coming into a
region from an external source. The formulae for W reduces to the
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following

(A.18)

We(a, t, x) = exp(−αa)W0 if x− U1t < ξ,

We(a, t, x) = exp(−αa)W0

+ κϕ̃C exp
(
C(N)

x− ξ

U1

)
[1 − exp−αa]

α

if x− U1t > ξ.

The restriction W e(s) of We along a characteristic line t(s) = s + t0,
x(s) = sU1 + x0, starting from a point (0, t0, x0) gives

(A.19)

W e(s) = exp(−αs)W0 if x0 − U1t0 < ξ,

W e(s) = exp(−αs)W0

+ κϕ̃C exp
(
C(N)

[
s +

x0 − ξ

U1

])
[1 − exp−αs]

α

if x0 − U1t0 > ξ.

Formula (A.19) shows that some initial values (0, t0, x0) will auto-
matically drive the larvae to starvation and death: this is when
x0−U1t0 < ξ. In contrast, in the complementary subset, we may have,
according to the parameters and the initial value, either initial weight
loss followed by gain, or gain from the beginning. We will continue our
computations under the following additional assumption

(A.20) −αW0 + κϕ̃C > 0

a situation when the weight increases from the beginning in the set

{(t0, x0) : x0 − U1t0 > ξ} .

In order to compute the recruitment rate in the late larval stage, we
first have to determine the set A(t). It is made up of two subsets: 1)
for those points (a, t, x) for which x − U1t < ξ, it is defined by the
condition exp(−αa)W0 > wmin. We will denote A(1)(t) this set. Thus,
we have

(A.21) A(1)(t) =
]
0,

1
α

ln
(

W0

wmin

)[
× {(t, x) : x− U1t < ξ} .
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2) For the points (a, t, x) for which x − U1t > ξ, the condition on a is
just

exp(−αa)W0 + κϕ̃C exp
(
C(N)

x− ξ

U1

)
[1 − exp−αa]

α
< w∗,

which is equivalent to

(A.22) a <
1
α

ln
[
κϕ̃C exp(C(N)(x− ξ/U1) − αW0)
κϕ̃C exp(C(N)(x− ξ/U1) − αw∗

]
≡ a(2)(x).

It should be noted that formula (A.22) is not always defined. While
condition (A.20) ensures that κϕ̃C exp(C(N)(x− ξ/U1)) − αW0 > 0,
no assumption has been made regarding the quantity αw∗ compared
to κϕ̃C . If αw∗ > κϕ̃C for some values of x, the inequality defining
a(2)(x) holds true for all a, which implies that a(2)(x) = +∞, in this
case, meaning that the feeding rate is too low to allow the larva to reach
the threshold w∗ in finite time. So, for definiteness, we will extend
a(2)(x) to the set of x such that κϕ̃C exp(C(N)(x− ξ/U1)) − αw∗ < 0
by setting a(2)(x) = +∞ on this set. The corresponding subset of A(t),
denoted A(2)(t), is defined by

(A.23) A(2)(t) = {(a, t, x) : x− U1t > ξ and a < a(2)(x)}
where a(2)(x) is given by formula (A.22) or a(2)(x) = +∞.

Finally, we have
A(t) = A(1)(t) ∪ A(2)(t)

from which we deduce that

Aσ(t) = D

and
Σ(t) = {(a(2)(x), x) : x ≥ U1t + ξ and a(2)(x) < +∞}

which yields

Σσ(t) = {x : x ≥ U1t + ξ} ∩ {x : a(2)(x) < +∞} .
For x ∈ Σσ(t), we have

∂We

∂t
= 0

(A.24)
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and
∂We

∂a
= exp(−αa)

[
− αW0 + κϕ̃C exp

(
C(N)

x− ξ

U1

)]
.

We are now ready to compute Ll(t, x) as given by formula (A.14).
Noting first that the function a∗(t, x) has A(2)

σ (t) as a domain and is
such that a∗(t, x) = a(2)(x), formula (A.14) reduces to

Ll(t, x) =
(

[1 − U1a
(2)′(x)] + 1Σσ(t)(x)

∂We/∂t

|∂We/∂a|
)
Le(a(2)(x), t, x).

Combining the above results, and using notably formula (5.42), it
follows that

Ll(t, x) = [1−U1a
(2)′(x)]Le(a(2)(x), t, x)

if x > U1t+ξ and a(2)(x) <+∞,

Ll(t, x) = 0 otherwise.
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