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Abstract − A spatio–temporal model describing the dynamics of a population of sole is presented. The model is an
extension to a 2D-space structure of a 1D model published by the three first authors. Spatial migration is modelled by an
advection–diffusion second order operator with constant coefficients. The physical domain is represented by a half-plane
with the coast as its boundary. A formula for estimating the proportion of eggs reaching the juvenile stage, depending
upon climatic, transport, growth and mortality processes, is derived. Numerical results are deferred to elsewhere.
© 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS

Résumé − Modélisation et simulations de la migration des larves de sole,Solea solea (L.), du golfe de Gascogne,
1re partie : modélisation. Un modèle spatio–temporel de dynamique de population pour la sole du golfe de Gascogne
(Solea solea (L.)) est présenté. C’est une extension 2D d’un modèle 1D proposé par les trois premiers auteurs. La
migration spatiale par diffusion–advection est décrite par un opérateur du second ordre à coefficients constants. Le
domaine physique est identifié à un demi-plan, limité sur son bord par la côte. Le modèle distingue les œufs, les larves,
les juvéniles et les adultes, mais l’étude se focalise sur le stade larvaire. La croissance larvaire est modélisée par une
fonction de la température. Un seuil de taille est imposé pour le passage au stade juvénile, en même temps qu’une
contrainte de proximité suffisante de la côte. L’intégration de la partie « migration » peut être explicitement menée et
permet d’aboutir à une formule calculable du taux de recrutement. Les résultats numériques sont détaillés dans un second
article. © 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS

population dynamics / diffusion and advection processes / recruitment

dynamique de population / processus de diffusion et d’advection / recrutement

1. INTRODUCTION

This paper is a follow-up of a previous work (Arino et al.,
1996) where a mathematical model of the dynamics of

the larva of the Dover sole,Solea solea (L.), of the Bay
of Biscay was first described. The main objective was to
investigate the possible role of diffusion in the process by
which the sole born in well identified spawning grounds,
80 to 100 kilometres from the coast, migrate to the shore
until they reach such places as sheltered bays or estuaries,
the nurseries where they mature until the adult stage. An
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excellent presentation of a variety of ways diffusion acts
in biological and ecological phenomena is made in the
classic (Okubo, 1980). The model considered is one-
dimensional in space, the spatial variable being roughly
the distance to the coast. The model consists of three
equations, for the larval, the juvenile and the adult stage
respectively. In each stage, the age within the stage is
another structuring variable. The egg stage is treated as an
input. Larval growth is modelled as a function of the daily
average temperature with a threshold size regulating the
completion of the metamorphosis of the larvae into
flatfish and their passing into the juvenile stage.

In the present work we deal with a two-dimensional
model for the sole. The model is roughly built on the
same principles as in Arino et al. (1996), with the
non-trivial complication introduced by the fact that we
are working in two dimensions and also in that we are
using no-flux boundary conditions instead of the zero-
population boundary conditions. The main purpose of the
present work is the calculation of the spatio–temporal
evolution of larva distribution and an estimate of the
proportion of spawned eggs reaching the juvenile phase
at a given time. A formula estimating the recruitment rate
of larvae depending upon various biotic and abiotic
parameters of the model is established (section 4.1).
Numerical simulations are presented in another paper.

The organization of the paper is as follows. Section two
introduces our model. Section three is devoted to solving
the equations. Mathematical aspects have been reduced to
a minimum, essentially to a rigorous description of the
formulae. It is also assumed that the equation describing
the movement of the larvae has constant coefficients, and
the domain where they move is a half-plane,
�0, + ∞� × �. Section four is the main part of the work;
it is devoted to estimating the recruitment rate in the
juvenile stage. Recruitment is understood here as the
arrival in a given stage. In this work, arrival in the
juvenile stage is understood as initiation of metamorpho-
sis and is concluded in terms of a threshold size to be
reached by the larva. A formula for the recruitment rate is
first established; then, estimates of the main parameters or
functions entering the definition of the formula are
obtained. The formula is based on two principal ingredi-
ents: a*� s �, the age of recruitment for larvae in the
juvenile stage at time t, and the migration parameters, K
and u. The fact that a* is a function of time only is a
direct consequence of the simplifying assumption made
about the size growth rate, modelled as a function of the

average temperature only. The function a*� t � is ex-
pressed in terms of the development period from the egg
to the juvenile stage, a function of the temperature
determined in laboratory experiment (Fonds, 1979) see
also; Amara et al. (1993) for some field data. We will
also consider the function a*� s �; the age at recruitment
as a function of the birth date. It is shown that under
some assumptions which allow the approximation of the
movement as purely Gaussian, it is possible to relate the
parameters K and u to the mean value and the variance of
the spatial distribution of the concentration of the larvae,
expressed as the ratio of the actual density of larvae of a
same age and space cohort to the density of the patch of
eggs from which the cohort originates. The final section,
section five, discusses amply the conditions and the body
of hypotheses which underlie the work, and the perspec-
tives brought up by recent experimental as well as field
findings, to conclude on the possible significance of our
work within this new context and on its prospective
future development.

2. THE MODEL

The problem is formulated in a region of the ocean
surface enclosing in its interior the spawning grounds
and the nurseries. For simplicity, we assume vertical
homogeneity (as a result of averaging over the water
column) and also that the coast is rectilinear. This makes
possible to arrive at tractable formulae.

2.1. State variables

Two variables are considered for space parameterisation:

x1 represents the direction perpendicular to the coast and
measures the distance to the coast, x1 ∈ �0, + ∞� .

x2 represents the direction parallel to the coast and
measures the distance to the origin arbitrarily chosen on
the coast.

Xi, i = 1, 2, ..., IX denotes the spawning areas, supposed
subdivided into disjoint patches (Di, i = 1, 2, ..., ID de-
notes the nursery areas, similarly subdivided into disjoint

patches respectively). Let X = ∪
i=1

IX

Xi and D = ∪
i=1

ID

Di.

At a given time t, we denote by: L� a, t, x1, x2 �,
J� a, t, x1, x2 � and M� a, t, x1, x2 �: (respectively) the lar-
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val, juvenile and adult density with respect to age and
position, B� t, x1, x2 �: the egg spawning rate density.

The function B links the mature and larva compartments
via the birth equation (1).

2.2. Model equations

In general, the observed phenomena are almost identi-
cally reproduced each year. Time is counted in fractions
of a year and, in a given year, initialised at the first of
January. Spawning occurs in a period of the year repre-
sented by a time interval �p1, p2 � , � 0 < p1 < p2 < 1 �.

2.2.1. Equation of reproduction

The reproduction period covers approximately three
months starting from mid-January to mid-April, a period
during which adult females spawn gradually. A few days
after being spawned, eggs hatch giving birth to larvae.
Egg mortality is presumably very high. The egg produc-
tion equation is given by:

B� t, x1, x2 � = �
amin

amax

b� a, t, x1, x2 � e� a � M� a, t, x1, x2 � da (1)

b� a, t, x1, x2 � is the proportion of adult individuals aged
a participating in the reproduction at time t and location
� x1, x2 �. The function b is equal to zero outside of both
the reproduction period and the spawning grounds. e(a) is
the egg number average produced per time unit, per adult
female aged a.

amin and amax denote respectively the minimum and
maximum age of reproduction.

2.2.2. Larvae dynamics

2.2.2.1. Larval growth equation
The growth of larvae is described as a function of the
temperature. If w� a, t � is the length at a time t of a larva
aged a, t ≥ a, then its evolution is modeled according to
the equation:

� �
�a + �

�t � w� a, t � = fx� t � g� w� a, t � � (2)

where fx� t � = f� T� t � �, T� t � is the temperature at a time
t. f and g are positive continuous functions.

Integrating equation (2) along the ‘characteristic lines’ ,
we obtain:

w� a, t � = w0 + �
t−a

t

fx� s � g� w� s − � t − a �, s � � ds, � t ≥ a �

where w0 is the size at birth.

We assume that the recruitment in the juvenile stage is
subject to reaching a threshold size w* (Amara and
Lagardère, 1995). What we consider here is not really the
beginning of the juvenile stage, but rather the initiation of
metamorphosis, that is to say, the transformation of the
larva from a round fish into a flatfish. The possible role of
this transformation as regulating the recruitment is dis-
cussed in (Amara et al., 2000): experimental evidence,
notably regarding to the nutritional condition of meta-
morphosing larvae, seems to indicate that this period is
not such a crucial one. The model we describe does not
counteract the above-mentioned evidence. No increased
mortality is attached to the period when w is near w*: We
denote as a*� t � the function that determines uniquely the
value of a satisfying the condition:

w� a*� t �, t � = w* (3)

a*� t � is the age at metamorphosis of a larva recruited in
the juvenile stage at time t. Size was used instead of
weight because it is a more reliable, less fluctuating, data
than weight. Weight should reflect a balance of the food
eaten and the energy consumed in various respects: in
searching food, in body maintenance, excretion of unused
substances, etc. Finally, very often, data in the literature
relating the stage to a certain global feature of an
individual use length as the distinctive feature (Koutsiko-
poulos et al., 1991; Horwood, 1993). The threshold size is
the average size at the beginning of metamorphosis.

2.2.2.2. Transport of larvae
During the pelagic phase, eggs and larvae are considered
passive and are submitted to both mortality and water
movement effects. Their displacement has two compo-
nents: a diffusive component and an advective compo-
nent, which are related to winds and marine currents.
Then the dynamics of larvae are described by a Lot-
ka–Von Foerster type model:

� �
�a + �

�t � L� a, t, x1, x2 � = ∇ . �K∇ L� a, t, x1, x2 � �

− ∇ . � uL� a, t, x1, x2 � � − µL� a � L� a, t, x1, x2 �,
a < a*� t � (4)
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with the following boundary conditions:

L� 0, t, x1, x2 � = B� t, x1, x2 �; (5)

L� a, i, x1, x2 � = 0 for i = 1, 2, ...

and

� − K∇ L + uL � . g
s = 0 on the boundary (6)

∇ = �
�

�x1

�
�x2

� and the notation ∇ .v denotes the divergence

of v.

K = � kij �i, j = 1, 2 is a symmetric positive definite matrix.

The quantity �R ∇ . �− K∇ L� a, t, x1, x2 � � dx1 dx2 repre-
sents the larva flux due to diffusion through the boundary
of any given region R. In fact, according to Fick’s law,
the flux vector is equal to − K∇ L and its divergence
integrated over any region gives the flux through the
boundary of this region (Green–Stokes’ formula).

u is the velocity vector of marine currents (all compo-
nents included: winds, tidal currents, etc.) and it is
assumed to be averaged throughout the period of the
larval stage.

µL� a � is the age specific rate mortality from which we
deduce the survival probability up to age a:

SL� a � = exp�− �
0

a

µL� s � ds� (7)

The equation ‘L� a, i, x1, x2 � = 0’ reflects the fact that
time was initialised on the first of January of a referential
year, ‘ the year zero’ , and it is supposed that there is no
larva alive at the beginning of each year. This hypothesis
requires supplementary conditions on larval mortality and
we admit that larvae cannot survive as larvae beyond
their year of birth. Then, there is a maximum age that
larvae should not reach, denoted aflL and satisfying the
following singular condition:

�
0

aflL

µL� s � ds = + ∞ and �
0

a

µL� s � ds < + ∞

for every 0 < a < aflL (8)

Given that reproduction occupies the period �p1, p2 � of
each year, individuals born at time p2 should not survive

up to the beginning of the following year. Then, the
following condition:

�
0

1−p2

µL� s � ds = + ∞ (9)

must be satisfied. Taking (8) into account, the following
condition should be checked:

aflL ≤ 1 − p2 (10)

The boundary condition � − K∇ L + uL � . g
s = 0 in (5),

expresses that there is no fish flux through the limits

between the sea and the land, where g
s

is the normal
vector to the coast. This condition should be satisfied at
all fish stages and particularly for larvae:

− k11
�

�x1
L� a, t, 0, x2 � − k12

�
�x2

L� a, t, 0, x2 � +

u1 L� a, t, 0, x2 � = 0 (11)

2.2.3. Dynamics of juveniles

The juvenile stage is supposed to start when larvae reach
the threshold size w* related to their metamorphosis. We
assume that only those whose metamorphosis occurs
inside the nurseries are recruited in this stage. This
assumption is in agreement with repeated observations
reported for example in (Koutsikopoulos et al., 1991)
showing that few juveniles were caught out of the
nurseries.

The newly recruited juveniles remain in the nurseries, for
a period of approximately two years, moving to estuaries
in summer towards bays in winter, with a tendency more
and more pronounced towards deeper zones. The recruit-
ment of juveniles in nurseries at a time t, when it
effectively occurs, is quantified by the entry rate density:

J� 0, t, x1, x2 � = � 1 − � a* �′� t � � L� a*� t �, t, x1, x2 � vD

� x1, x2 � (12)

where the function vD is such that:

vD� x1, x2 � = �1 for � x1, x2 � ∈ D
0 otherwise

We assume that the displacements of juveniles in the
nurseries have no influence on the demography. As a

A. RAMZI et al. / Oceanologica Acta 24 (2001) 101–112

104



consequence, the spatial distribution is supposed to be
uniform, and is given by the following averaged expres-
sion:

J� 0, t � =
�1 − � a* �′� t � �

A� D � �
D

L� a*� t �, x1, x2 � dx1 dx2 (13)

where A(D) is the whole surface of the nurseries D and
J(0, t) represents the instantaneous flux per surface unit of
larvae entering the juvenile stage at time t per unit time.
The relationship (13) can be stated, as in (Arino et al.
1996), by establishing a balance of exchanges between
the larval and juvenile compartments.

Consequently, the equation for the juveniles is reduced to
an age-structured one, only accounting for the ageing and
mortality processes, and reads:

�� �
�a + �

�t � J� a, t � = − µj� a � J� a, t �

J� a, 0 � = J0� a �; t > 0, 0 < a < 2
(14)

where J0 is the initial juvenile distribution at year 0. The
equation is completed by formula (13) which gives the
boundary condition at age a = 0.

The description of the dynamics of adults is skipped.

3. SOLVING OF THE MODEL EQUATIONS

The whole system is composed of three equations satis-
fied respectively by L and J; with initial and boundary
conditions. We restrict our attention to two: (4), (5), (6)
for L and (12), (14) for J:

3.1. Solving the equation for the larvae

The solving of equation (4) can be accomplished in two
steps: 1) the equation with the right hand-side restricted
to the diffusion term and boundary condition (6) is
considered first: a parabolic equation, with constant
coefficients, on a half-plane can be solved explicitly,
using an extended version of the reflection method. In this
step, the transport is cancelled, u = 0. 2) Coming back to
the general case, u 7 0, the first order expression in the
right hand-side of (4) can be absorbed by a change of the
unknown L to L√ given by:

L√� a, t, X � = exp� − uT K− 1 X
2 � L� a, t, x �

A brief explanation of the reflection method is as follows:
given a solution L of equation (4); the goal is to extend it
into a solution of the same principal equation on the
whole plane. If this can be done, the extended solution
can be computed in terms of the initial value, using the
Fourier transform on �

2. It is indeed possible to deter-
mine such an extension, using a transformation of the
plane into itself, which maps the positive half-plane
x1 > 0 onto the negative one, x1 < 0. The matrix of the
transformation is:

T = T− 1 = �− 1 0

− 2
k12

k11
1� (15)

For the sake of conciseness, the following notations are
adopted: X = � x1, x2 �

T and Xx = TX, where ‘T’ denotes the
transpose operator. As usual, K− 1 denotes the inverse of
matrix K and det(K) its determinant. Note that
TT K− 1 T = K− 1.

3.1.1. Case (u = 0)

We use the method of lines (Webb, 1985) to reduce the
study to age-cohorts; that is to say, we follow the larvae
born at a same given moment. For these larvae, time and
age are related as follows: t = t0+a, where t0 is the birth
date; so, one can substitute t0+a for t in the equation, thus
keeping only one time variable. The physical domain is
considered a half-plane, with x1 = 0 as a boundary. This,
of course, is a simplification, justified by the size of the
domain: it allows to us to obtain explicit formulae in the
same way as was done in (Arino et al., 1996). The
boundary condition reduces to:

� k11
�L
�x1

+ k12
�L
�x2

�� a, t, 0, x2 � = 0

The solution can be explicitly written as follows:

L� a, t, X � = SL� a � �
�0,+∞�×�

kL� a, X, Y � B� t − a, Y � dY,

for t > a (16)

where SL is the larva survival function (7), and:

kL� s, X, Y � = 1
4p �det� K �

�exp� − H� s, X − Y � � + exp� − H� s, Xx − Y � � � (17)
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with

H� s, X � = XT K− 1 X
4s (18)

It should be noted that this formula is valid only for
a < a*� t �, where a*� t � is given by (3). Relationship (16)
is interpreted as follows: larvae of age a occupying the
position X at time t, are those among larvae born at time
t–a, whose density is B(t–a, Y), which have survived up
to age a with survival probability SL(a); and which have
transited from birth position Y to the actual position X.
The function kL(a, X,Y) gives the transition probability,
during a period of time equal to a, of movement from a
position Y to a position X.

3.1.2. Case (u 7 0)

We return to the first case by substituting the function Lx
to L as explained above. Straightforward computations
lead to the following expression for L:

L� a, t, X � = SL� a � �
X

kL� a, X, Y; u � B� t − a, Y � dY,

for t > a (19)

where

kL� a, X, Y; u � = exp� − uT K− 1 u
4 a �

exp� 1
2 uT K− 1

� X − Y � � kL� a, X, Y � (20)

3.2. Solving of the equation for the juveniles

According to (12):

J� 0, t, X � = � 1 − � a* �′� t � � L� a*� t �, t, X � for X in D

The expression of L is given in (19).

Using the method of lines, (14) leads to the following
expression:

J� a, t, X � = � SJ� a �

SJ� a − t �
J0� a − t, X �, for t < a < 2

SJ� a � J� 0, t − a, X �, for a < t
(21)

where SJ(a) is the survival function of juveniles which
can be expressed in terms of µJ by a formula similar to
(7), and J(0, t–a, X) is given by relationship (12).

4. ESTIMATE OF THE RATE
OF RECRUITMENT

Some observations have permitted us to justify the
hypothesis that only the larvae metamorphosing in nurs-
eries are susceptible to become adults. In fact, a very
small number of juveniles have been found outside the
nurseries (Koutsikopoulos et al., 1993). The proposed
model allows us to evaluate the fraction of larvae
reaching the nurseries at the moment of their metamor-
phosis. A formula giving an estimate of the rate of
recruitment will be established, involving the transport
parameters K and u, biological related parameters as µ
and a*, and some geographic characteristics of the
nurseries and spawning grounds.

Consider now a microcohort arriving at the juvenile
stage in an infinitesimal time interval � t, t + dt � . Then,
individuals of this microcohort were born during the
interval time � t − a*� t �, � t + dt � − a*� t + dt � � whose
length is � 1 − a*′� t � � dt. Then, the total number of
individuals born in this time interval is equal to:

� 1 − a*′� t � ���
X

B� t − a*� t �, Y � dY� dt (22)

The number of individuals entering the juvenile stage in
the time interval [t, t + dt] is given by the formula:

SL� a*� t � �� 1 − a*′� t � ���
D
�

X
kL� a*� t �, X, Y; u �

B� t − a*� t �, Y � dY dX� dt (23)

Then, the fraction of larvae recruited in the juvenile stage
is given by the following formula:

R� t � = SL� a*

� t � �
�

D
��

X
kL� a*� t �, X, Y; u � B� t − a*� t �, Y � dY� dX

�
X

B� t − a*� t �, Y � dY

(24)
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The proportion arriving at a given nursery Di from all the
larvae born (on any of the admissible spawning grounds)
is:

Ri� t � = SL� a*� t � �

�
Di

��
X

kL� a*� t �, X, Y; u � B� t − a*� t �, Y � dY� dX

�
X

B� t − a*� t �, Y � dY

(25)

such that:

R� t � = �
i=1

ID

Ri� t � (26)

R(t) is, at time t, the fraction of eggs spawned at time
t − a*� t � that become juveniles in nurseries at time t.

Now, to compute the recruitment rate over a period
[t1, t2], corresponding to the birth period
� t1 − a*� t1 �, t2 − a*� t2 � � , we integrate both (23) and
(22) and divide the first quantity by the latter one. We
arrive at the following expression:

Rtot =

�
t1

t2 ��
D×X

SL� a*� t � � kL� a*� t �, X, Y; u �

B� t − a*� t �, Y � dY dX� 1 − � a* �′� t � � dt

�
t1

t2��
X

B� t − a*� t �, Y � dY�� 1 − � a* �′� t � � dt

or equivalently, changing the time variable from t to s
defined by:

t − a*� t � = s

a*� s � = a*� s + a*� s � � and a*� t � = a*� s �

(27)

Rtot =

�
s1

s2

SL� a*� s � ���
D
��

X

kL� a*� s �, X, Y; u � B� s, Y � dY�dX� ds

�
s1

s2��
X

B� s, Y � dY�ds

where si = ti − a*� ti �, i = 1, 2 and a*� s � is the period
spent in the larval stage by a larva born at time s (thus,
recruited in the juvenile stage at time t such that
t − a*� t � = s). Rtot gives the rate of recruitment for a
season in terms of the spawning distribution and model

parameters. Then, if one can estimate the egg distribution
(from data sampling), the model can be used for recruit-
ment prediction.

4.1. A lower estimate of the rate of recruitment

From formula (27), one deduces immediately a lower
estimate of the rate of recruitment into the juvenile stage:

Rlow� s � = �
D

SL� a*� s � � inf
Y∈ X

kL� a*� s �, X, Y; u � dX

(28)

With the variable s standing for the birth date, (28) gives
a value inferior or equal to the actual instantaneous time
rate of the proportion of larvae born at time s recruited in
the juvenile stage. If we assume that the time birth rate
over the spawning ground is constant within a time
interval [s1, s2], that is,

BX� s � =def �
X

B� s, Y � dY = BX = constant,

for s1 ≤ s ≤ s2

then,

��
s1

s2

Rlow� s � ds�BX

gives a value inferior or equal to the actual number of
larvae born within the time interval [s1, s2] which start
metamorphosis (in the admissible domain). Therefore,

�
s1

s2

Rlow� s � ds

s1 − s2
(29)

is a lower estimate of the instantaneous time rate of
recruitment in the juvenile stage, for those larvae born
within the time interval [s1, s2], providing the assumption
of a constant time birth rate holds during the same time
interval. The assumption of a constant birth rate allows us
to use (29) as a lower estimate of the recruitment, rather
than:

min
s1≤s≤s2

Rlow� s �

thus, yielding a better estimate. Assessment of the value
rests on the computation of a* and the parameters K and
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u. These computations are the subject of the next subsec-
tion. The above estimates can be adapted so as to pinpoint
a particular spawning patch or/and a particular nursery.

4.2. Estimating some model parameters

4.2.1. An estimate for a*� t �

In order to evaluate the function a*� t �, it is necessary to
determine the functions f and g. This may be done by
using the functional relationship giving the development
period in terms of the temperature. In Arino et al. (1996),
the following model is considered:

D� T � = aTb, a > 0 and b < 0 (30)

where D� T � is the development period from the egg to
the juvenile stage, at constant temperature T. The condi-
tion b < 0 stands for the fact that the development period
is decreasing with respect to temperature: the higher the
temperature, the faster the growth and the shorter the
development period. The coefficients a and b can be
estimated by linear regression of larval growth data.

Now, let us suppose for a moment that the temperature T
is constant during larval development. Equation (2) reads
along characteristic lines:

dw
ds � s � = f� T � g� w� s � �

and

�
0

D� T � dw� s �
g� w� s � �

= f� T � D� T �

If the function 1
g has an antiderivative G, then:

G� w* � − G� w0 � = f� T � D� T �

thus, the expression of f is given by:

f� T � =
G� w* � − G� w0 �

D� T �

Integrating the above relationship from time t – a to t, we
obtain:

G� w� a, t � � − G� w0 � = � G� w* � − G

� w0 � � �
t−a

t
1

D� T� s � �
ds

The function a*� t � is obtained when the following
integral condition is satisfied:

�
t−a*� t �

t
1

D� T� s � �
ds = 1

or, equivalently �
t

t+a*� t �
1

D� T� s � �
ds = 1

The term 1
D� T� t � �

represents the fraction of size gained,

per time unit, at time t and temperature T(t). Finally, to
estimate the development period, we need to choose a
model for the evolution of temperature. We use a
sinusoidal function model for the temperature, of the
type:

T� t � = T0 + Tm sin � �t + c �

We then proceed to a discretization of time with step dt
‘small enough’ for estimating the function a*� t �. We
approach the value of the integral:

I� n � = �
t−ndt

t
1

D� T� s � �
ds . dt �

i=1

n
1

D� T� si � �
,

for n = 1, 2, ...

The stopping test for n, denoted n*, is the smallest n such
that I� n � ≤ 1 and I� n + 1 � > 1. Then, a*� t � is esti-

mated by � n* + 1
2 � dt.

4.2.2. Estimating transport parameters

In order to estimate the transport parameters K and u, we
assume that the spawning is concentrated in tiny patches,
sufficiently distant one from the other. Choose one of
them located in the vicinity of a point X0, occupying a
small area xX0

around X0, with the egg density equal to
B(t, X0) all over the patch; then, the spatio–temporal
distribution of the larvae initiated from this patch is
approximated by:

L� a, t, X � ≈ SL� a � kL� a, X, X0; u � B� t − a, X0
� xX0

The quantity:

pX0
� a, X � =

L� a, t, X �

B� t − a, X0
� xX0

= SL� a � kL� a, X, X0; u �

gives the spatial distribution, relative to the initial egg
patch, of larvae of age a, counting the mortality. Thus,
leaving the mortality out, the quantity kL� a, X, X0; u �
reads as the probability density for a larva born near X0
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to reach the point X at age a. To say a little more about
this probability, it is necessary to look at it in more detail.
Using formula (20), a straightforward computation leads
to:

kL� a, X, X0; u � = �� a, X � + �� a, Xx �

where

�� a, X � = 1
4pa �det� K �

exp�−

� X − � X0 + au � �
T K− 1

� X − � X0 + au � �
4a

�
Xx = TX, and T is given by formula (15).

We have:

pX0
� a, X � = SL� a � ��� a, X � + �� a, Xx � �

We note that �� a, X � is a normal probability law. If
�� a, Xx � can be neglected in comparison to �� a, X �,
then, for each time t ≥ 0, the ‘ relative’ spatial distribution
pX0

� a, X � of larvae of the same cohort aged a, born in
the same point X0, is assimilated to a normal distribution
of mean ma = SL� a �� X0 + au � and covariance matrix
Ca = 2a� SL� a � �

2 K. So, knowing the survival function
SL(a) and the eggs and larvae distribution (e.g. using data
sampling), one can estimate X0, u and K.

In the case of many spawning points, one can use the
same principle but the time and the area of dispersion
must be shorter and closer to the time and the area of
spawning so that no mixing occurs between larvae born
in different spawning points.

Let us now check conditions under which �� a, Xx � can be
neglected with respect to �� a, X �. Denote by:

r =
�� a, Xx �
�� a, X �

=

exp − 1
4a 	 � Xx − X �

T K− 1
� Xx − X � + 2� Xx − X �

T K− 1

� X − � X0 + au � � 


Direct computation of the above expression yields:

r = exp −
x1� x1

0 + au1 �

ak11

where X0 = � x1
0, x2

0
�

T and u = � u1, u2 �
T.

Note that the quantity x1
0 + au1 is certainly positive and

large, for a reasonable range of values of x1
0, a and u1. So,

the bigger the ratio
x1

a , the smaller r and the better the

approximation of �� a, X � + �� a, Xx � by �� a, X �. Fur-
thermore, if a is sufficiently small, most larvae would not
have time to diffuse far from their birth position X0. So,
if we proceed by a sampling strategy where the stations
are close to spawning points, namely, x1 ≈ x1

0, then:

r ≈ exp�−
� x1

0
�

2

ak11
�

will tend exponentially to zero if
� x1

0
�

2

ak11
becomes large.

The condition that x1
0 be large or a small leads to the same

observation, that the spawning areas can be considered
sufficiently far from the coast that the spatial boundary
effects can be neglected. In this case, one can do as if
there were no boundary, thus the spatial distribution
follows a normal law.

5. DISCUSSION AND CONCLUSION

The results presented in this paper are based on the same
general hypotheses as those that were used in Arino et al.
(1996). With regard to physical processes, repeated ob-
servations made by (Koutsikopoulos et al. 1993) indicate
that drift by currents is weak and roughly parallel to the
coast, therefore it would not explain the transport of
larvae to the nurseries. Residual tidal currents have
roughly the same effect (Le Cann et al., 1992). So, it has
been suggested that the transport of a probably very small
fraction of the spawning biomass towards the nurseries
should be the result of an essentially diffusive process,
both biological and physical on a very small scale. Arino
et al. (1996) has dealt with the one-dimensional case,
considering that the principal spatial coordinate was the
distance to the coast. Introducing the coordinate parallel
to the coast was felt a necessity in view of the heteroge-
neity of the coast and the fact that, as was mentioned
above, the current tends to act along the coast. Regarding
the life history of the sole, the scheme was: the egg stage
followed by the early larval stage, both essentially
passive, then an active feeding larval period preceding the
metamorphosis into a juvenile flat fish which should
occur within immediate vicinity of a nursery. The ratio-
nale for the geographic localization of the onset of the
juvenile stage was a series of observations showing that
nearly no juvenile has ever been captured out of the

A. RAMZI et al. / Oceanologica Acta 24 (2001) 101–112

109



nurseries (Koutsikopoulos et al., 1991). The model pro-
posed in Arino et al. (1996) was built on these hypoth-
eses. The model still suffers from several drastic simpli-
fications, such as taking averages of all the parameters
(including the velocity) and state variables instead of
their local values. Vertical movement is an important
component of fish dynamics. After a few days, the larva
starts to adopt the usual circadian rhythm, being near the
surface at night while reaching the lower part of the
column during daylight. Compared to the mean span of
the larval stage (between 40–60 days (Koutsikopoulos et
al., 1991)), daily processes may be considered fast and
are susceptible to be approximated using the theory of the
aggregation of variables (the reader can look at Antonelli
and Auger, 1998, for example, for getting a view on this
theory and some applications). Such an approach was
used in (Arino et al., 1999) in a study of the vertical
displacement of fish larvae. A mean value of the horizon-
tal velocity emerges from the aggregation of the velocity
at various levels of the water column, associated with
vertical mixing. This is not however the way it was
carried out in (Arino et al., 1996) nor is it so in the present
work. The possible role of vertical migration, combined
with depth-differential advection, on the horizontal dis-
placement will be investigated in a coming paper, using a
3D model fed with some real oceanographical data.

With regards the description of the life cycle, the empha-
sis in Arino et al. (1996) as well as here was put on the
larval stage. In contrast, there are important gaps in the
modelling of other stages: for the juvenile stage, for
example, no space variability was accounted for. Al-
though the movements of the juveniles are indeed quite
limited, compared to those of the adults and larvae, one
cannot however neglect their potential impact on their
dynamics.

The main purpose in Arino et al. (1996) and in the present
work was to explore by a mathematical model the
combined role of diffusion-driven migration and
temperature-dependent growth in the recruitment of lar-
vae in the juvenile stage. The link between the physical
and physiological processes is that a supposedly existing
size threshold for metamorphosis is to be reached within
close vicinity of a nursery. The unique feature of both our
earlier work and this one is the same: it is to propose
analytic formulae, which can be computed numerically
and can also be used for sensitivity analysis.

How does the present work compare to Arino et al.
(1996)? It would not be exact to consider that it is just
the same as Arino et al. (1996) in the 2D setting instead
of 1D. This very fact introduces non trivial complica-
tions in the mathematical treatment which are well
reflected in paragraph 4.4.2: the fundamental solution,
that is, the solution describing the time change of the
concentration of a property which initially was concen-
trated in a single point, is not monotonic and it has been
necessary to introduce an approximation to recover the
more familiar concept of a normal distribution. The
model incorporates some new features, such as for
example assuming no-flux spatial boundary conditions,
which is more realistic a hypothesis than assuming no
population on this part of the boundary, but adds a little
more to the difficulty of dealing with two dimensions.
The model also accounts for the possible subdivision of
the spawning or the nursery area into separate patches. A
special effort was invested in the modelling of larval
growth and in computing the growth function in terms of
experimentally obtained functions (section 4).

What has been done in Arino et al. (1996) and in the
present work is essentially based on experimental and
field studies made in the eighties and early nineties
(Dorel et al., 1991; Koutsikopoulos et al., 1989, 1991; Le
Cann et al., 1992; Koutsikopoulos et al., 1993). Recent
progress in sampling techniques as well as in the analysis
of biological data has led experts on the Dover sole to
modulate some of the hypotheses, which play a funda-
mental role in the models we have elaborated. There are
several new aspects, regarding both the ecology of the
sole and the identification of the nurseries and the
spawning grounds that would need to be taken into
account. We now mention a few of these.

It has been assumed in this paper that only the larvae
completing metamorphosis within the nurseries are sus-
ceptible to reach sexual maturity: this hypothesis has
been verified in each field study (Koutsikopoulos et al.,
1989, Amara et al., 1993; Lagardère et al., 1999).
However, it has been observed (Amara et al., 1993), see
also Lagardère et al., 1999), that metamorphosing larvae
were more abundant in the area 30–40 m deep than
previously reported. These observations, favoured by the
development of more powerful samplers Amara et al.,
1994), suggest that additional mechanisms apart from
diffusion play a role in the transport of larvae into the
20 m deep area and the nurseries. This leads us to
mention a point which is gaining favour in the present
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ideas on the ecology of the sole, that is, the idea of
subdividing the migration of the sole into two distinct
processes: a first one, essentially driven by diffusion,
would select in a mostly random fashion the larvae which
have the potential to become adults, the ones which by
diffusion are transported within 20–40 km from the coast;
then, a second mechanism, involving active movement of
the larvae, notably in the water column, and tidal currents
(Champalbert and Koutsikopoulos, 1995), would allow
the successful individuals to reach the nurseries. Some
physiological changes occurring during the development
of the larva would then play a crucial role: for example,
the use of an inflated swim bladder, viewed more as an
energy saver than a device essential for the sole to ascend
in the water column (Blaxter, 1980), would give Solea
solea an advantage over the thickback sole, Microchirus
variegatus, to reach coastal nurseries (Amara et al.,
1998). In fact, the combination of vertical movement and
horizontal transport could be enough to explain the
migration of the larvae from the spawning ground to the
20–40 km offshore area. Finally, the type and character-
istics of the nurseries become an important feature of the
success, and recent advances in the analysis of chemical
constituents of otoliths have permitted the determination
of environmental imprints, which should be useful in
exploring the relationships between the various nurseries
and spawning grounds, and possibly estimating the dis-
tinctive role and importance of each nursery in the
recruitment.

In conclusion, we want to stress two points: 1) migration
from the spawning ground to within 20–40 km from the
coast can be explained by a combination of diffusion and
SE–NW drift, both horizontal, viewed as an average of
corresponding properties throughout the water column.
This is in agreement with the suggestion that was made
notably in (Koutsikopoulos et al., 1991), and that stimu-
lated (Arino et al., 1996) and the present work. What our
paper adds to the intuition is that this mechanism can
produce significant recruitment only if the drift is suitably
small and the diffusion is big enough, and it provides
formulae that can be used to estimate how small the drift
should be and how big the diffusion. 2) For the perspec-
tives: the mechanisms in action in the 20–40 km distance
to the coast combine diffusion with possibly more promi-
nent physical factors, notably tidal currents, concurrently
with physiological features of the metamorphosing larvae
which allow them to exploit the vertical movement to
reach the nurseries. This part of the dynamics requires the

development of a new model, possibly three dimensional,
in order to account for the increased impact of the vertical
movement in it together with its conceivably greater
heterogeneity when nearing the 20 m or less deep waters.
Future work is envisaged in this direction.
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