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Abstract

A suitable periodic boundary conditions for a functional differential equations

_xðtÞ ¼ f ðt; x; xtÞ are conditions of the form x0ðhÞ ¼ x2pðhÞ. In this paper we use the

notion of upper and lower solutions coupled with monotone iterative method to prove

the existence of solutions of this periodic boundary value problem.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The method of upper and lower solutions coupled with the monotone

iterative technique has been applied successfully to obtain results of existence

and approximation of solutions for boundary value problems for ordinary

differential equations (see [2] and the references therein). Some attempts have

been made to extend these techniques to study functional differential equations
_xðtÞ ¼ f ðt; xðtÞ; xtÞ, where xtðhÞ ¼ xðt þ hÞ for all tP 0 and h 2 ½�r; 0�. In [1,3,4]
the periodic problem
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_uðtÞ ¼ f ðt; uðtÞ; utÞ;
uð0Þ ¼ uðT Þ

�
ð1Þ
was considered. As it is pointed out in [3] a natural periodic boundary value

problem is to require the boundary condition to be u0ðhÞ ¼ uT ðhÞ whenever
�r6 h6 0: To our knowledge none of the methods used previously works for

such boundary value problems. The aim of this paper is to give an approach

based on iterative methods, which deals with boundary value problems with

u0ðhÞ ¼ uT ðhÞ whenever �r6 h6 0 as boundary conditions.

Let us consider the problem
_xðtÞ ¼ f ðt; xðtÞ; xtÞ;
x0ðhÞ ¼ x2pðhÞ h 2 ½�r; 0�;

�
ð2Þ
where f : I 	 R	 C ! R is a continuous function, I ¼ ½0; 2p� and

C ¼ Cð½�r; 0�;RÞ is the space of continuous real valued functions defined

on ½�r; 0�. The set C is a Banach space with supremum norm
k/k ¼ supt2½�r;0� j/ðtÞj.
Definition 1.1. aðtÞ is called a lower solution of (2) if
_aðtÞ6 f ðt; aðtÞ; atÞ t 2 ½0; 2p�;
aðhÞ ¼ a2pðhÞ 8h 2 ½�r; 0�;

�

bðtÞ is called an upper solution of (2) if
_bðtÞP f ðt; bðtÞ; btÞ t 2 ½0; 2p�;
bðhÞ ¼ b2pðhÞ 8h 2 ½�r; 0�:

�

2. Main result

Let us make the following assumptions on f
f ðt; u;/Þ þMu is monotone nondecreasing: ðHÞ
Let a and b be respectively a lower and an upper solutions of (2) such that the

assumption (H) will be fulfilled. Define the sequence ðunÞnP 0 on Cð½�r; 2p�;RÞ
by
u0 ¼ a;
_unþ1 þMunþ1 ¼ f ðt; un; un;tÞ þMun;
unþ1;0ðhÞ ¼ un;2pðhÞ h 2 ½�r; 0�:

8<
:

Since f is continuous and by setting gnðtÞ ¼ f ðt; un; un;tÞ þMun we can see by

recurrence that the sequence ðunÞ is well defined.
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Remark 2.1. We point out that the sequence ðunÞ is different from the

sequences used in [1,3,4], since the first boundary condition (or the initial
condition) unþ1;0 is expressed in term of the previous term of the sequence at the

second boundary condition un;2p i.e. unþ1;0ðhÞ ¼ un;2pðhÞ h 2 ½�r; 0�.

If a and b are a lower and an upper solutions of (2) such that the assumption

(H) will be fulfilled. The sequence ðunÞ has the following property.
Proposition 2.2. For all k 2 N one has
aðtÞ6 ukðtÞ6 bðtÞ:
Proof. We prove that ukðtÞ6bðtÞ 8k 2 N, the proof for the left inequality is

analogue. We proceed by recurrence.

For k ¼ 0 one has u0ðtÞ ¼ aðtÞ6 bðtÞ 8t 2 ½�r; 2p�.
Now we suppose that ukðtÞ6 bðtÞ and show that ukþ1ðtÞ6 bðtÞ 8t 2 ½�r; 2p�.
Since
_ukþ1 þMukþ1 ¼ f ðt; uk; uk;tÞ þMuk
and
_b þMb P f ðt; b; btÞ þMb
one has
ðukþ1 � bÞ0 þMðukþ1 � bÞ6 ½f ðt; uk; uk;tÞ þMuk� � ½f ðt; b; btÞ þMb�
¼ f ðt; uk; uk;tÞ � f ðt; b; btÞ þMðuk � bÞ:
By application of (H) we obtain
ðukþ1 � bÞ0 þMðukþ1 � bÞ6 0:
Moreover
ukþ1ð0Þ � bð0Þ ¼ ukð2pÞ � bð2pÞ6 0:
Then we have a problem of the form
_wþMw6 0 8t 2�0; 2p½;
wð0Þ6 0;

�

where w ¼ ukþ1 � b. Hence the question is to prove that wðtÞ6 0 whenever

t 2 ½0; 2p�. To this end one has
ðeMtwðtÞÞ0 ¼ MeMtwðtÞ þ eMt _wðtÞ ¼ eMt½ _wðtÞ þMwðtÞ�6 0:
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By integrating the term ðeMtwðtÞÞ0 6 0 we get
eMtwðtÞ � e0wð0Þ6 0;

eMtwðtÞ6wð0Þ;
eMtwðtÞ6 0;
which is equivalent to w6 0. This ended the proof since w ¼ ukþ1 � b. h

Theorem 2.3. The sequence ðukÞk2N has a convergent subsequence, which con-
verges to a solution u of the problem (2) i.e. u 2 Cð½�r; 2p�;RÞ \ C1ð½0; 2p�;RÞ
and u0ðhÞ ¼ u2pðhÞ.

Proof. Since a6 uk 6 b one has
kukk6 kak þ kbk6 c:
In addition
_uk þMuk ¼ f ðt; uk�1; uk�1;tÞ þMuk�1
and
k _ukk6Mkukk þ sup
a6 u6 b

t2½0;2p�

kf ðt; uk�1; uk�1;tÞk þMkuk�1k;

k _ukk6K:
Hence the sequence ðukÞ is equicontinuous and since it is bounded by the

Ascoli–Arzela theorem the sequence ðukÞ has a convergent subsequence.

From
_unþ1 þMunþ1 ¼ f ðt; un; un;tÞ þMun;

unþ1;0ðhÞ ¼ un;2pðhÞ h 2 ½�r; 0�;

and by integration yields
unþ1ðtÞ � unþ1ð0Þ ¼
Z t

0

f ðs; un; un;sÞdsþM
Z t

0

ðunðsÞ � unþ1ðsÞÞds:
Since jf ðt; uk�1; uk�1;tÞj6 sup
a6 v6b
t2½0;2p�

fjf ðt; v; vtÞjg6 L, L is a constant. By the

dominated convergence theorem of Lebesque we get
uðtÞ � uð0Þ ¼
Z t

0

f ðs; u; usÞds:
In addition one has
u0ðhÞ ¼ u2pðhÞ 8h½�r; 0�:
This ended the proof. h
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3. Application

As application we consider the following functional differential equation
_xðtÞ ¼ gðt; xtÞ � KxðtÞ
with g continuous and K is a positive constant. Let mðaÞ ¼ inf06 t6 2p gðt; �aÞ and
MðaÞ ¼ sup06 t6 2p gðt; �aÞ where �a is the constant function equals to a. Let us
make the hypothesis m0 ¼ lima!�1

jmðaÞj
jaj < þ1 and M0 ¼ lima!þ1

MðaÞ
a < þ1.

Proposition 3.1. If the function gðt; �Þ is monotone nondecreasing, for all
K > maxðm0;M0Þ the boundary value problem
_xðtÞ ¼ gðt; xtÞ � KxðtÞ;
x0ðhÞ ¼ x2pðhÞ h 2 ½�r; 0�

�
ð3Þ
has at least one solution.

Proof. Eq. (3) is of the form of Eq. (2) with
f ðt; u;uÞ :¼ gðt;uÞ � ku:
Since g is monotone nondecreasing, it is easy to verify that for M PK the

function gðt;uÞ þ ðM � KÞu satisfies the hypothesis (H). Let a0 be a large

negative real number. The constant solution equal to a0 is a lower solution of

Eq. (3). Indeed it enough to check that
gðt; a0Þ � Ka0 P 0:
This follows from K Pm0 ¼ lima!�1
jmðaÞj
jaj P jmða0Þj

ja0j
.

We prove in the same way that the constant solution b equal to b0 a positive

real number is an upper solution. h
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