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Abstract

A suitable periodic boundary conditions for a functional differential equations
x(t) = f(t,x,x,) are conditions of the form x(0) = x,(0). In this paper we use the
notion of upper and lower solutions coupled with monotone iterative method to prove
the existence of solutions of this periodic boundary value problem.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

The method of upper and lower solutions coupled with the monotone
iterative technique has been applied successfully to obtain results of existence
and approximation of solutions for boundary value problems for ordinary
differential equations (see [2] and the references therein). Some attempts have
been made to extend these techniques to study functional differential equations
x(t) = f(t,x(t), x,), where x,(0) = x(¢ + 0) for all > 0 and 6 € [—r,0]. In [1,3,4]
the periodic problem
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(1) = £t u(t), ),
{u<0> —u(T) M)

was considered. As it is pointed out in [3] a natural periodic boundary value
problem is to require the boundary condition to be uo(0) = ur(f) whenever
—r<0<0. To our knowledge none of the methods used previously works for
such boundary value problems. The aim of this paper is to give an approach
based on iterative methods, which deals with boundary value problems with
up(0) = ur(6) whenever —r < 6 <0 as boundary conditions.

Let us consider the problem

(1) = f (2, x(1), %),
{xo(g) =x2:(0) 0¢€[-r,0], 2)

where f:IxRxC—R is a continuous function, 7 =1[0,2n] and
C =C([-r,0],R) is the space of continuous real valued functions defined
on [—r,0]. The set C is a Banach space with supremum norm

1l = super.q [¢(0)]-

Definition 1.1. «(z) is called a lower solution of (2) if

{dc(t) <f(tau(t), o) t€[0,2m],
a(0) = 0,(0) V0 € [-r,0],

p(t) is called an upper solution of (2) if

{ﬁ(r) > f(t,B(t),B) t€0,2n],
B(0) = By (6) Vo € [-r,0].

2. Main result

Let us make the following assumptions on f
f(t,u,¢) + Mu is monotone nondecreasing. (H)

Let « and f§ be respectively a lower and an upper solutions of (2) such that the
assumption (H) will be fulfilled. Define the sequence (u,), - , on C([-r, 27, R)
by

Uy = &,
iln+] + Mun+l = f(ta Uy, un,t) + Mu,,,
M,H,]‘o(@) = u,,,zn(ﬁ) 9 S [*}", 0}

Since f is continuous and by setting g,(¢) = f (¢, u,, u,,) + Mu, we can see by
recurrence that the sequence (u,) is well defined.
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Remark 2.1. We point out that the sequence (u,) is different from the
sequences used in [1,3,4], since the first boundary condition (or the initial
condition) u, o is expressed in term of the previous term of the sequence at the
second boundary condition u,», i.. t,110(0) = t,2.(0) 0 € [—r,0].

If « and f§ are a lower and an upper solutions of (2) such that the assumption
(H) will be fulfilled. The sequence (u,) has the following property.

Proposition 2.2. For all k € N one has

(1) Sur(2) < B(2).

Proof. We prove that u;(¢) < f(¢) Vk € N, the proof for the left inequality is
analogue. We proceed by recurrence.
For k = 0 one has uy(t) = a(t) < p(¢) Vt € [—r,27].
Now we suppose that u(7) < f(¢) and show that u(¢) < f(¢) Ve € [—r,27].
Since

U1 + Mugy = (8 ug,ury) + Muy
and

B+MB=[(t,B.5)+Mp
one has

(i1 = B) + M(uepr = B) < (6, e, i) + Mu] = [f (¢, B, B,) + M|

= [t ue uee) = f(8, B, B,) + M(ux — B).

By application of (H) we obtain

(1 — ) + M (wiyr — B) <O.
Moreover

up1(0) — B(0) = ux(2m) — B(2m) <0.
Then we have a problem of the form

w4+ Mw<0 Vrel0,2n],
w(0) <0,

where w = u;; — . Hence the question is to prove that w(¢) <0 whenever
t € [0,27]. To this end one has

(eMw(t)) = Mew(t) 4 eM(t) = M (t) + Mw(t)] <O0.



268 M. Yebdri et al. | Appl. Math. Comput. 161 (2005) 265-269
By integrating the term (eMw(z))' <0 we get

Mw(t) — e"w(0) <0,

Mw(t) <w(0),

w(t) <0,

which is equivalent to w < 0. This ended the proof since w =u, — . O

Theorem 2.3. The sequence (uy),.n has a convergent subsequence, which con-
verges to a solution u of the problem (2) i.e. u € C([—r,2x],R) N C'(]0,2x], R)
and uy(0) = uy,(0).

Proof. Since o <u; < ff one has
[l < llexll + 1Bl < e
In addition
e+ Muy = f(tupy, 1) + Muy
and
llitell < Mluil| + sup (|1 (2, ux—1, 1) || + M ],

a<u<p
te[0,27]

e} < K.

Hence the sequence (i) is equicontinuous and since it is bounded by the
Ascoli-Arzela theorem the sequence (u;) has a convergent subsequence.
From

iln+1 + Mun+1 = f(t, Up, un,t) + Muna
un+l,0(9) = Ll,,’zn(g) 0 € [—V, 0]7
and by integration yields

Uy 11(2) — tpi1 (0 /fs Uy, Uy 5 ds+M/ U, (8) = thyy1 (s)) ds.

Since |1 (¢, ug—1, tp—1,)| < sup1<v<ﬁ{\f(t,v,v,)\}<L, L is a constant. By the

t€[0,27]
dominated convergence theorem of Lebesque we get

= /tf(s,u,us) ds
0

In addition one has
up(0) = up,(0) VO[—r,0].
This ended the proof. O



M. Yebdri et al. | Appl. Math. Comput. 161 (2005) 265-269 269

3. Application

As application we consider the following functional differential equation
(1) = g(t,x,) — Kx(1)

with g continuous and KX is a positive constant. Let m(o) = inf<, <2, (¢, &) and
M (o) = supy <, <o, g(t,a) where & is the constant function equals to rx Let us

make the hypothesis my = lim,__. "”‘S“)‘ < 400 and M, = hmgH+Oo

Proposition 3.1. If the function g(t,-) is monotone nondecreasing, for all
K > max(mg, My) the boundary value problem

x(1) = g(t,x,) — Kx(1),
{XO(Q) Zngn(G) 0 € [-r,0] (3)

has at least one solution.

Proof. Eq. (3) is of the form of Eq. (2) with
f(tv u, q)) = g(ta qD) — ku.

Since g is monotone nondecreasing, it is easy to verify that for M > K the
function g(¢,¢) + (M — K)u satisfies the hypothesis (H). Let «y be a large
negative real number. The constant solution equal to o is a lower solution of
Eq. (3). Indeed it enough to check that

g(t,o0) — Kog = 0.

This follows from K > mo = lim,_, .. . ‘i‘ﬂ > |”"(°<o)\

We prove in the same way that the constant solutlon p equal to f, a positive
real number is an upper solution. [J
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